Skip to main content

Control of Listeria monocytogenes in San Daniele Dry Cured Ham by Different Technologies: Reduction of L. Monocytogenes in Dry Cured Ham

  • Conference paper
  • First Online:
Detection of Bacteria, Viruses, Parasites and Fungi

Abstract

Dry cured ham can be contaminated by L. monocytogenes. It originates from raw meat, from processing plants and room. For this reason, it is sometimes impossible to eliminate it from dry cured ham. However, it is possible to prevent or minimize contamination, and to inhibit or stop its growth. The aim of this paper was to produce and validate different methods for post-processing application in San Daniele dry-ham in order to reduce the concentration of L. monocytogenes by 2–3 log CFU/cmq, or to try and completely eliminate it (0 tolerance). An additional goal was to validate the degree of lethality. The methods used included chemical solutions (1.5% sodium lactate, 1% sodium diacetate, a mix solution of 1.5/1.0% sodium lactate/diacetate), ionized air, water and ozonized air, hydrogen peroxide solution, essential oils, and microbial protective starter (Leuconostoc carnosum). The samples, represented by surfaces of San Daniele dry cured ham (both meat and pig-skin parts), were inoculated with different concentrations of a mix of five L. monocytogenes biotypes. After the inoculum, the samples were treated with the above-mentioned technologies. To assess the effects of each treatment, the survived cells of L. monocytogenes were counted by EN/ISO 11290-2 method. Chemical solutions reduced the concentration of L. monocytogenes by 2–3 log CFU/cmq, ionized air by 3 log CFU/cmq, water and ozonized air respectively by 1–2 log CFU/cmq and 1–3 log CFU/cmq, hydrogen peroxide solution by 2–3 log CFU/cmq, essential oils by 1–3 log CFU/cmq, and microbial protective starter by 3 log CFU/cmq. The resulting data demonstrated that the investigated technologies allowed to eliminate from 1 to 3 log of L. monocytogenes from dry cured ham, both meat and pig skin. The results showed high reproducibility and repeatability, so we recommend using these methods as a post-processing application in San Daniele dry cured ham production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.A.V.V. (1996) ICMSF, Microorganisms in foods 5, Microbial specifications of food pathogens. Blackie & Academic & Professional, Chapman and Hall, London, pp 141–182

    Google Scholar 

  • Albano H, Todorov S, van Reenen CA, Hogg T, Dicks LMT, Teixeira P (2007) Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int J Food Microbiol 116(2):239–247

    Article  PubMed  CAS  Google Scholar 

  • Aureli P, Franciosa G, Pourshaban M, Gattuso A, Gianfranceschi M (1998) Laboratory findings on Listeria monocytogenes strains involved in a large outbreak of febrile gastroenteritis occurred in schools served by a mass catering system. XIII International symposium on problems of Listeriosis, Halifax, Canada, 28/6, 2–7

    Google Scholar 

  • Bader H, Hoigne J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–452

    Article  CAS  Google Scholar 

  • Bell C, Kyriakides A (1998) Listeria: a practical approach to the organism and its control in foods. Blackwell Science, Oxford

    Google Scholar 

  • Bell C, Kyriakides A (2003) Listeria monocytogenes. In: C de W Blackburn, McClure PJ (eds) Foodborne pathogens, chapter 12. CRC Press, Boca Raton, FL, pp 337–358

    Google Scholar 

  • Beltràn D, Selma MV, Marìn A, Gil MI (2005) Ozonated water extends the shelf life of fresh- cut lettuce. J Agric Food Chem 53(14):5654–5663

    Article  PubMed  Google Scholar 

  • Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 59:556–565

    Google Scholar 

  • Brashears M (2000) Competitive inhibition of Listeria monocytogenes in ready-to-eat pork ­products. Research Rep. 99-216, 1–10. http://www.pozk.org/porkScienceDocuments/CompetitiveInibition.pdf

  • Carlson BA, Geornaras I, Yoon Y, Scanga JA, Sofos JN, Smith GC, Belk KE (2008) Studies to evaluate chemicals and conditions with low-pressure applications for reducing microbial counts on cattle hides. J Food Prot 71(7):1343–1348

