Skip to main content

Oxidative Stress and Neurodegeneration: An Inevitable Consequence of Aging? Implications for Therapy

  • Chapter
  • First Online:
Brain Protection in Schizophrenia, Mood and Cognitive Disorders

Abstract

Brain aging is one of the most complex issues confronting researchers in neuroscience today. Nevertheless, research on the molecular biology of neurodegenerative disorders, particularly Alzheimer disease, has provided enormous progress in understanding the mechanisms that ultimately lead to the neuronal and glial malfunctions that ultimately damage neurons resulting in death. In this regard, one of the most compelling theories providing a basis for understanding aging and neurodegeneration posits oxidative stress, which results from an accumulation of “free radicals” in the cell that originates from the intense oxidative metabolism in the central nervous system and the diminished antioxidant defenses, as a major contributor. Here we review evidence demonstrating a robust relationship—epidemiological-clinical, molecular-neurobiological, and pathogenetic—between brain senility, mild cognitive impairment, and Alzheimer disease (as well as other neurodegenerative conditions) that places oxidative stress at a pivotal point in these three neurophysiologic and neuropathologic processes. These observations suggest that the three conditions are steps in the progressive decline in cognitive function. First, we focus on classical, clinical, and psychiatric observations of the cognitive ability of elderly people, from normal functioning to declines associated with aging, and then move to mild and severe pathological impairment, with continually worsening clinical and neuropsychiatric status. We show that the term “senile dementia”, today removed from the nosological categories, is in fact representative of the clinical observations of progressive age-related brain deterioration. Second, we address oxidative stress and describe the new neurochemical and neuropathological theories of disease pathogenesis, that implicate oxidative stress as the earliest process in brain aging and neurodegeneration in Alzheimer disease. Moreover, we discuss the evidence that amyloid-β, senile plaques, and neurofibrillary tangles may comprise a compensatory defense mechanism against oxidative stress. In addition, the oxidative stress-amyloid-β “cascade” that develops during Alzheimer disease is also described, in which amyloid formation in the brain further exposes neurons to oxidative stress, eliciting a full neurodegenerative response. Finally, we explore how current treatments of Alzheimer disease, such as acetylcholinesterase inhibitors and non-specific glutamate receptor inhibitors/antagonists, may benefit from the inclusion of antioxidants or metabolic agents that target brain aging, mild cognitive impairment, Alzheimer disease, and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer disease

AβPP:

amyloid-β protein precursor

CNS:

central nervous system

FAD:

familial Alzheimer disease

8OHG:

8-hydroxyguanosine

•OH:

hydroxyl radical

LOAD:

late onset AD

MCI:

mild cognitive impairment

mtDNA:

mitochondrial DNA

PUFA:

polyunsaturated fatty acids

PET:

positron emission tomography

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

References

  1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11:298–300

    Article  PubMed  CAS  Google Scholar 

  2. Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 1998; 168:149–158

    Article  PubMed  CAS  Google Scholar 

  3. Jaruga P, Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res 1996; 24:1389–1394

    Article  PubMed  CAS  Google Scholar 

  4. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 2003; 4:529–536

    Article  PubMed  CAS  Google Scholar 

  5. Markesbery WR, Montine TJ, Lovell MA. Oxidative alterations in neurodegenerative diseases. In: Mattson MP (eds) Pathogenesis of Neurodegenerative Disorders. Humana Press Inc., Totowa, NJ, 2001; pp. 21–52

    Chapter  Google Scholar 

  6. Perry G, Nunomura A, Raina AK, et al. A metabolic basis for Alzheimer disease. Neurochem Res 2003; 28:1549–1552

    Article  PubMed  CAS  Google Scholar 

  7. Honda K, Smith MA, Zhu X, et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 2005; 280:20978–20986

    Article  PubMed  CAS  Google Scholar 

  8. Berg D. Redox imbalance: in the triad of genetic disturbances and mitochondrial dysfunction in Parkinson’s disease. In: Qureshi GA, Parvez SH (eds) Oxidative Stress and Neurodegenerative Disorders. Elsevier B.V., Amsterdam, 2007; pp. 183–200

    Chapter  Google Scholar 

  9. Daffner KR, Scinto LFM. Early diagnosis of Alzheimer’s disease: an introduction. In: Daffner KR, Scinto LFM (eds) Early Diagnosis of Alzheimer’s Disease. Humana Press, Inc., Totowa, NJ, 2000; pp. 1–28

    Chapter  Google Scholar 

  10. American Psychiatric Association. The Diagnostic and Statistical Manual of Mental Disorders, text revision (DSM-IV-TR), 4th edn. American Psychiatric Association, Washington, DC; 2004

    Google Scholar 

  11. Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989; 39:1159–1165

    CAS  Google Scholar 

  12. Bachman DL, Wolf PA, Linn RT, et al. Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham Study. Neurology 1993; 43:515–519

    Article  PubMed  CAS  Google Scholar 

  13. Paykel ES, Brayne C, Huppert FA, et al. Incidence of dementia in a population older than 75 years in the United Kingdom. Arch Gen Psychiatry 1994; 51:325–332

    Article  PubMed  CAS  Google Scholar 

  14. Myers GC. World statistical trend prospects. In: Copeland JRM, Abou-Saleh MT Blazer DG (eds) Principles and Practice of Geriatric Psychiatry. John Wiley & Sons, Ltd., New York, 2002; pp. 87–121

    Chapter  Google Scholar 

  15. United Nations. World Population Prospects: The 2008 Revision. 2008

    Google Scholar 

  16. Evans DA, Funkenstein HH, Albert MS, et al. Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 1989; 262:2551–2556

    CAS  Google Scholar 

  17. Ritchie K, Kildea D. Is senile dementia “age-related” or “ageing-related”?—evidence from meta-analysis of dementia prevalence in the oldest old. Lancet 1995; 346:931–934

    Article  PubMed  CAS  Google Scholar 

  18. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 1997; 278:1363–1371

    Article  PubMed  CAS  Google Scholar 

  19. Jorm AF. The Epidemiology of Alzheimer’s Disease and Related Disorders. Chapman & Hall, London; 1990

    Google Scholar 

  20. Vijg J. Aging of the Genome: the Dual Role of the DNA in Life and Death. Oxford University Press, Oxford; 2007

    Book  Google Scholar 

  21. Watson JD, Baker TA, Bell SP, et al. Molecular Biology of the Gene, 6th edn. Pearson Education Inc., UK; 2008

    Google Scholar 

  22. Lee H-C, Wei Y-H. Mitochondrial DNA mutation, oxidative stress, and alteration of gene expression in human aging. In: Berdainer CD (eds) Mitochondria in Health and Disease. Taylor & Francis, Boca Raton, 2005; pp. 319–362

    Chapter  Google Scholar 

  23. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362:709–715

    Article  PubMed  CAS  Google Scholar 

  24. Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 1988; 85:2706–2708

    Article  PubMed  CAS  Google Scholar 

  25. Barja G. Free radicals and aging. Trends Neurosci 2004; 27:595–600

    Article  PubMed  CAS  Google Scholar 

  26. Shoffner JM. Oxidative phosphorylation disease: diagnosis and pathogenesis. In: Berdainer CD (eds) Mitochondria in Health and Disease. Taylor & Francis, Boca Raton, 2005; pp. 247–300

    Chapter  Google Scholar 

  27. Tengan CH, Gabbai AA, Shanske S, Zeviani M, Moraes CT. Oxidative phosphorylation dysfunction does not increase the rate of accumulation of age-related mtDNA deletions in skeletal muscle. Mutat Res 1997; 379:1–11

    Article  PubMed  CAS  Google Scholar 

  28. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001; 21:3017–3023

    PubMed  CAS  Google Scholar 

  29. Blass JP, Sheu RK, Gibson GE. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann NY Acad Sci 2000; 903:204–221

    Article  PubMed  CAS  Google Scholar 

  30. Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 1994; 269:13623–13628

    PubMed  CAS  Google Scholar 

  31. Moreira PI, Nunomura A, Honda K, et al. The key role of oxidative stress in Alzheimer’s disease. In: Qureshi GA, Parvez SH (eds) Oxidative Stress and Neurodegenerative Disorders. Elsevier B.V., Amsterdam, 2007; pp. 267–281

    Chapter  Google Scholar 

  32. Zhu X, Rottkamp CA, Boux H, et al. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 2000; 59:880–888

    PubMed  CAS  Google Scholar 

  33. Tanaka M, Kovalenko SA, Gong JS, et al. Accumulation of deletions and point mutations in mitochondrial genome in degenerative diseases. Ann NY Acad Sci 1996; 786:102–111

    Article  PubMed  CAS  Google Scholar 

  34. Wei YH. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 1998; 217:53–63

    PubMed  CAS  Google Scholar 

  35. Wilson DM 3rd, Bohr VA, McKinnon PJ. DNA damage, DNA repair, ageing and age-related disease. Mech Ageing Dev 2008; 129:349–352

    Article  PubMed  CAS  Google Scholar 

  36. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1989; 1:642–645

    Article  PubMed  CAS  Google Scholar 

  37. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000; 25:502–508

    Article  PubMed  CAS  Google Scholar 

  38. Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 2008; 129:383–390

    Article  PubMed  CAS  Google Scholar 

  39. Isobe K, Ito S, Hosaka H, et al. Nuclear-recessive mutations of factors involved in mitochondrial translation are responsible for age-related respiration deficiency of human skin fibroblasts. J Biol Chem 1998; 273:4601–4606

    Article  PubMed  CAS  Google Scholar 

  40. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001; 60:759–767

    PubMed  CAS  Google Scholar 

  41. Akbari M, Krokan HE. Cytotoxicity and mutagenicity of endogenous DNA base lesions as potential cause of human aging. Mech Ageing Dev 2008; 129:353–365