    PubMed  Google Scholar 

  • Cocolin L, Stella S, Nappi R, Bozzetta E, Cantoni C, Comi G (2005) Analysis of PCR-based methods for characterization of Listeria monocytogenes strains isolated from different sources. Int J Food Microbiol 103:167–178

    Article  PubMed  CAS  Google Scholar 

  • Coffey A, Ryan M, Ross RP, Hill C, Arendt E, Schwartz G (1998) Use of a broad-host-range bacteriocin-producing Lactococcus lactis transconjugant as a alternative starter for salami manufacture. Int J Food Microbiol 43:231–235

    Article  Google Scholar 

  • Comi G, Urso R, Paiani M, Ottaviani S (2005a) Dry cured ham cured and packaged in modified atmosphere or under vacuum: effects of different additives and of Aw on the behavior of L. monocytogenes. Ind Alim XLIV, Marzo, 272–278

    Google Scholar 

  • Comi G, Lovo A, Bortolussi N, Paiani M, Berton A, Bustreo G (2005b) Use of an ionizing device for air decontamination in cells used for the production of San Daniele dry cured ham. Ind Alim XLIV, Ottobre, 1–9

    Google Scholar 

  • Comi G, Osualdini M, Manzano M, Lovo A, Bortolussi N, Berton A, Bustreo G (2006) Decontamination of facilities and equipment used in food processing companies by means of ionizeres. Ind Alim XLV, giugno, 661–669

    Google Scholar 

  • Comi G, Manzano M, Giusto C, Iacumin L (2008) Feasible methods for controlling hazards in the food chain. Ital J Agron-Riv Agron 3(suppl. 1):167–172

    Google Scholar 

  • Drosinos EH, Mataragas M, Metaxopulos J (2006) Modeling of growth and bacteriocin production by Leuconostoc mesenteroides E131. Meat Sci 74(4):690–696

    Article  PubMed  CAS  Google Scholar 

  • Duggan J, Philips CA (1998) Listeria in the domestic environment. Nutr Food Sci 213(6):73–79

    Article  Google Scholar 

  • Emer Z, Akbas MY, Ozdemir M (2008) Bactericidal activity of ozone against Escherichia coli in whole and ground black peppers. J Food Prot 71(5):914–917

    PubMed  Google Scholar 

  • Fang WNG, Langlois BE, Moody WG (1997) Fate of pathogens in vacuum-packaged dry-cured (Country style) ham slices stored at 2 and 25°C. J Food Prot 60(12):1541–1547

    Google Scholar 

  • Farber JM, Harwing J (1996) The Canadian position on Listeria monocytogenes in ready-to-eat foods. Food Control 7(4/5):253–258

    Article  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55(3):476–511

    PubMed  CAS  Google Scholar 

  • FDA/FSIS (2003a) Control of Listeria monocytogenes in ready-to-eat meat and poultry products. 9 CFR Part 430, June 2003

    Google Scholar 

  • FDA/FSIS (2003b) Food and Drug Administration Food Safety and Inspection Service February, 10th 2003– Draft FSIS Risk Assessment for Listeria in Ready-to-eat-Meat and Poultry product

    Google Scholar 

  • Fisher CW, Lee D, Dodge BA, Hamman KM, Robbins JB, Martin SE (2000) Influence of catalase and superoxide dismutase on ozone inactivation of Listeria monocytogenes. Appl Environ Microbiol 66(4):1405–1409

    Article  PubMed  CAS  Google Scholar 

  • Franciosa G, Tartaro S, Wedell-Neergaard C, Aureli P (2001) Characterization of L. monocytogenes strains involved in invasive and non-invasive listeriosis outbreaks by PCR-based fingerprinting techniques. Appl Environ Microbiol 67(4):1793–1799

    Google Scholar 

  • G.U.C.E. (2002) Gazzetta Ufficiale delle Comunità Europee (Official Journal of the European Union) (2002/C115E/061)

    Google Scholar 

  • Gabbay J (1990) Effect of ionization on microbial air pollution in the dental clinic. Environ Res 52:1–59

    Article  Google Scholar 

  • Garcìa-Esteban M, Ansorena D, Gimeno O, Astiasaràn I (2002) Optimization of instrumental color analysis in dry-cured ham. Meat Sci 63:287–292

    Article  Google Scholar 

  • Garcìa-Esteban M, Ansorena D, Astiasaràn I (2004) Comparison of modified atmosphere packaging and vacuum packaging for long period storage of dry-cured ham: effects on colour, texture and microbiological quality. Meat Sci 67:57–63

    Article  PubMed  Google Scholar 

  • Geornaras I, Skandamis PN, Belk KE, Scanga JA, Kendall PA, Smith GC, Sofos JN (2006) Post-processing application of chemical solutions for control of Listeria monocytogenes, cultured under different conditions, on commercial smoked sausage formulated with and without potassium lactate-sodium diacetate. Food Microbiol 23:762–771

    Article  PubMed  CAS  Google Scholar 

  • Gianfranceschi M, Pourshaban M, Gattuso A, Wendell-Neergaard C, Aureli P (2002) Characterization of Listeria monocytogenes strains isolated from food and humans in Italy by pulsed-field electrophoresis. Food Microbiol 19:47–55

    Article  CAS  Google Scholar 

  • Giatrakou V, Kikkidou S, Papavergou A, Kontominas MG, Savvaidis IN (2008) Potential of oregano essential oil and MAP to extend the shelf-life of fresh swordfish: a comparative study. With ice storage. J Food Microbiol Safety 71:167–173

    Google Scholar 

  • Glass K, Preston D, Veesenmeyer J (2007) Inhibition of Listeria monocytogenes in turkey and pork-beef bologna by combinations of sorbate, benzoate and propionate. J Food Prot 70(1):214–217

    PubMed  CAS  Google Scholar 

  • Gola S, Frustoli M, Rovere P, Miglioli L (2003) Inattivazione di Listeria monocytogenes in ­prosciutto crudo trattato con la pressione idrostatica. – Inactivation of Listeria. monocytogenes in dry cured ham by hydrostatic pressare treatment. Ind Conserve 78:441–449

    Google Scholar 

  • Graumann GH, Holley RA (2008) Inhibition of Escherichia coli O157H7 in ripening dry ­fermented sausage by ground yellow mustard. J Food Prot 71(3):486–493

    PubMed  Google Scholar 

  • Grisenti MS, Lori D, Vicini L, Bovis N, Pedrelli B, Barbuti S (2004) Comportamento di Listeria monocytogenes in prosciutto crudo stagionato in rapporto all’atmosfera di confezionamento e alla temperatura di conservazione – behavior of Listeria monocytogenes in dry cured ham depending on the packaging atmosphere and storage temperature. Ind Conserve 79:3–12

    Google Scholar 

  • Hong E, Doumith M, Duperrier S, Giovanacci I, Morvan A, Glaser P, Buchrieser C, Jacquet C, Martin P (2007) Genetic diversity of Listeria monocytogenes recovered from infected persons and pork, seafood and dairy products on retail sale in France during 2000 and 2001. Int J Food Microbiol 114:187–194

    Article  PubMed  CAS  Google Scholar 

  • Horvath M, Bilizky L, Huttner J (1985) Fields of utilization of ozone. In: Clark RJH (ed) Ozone. Elsevier Science Publishing Co., Inc., New York, pp 257–316

    Google Scholar 

  • ISO-FDIA 21807 (2004) Microbiology of food and animal feedings stuffs. Determination of water activity. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Jofrè A, Aymerich T, Monfort JM, Garriga M (2008) Applications of enterocins A and B, sakacin K and nisin to extend the safe shelf-life of pressurized ready-to-eat meat products. Eur Food Res Technol 228(1):159–162

    Article  Google Scholar 

  • Kaothien P, Jhala R, Henning D, Julson JL, Muthukumarappan K, Dave RI (2001) Effectiveness of ozone for controlling Listera monocytogenes in ready to eat cured ham. IFT Annual meeting-New Orleans, Louisiana