    Article  PubMed  CAS  Google Scholar 

  42. Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 2001; 30:447–450

    Article  PubMed  CAS  Google Scholar 

  43. Gouras GK, Tsai J, Naslund J, et al. Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 2000; 156:15–20

    Article  PubMed  CAS  Google Scholar 

  44. Sayre LM, Perry G, Harris PL, et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 2000; 74:270–279

    Article  PubMed  CAS  Google Scholar 

  45. Blass JP, Gibson GE. Cerebrometabolic aspects of delirium in relationship to dementia. Dement Geriatr Cogn Disord 1999; 10:335–338

    Article  PubMed  CAS  Google Scholar 

  46. Azari NP, Pettigrew KD, Schapiro MB, et al. Early detection of Alzheimer’s disease: a statistical approach using positron emission tomographic data. J Cereb Blood Flow Metab 1993; 13:438–447

    Article  PubMed  CAS  Google Scholar 

  47. Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR. Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 1994; 15:117–132

    Article  PubMed  CAS  Google Scholar 

  48. Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 2004; 101:284–289

    Article  PubMed  CAS  Google Scholar 

  49. Hoyer S. Risk factors for Alzheimer’s disease during aging. Impacts of glucose/energy metabolism. J Neural Transm Suppl 1998; 54:187–194

    CAS  Google Scholar 

  50. Atwood CS, Obrenovich ME, Liu T, et al. Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 2003; 43:1–16

    Article  PubMed  CAS  Google Scholar 

  51. Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000; 59:1011–1017

    PubMed  CAS  Google Scholar 

  52. Nunomura A, Perry G, Pappolla MA, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 1999; 19:1959–1964

    PubMed  CAS  Google Scholar 

  53. Nunomura A, Perry G, Hirai K, et al. Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann NY Acad Sci 1999; 893:362–364

    Article  PubMed  CAS  Google Scholar 

  54. Kontush A. Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer’s disease. Free Radic Biol Med 2001; 31:1120–1131

    Article  PubMed  CAS  Google Scholar 

  55. Cappai R, Needham BE, Ciccotosto GD. The function of the amyloid precursor protein family. In: Collin JB, David HS (eds) Abeta Peptide and Alzheimer’s Disease: Celebrating a Century of Research. Springer, London, 2007; pp. 37–51

    Chapter  Google Scholar 

  56. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33:95–130

    Article  PubMed  CAS  Google Scholar 

  57. Sontag E, Nunbhakdi-Craig V, Lee G, et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 1999; 274:25490–25498

    Article  PubMed  CAS  Google Scholar 

  58. Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 1999; 58:188–197

    Article  PubMed  CAS  Google Scholar 

  59. Scheffler IE. Mitochondria, 2nd edn. John Wiley & Sons, Inc., Hoboken, NJ; 2008

    Google Scholar 

  60. Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994; 36:747–751

    Article  PubMed  CAS  Google Scholar 

  61. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242:1427–1430

    Article  PubMed  CAS  Google Scholar 

  62. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331:717–719

    Article  PubMed  CAS  Google Scholar 

  63. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38:357–366

    Article  PubMed  CAS  Google Scholar 

  64. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000; 57:925–935

    Article  PubMed  CAS  Google Scholar 

  65. McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22:105–122

    Article  PubMed  CAS  Google Scholar 

  66. Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001; 2:343–351

    Article  PubMed  CAS  Google Scholar 

  67. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156:837–841

    PubMed  CAS  Google Scholar 

  68. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 2000; 48:755–765

    Article  PubMed  CAS  Google Scholar 

  69. Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology 1990; 52:57–64

    Article  PubMed  CAS  Google Scholar 

  70. Tombaugh GC, Sapolsky RM. Evolving concepts about the role of acidosis in ischemic neuropathology. J Neurochem 1993; 61:793–803

    Article  PubMed  CAS  Google Scholar 

  71. Del Rio J, Frencilla D. Glutamate and depression. In: Schmidt WJ, Reith MEA (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press, Totowa, NJ, 2005; pp. 215–234

    Google Scholar 

  72. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995;15:1768–1777

    PubMed  CAS  Google Scholar 

  73. Smith MA, Rodrigues R. The twin frontiers of depression and Alzheimer’s disease. Front Neurosci 2009; 3:236–237

    Article  Google Scholar 

  74. Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286:1358–1362

    Article  PubMed  CAS  Google Scholar 

  75. Geerlings MI, den Heijer T, Koudstaal PJ, Hofman A, Breteler MM. History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer disease. Neurology 2008; 70:1258–1264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rodrigues, R. et al. (2010). Oxidative Stress and Neurodegeneration: An Inevitable Consequence of Aging? Implications for Therapy. In: Ritsner, M. (eds) Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8553-5_10

Download citation

Publish with us

Policies and ethics