    Google Scholar 

  • Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65(11):1811–1829

    PubMed  Google Scholar 

  • Khadre MA, Yousef AE (2001) Sporicidal action of ozone and hydrogen peroxide: a comparative study. Int J Food Microbiol 71:131–138

    Article  PubMed  CAS  Google Scholar 

  • Kim JG, Yousef AE, Dave S (1999) Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62(9):1071–1087

    PubMed  CAS  Google Scholar 

  • Lado BH, Yousef AE (2007) Characteristic of Listeria monocytogenes important to food processors. In: Ryser ET, Marth H (eds) Listeria, Listeriosis, food safety, 3rd edn. CRC Press, Boca Raton, FL, pp 157–213

    Google Scholar 

  • Leroy F, De Vuyst L (2005) Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int J Food Microbiol 100(1):141–152

    Article  PubMed  CAS  Google Scholar 

  • Lou Y, Yousef AE (1996) Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. J Food Prot 59:465

    Google Scholar 

  • McLauchlin J (1997) The pathogenicity of Listeria monocytogenes. A public health perspective. Rev Med Microbiol 8:1–14

    Article  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emer Infect Dis 5:607–625

    Article  CAS  Google Scholar 

  • Miettinen MK, Bjorkroth KJ, Korkeala H (1999) Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis. Int J Food Microbiol 46:187–192

    Article  PubMed  CAS  Google Scholar 

  • Minei CC, Gomes BC, Ratti RP, D’Angelis CEM, De Martinis ECP (2008) Influence of ­peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation. J Food Prot 71(3):634–638

    PubMed  Google Scholar 

  • Moore G, Griffith C, Peters A (2000) Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot 63(8):1100–1106

    PubMed  CAS  Google Scholar 

  • Wooi F Ng, Langlois BE, Moody WG (1997) Fate of selected pathogens in vacuum-packaged dry-cured (country-style) ham slices stored at 2 and 25°C. J Food Prot 60(12):1541–1547

    Google Scholar 

  • Nørrung B (2000) Microbiological criteria for Listeria monocytogenes in foods under special consideration of risk assessment approaches. Int J Food Microbiol 62:217–221

    Google Scholar 

  • O’Bryan CA, Crandall PG, Chalova VI, Ricke SC (2008) Orange essential oils antimicrobial activities against Salmonella spp. J Food Sci M1 73(6): 264–267

    Google Scholar 

  • Parodi M, Marino P, Balzaretti C, Mauri A, Cainarca M, Cantoni C (1990) A case report of ­sporadic listeriosis related to pork meat in healthy man, Giorn. Malattie Inf E Parassitarie 42:115–116

    Google Scholar 

  • Porto-Fett ACS, Call JE, Luchansky JB (2008) Validation of commercial process for inactivation of Escherichia coli O157H7, Salmonella Typhimurium, and Listeria monocytogenes ion the surface of whole muscle beef jerky. J Food Prot 71(5):918–926

    PubMed  Google Scholar 

  • Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380

    Article  PubMed  CAS  Google Scholar 

  • Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61(9):3471–3475

    PubMed  CAS  Google Scholar 

  • Reynolds AE, Harrison MA, Rose-Morrow R, Lyon CE (2001) Validation of dry cured ham ­process for control of pathogens. J Food Sci 66(9):1373–1379

    Article  CAS  Google Scholar 

  • Robbins JB, Fisher CW, Moltz AG, Martin SE (2005) Elimination of Listeria monocytogenes biofilms by ozone, chlorine, and hydrogen peroxide. J Food Prot 68(3):494–498

    PubMed  CAS  Google Scholar 

  • Salamina G, Delle Donne E, Piccolini A, Poda G, Cesaroni D, Bucci M, Fini R, Maldini M, Schuchat A, Swaminathan B, Bibb W, Rocurt J, Binkin N, Salmaso S (1996) A food borne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol Infect 117:429–436

    Article  PubMed  CAS  Google Scholar 

  • Schillinger U, Kaya M, Lucke FK (1990) Behaviour of Listeria monocytogenes in meat and its control by a bacyteriocin-producing strain of Lactobacillus sake. J Appl Bacteriol 70(6):473–478

    Google Scholar 

  • Seman DL, Quickert SC, Borger AC, Meyer JD (2008) Inhibition of Listeria monocytogenes growth in cured ready-to-eat meat products by use of sodium benzoate and sodium diacetate. J Food Prot 71(7):1386–1392

    PubMed  CAS  Google Scholar 

  • Shabala L, Lee SH, Cannesson P, Ross T (2008) Acid and NaCl limits to growth of Listeria monocytogenes and influence of sequence of inimical acid and NaCl levels on inactivation kinetics. J Food Prot 71(6):1169–1177

    PubMed  Google Scholar 

  • Sheldon BW, Brown AL (1986) Efficacy of ozone as a disinfectant for poultry carcasses and chill water. J Food Sci 51(2):305–309

    Article  CAS  Google Scholar 

  • Slutsker L, Schuchat A (1999) Listeriosis in humans. In: Ryser ET, Marth EH (eds) Listeria, listeriosis and food safety. Marcel Dekker, New York, pp 75–95

    Google Scholar 

  • Stata (2005) Statistical software for professionals. Stata Corp LP, Texas, USA. www.stata.com/support/updates/stata8.html

  • Stopforth JD, Mai T, Kottapalli B, Samadpour M (2008) Effect of acidified sodium chlorite, chlorine, and acidic electrolyzed water on Escherichia coli O157H7, Salmonella and Listeria monocytogenes inoculated onto leafy greens. J Food Prot 71(3):625–628

    PubMed  CAS  Google Scholar 

  • Swaminathen B (2001) Listeria monocytogenes. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers, 2nd edn. ASM Press, Washington, DC, pp 383–410

    Google Scholar 

  • Tappero JN, Schuchat A, Deaver KA et al (1995) Reduction in the incidence of human listeriosis in the United States. Effectiveness of prevention efforts. J Am Med Assoc 273:1118–1122

    Article  CAS  Google Scholar 

  • Tompkin RB (2002) Control of Listeria monocytogenes in the food processing environment. J Food Prot 65(4):709–725

    PubMed  CAS  Google Scholar 

  • Turgis M, Han J, Borsa J, Lacroix M (2008) Combined effect of natural essential oils, modified atmosphere packaging and gamma radiation on the microbial growth on ground beef. J Food Prot 71(6):1237–1243

    PubMed  CAS  Google Scholar 

  • Urso R, Rantsiou K, Cantoni C, Comi G, Cocolin L (2006) Technological characterization of a bacteriocin-producing Lactobacillus sakei and its use in fermented sausages production. Int J Food Microbiol 110(3):232–239

    Article  PubMed  CAS  Google Scholar 

  • Villegas E, Gilliland SE (1998) Hydrogen peroxide production by Lactobacillus delbrueckii ­susbsp. Lactis a 1–5°C. J Food Sci 63(6):1070–1073

    Google Scholar 

  • Vorst KL, Clarke RH, Allison CP, Booren AM (2004) A research note on radio frequency ­transponder effects on bloom of beef muscle. Meat Sci 67:179–182

    Article  PubMed  CAS  Google Scholar 

  • Wade WN, Scouten AJ, McWatters KH, Wick RL, Demirci A, Fett WF, Beuchat LR (2003) Efficacy of ozone in killing Listeria monocytogenes on Alfalfa seed and sprouts and effects on sensory quality of sprouts. J Food Prot 66:44–51

    PubMed  CAS  Google Scholar 

  • Winkowski K, Montville TJ (1992) Use of meat isolate, Lactobacillus bavaricus MN, to inhibite Listeria monocytogenes growth in a model meat gravy system. J Food Safety 12:19–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucilla Iacumin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Iacumin, L., Manzano, M., Osualdini, M., Cantoni, C., Comi, G. (2010). Control of Listeria monocytogenes in San Daniele Dry Cured Ham by Different Technologies: Reduction of L. Monocytogenes in Dry Cured Ham. In: Viola Magni, M. (eds) Detection of Bacteria, Viruses, Parasites and Fungi. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8544-3_9

Download citation

Publish with us

Policies and ethics