Skip to main content

The Prospect and Challenges of CNFET Based Circuits: A Physical Insight

  • Chapter
  • First Online:
Book cover Robust Computing with Nano-scale Devices

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 58))

  • 619 Accesses

Abstract

Evaluating circuit and system performance using carbon nanotube transistors (CNFET) is important to predict the prospect of this technology. For this purpose, this chapter presents a quasi-analytical device model for intrinsic ballistic CNFET, which can be used in any conventional circuit simulator like SPICE. The simple quasi-analytical model is seen to be effective in a wide variety of CNFET structures as well as for a wide range of operating conditions in the digital circuit application domain. An estimation of the parasitic fringe capacitance in state-of-the-art CNFET geometries is also provided which impacts the overall performance of CNFET circuits. It is observed that the device width should be significantly reduced in order to achieve the superior performance of intrinsic CNFET over silicon MOSFET in circuits and systems. However, unlike conventional MOSFET, nanotube FETs are significantly less sensitive to many process parameter variations due to their inherent device structures and cylindrical gate geometry. This unique advantage can be effectively utilized in VLSI design to achieve better system performance under variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Avouris, “Supertubes: the unique properties of carbon nanotubes may make them the natural successor to silicon microelectronics,” IEEE Spectrum, pp. 40–45, Aug. 2004.

    Google Scholar 

  2. S. J. Tans, R. M. Verschueren, and C. Dekker, “Room temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49–52, 1998.

    Article  Google Scholar 

  3. J. Guo, “Carbon nanotube electronics: modeling, physics and applications,” Ph.D. Thesis, Purdue University, 2004.

    Google Scholar 

  4. J. Guo, S. Datta, and M. Lundstrom, “Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors,” IEDM tech. digest, pp. 29.3.1–29.3.4, 2002.

    Google Scholar 

  5. B. C. Paul, S. Fujita, M. Okajima, and T. Lee, “Impact of Geometry Dependent Parasitic Capacitances on the Performance of CNFET Circuits,” IEEE Electron Device Letters, vol. 27, n 5, pp. 380–382, May 2006.

    Article  Google Scholar 

  6. B. C. Paul, S. Fujita, M. Okajima, T. Lee, H. S. P. Wong, and Y. Nishi, “Impact of Process Variation on Nanowire and Nanotube Device Performance,” IEEE Trans. on Electron Devices, vol. 54, n 9, pp. 2369–2376, September, 2007.

    Article  Google Scholar 

  7. J. Deng, N. Patil, K. Ryu, A. Badmaev, C. Zhou, S. Mitra, and H. S. P. Wong, “Carbon Nanotube Transistor Circuits: Circuit-Level Performance Benchmarking and Design Options for Living with Imperfections,” Intl. Solid State Circuit Conference (ISSCC), pp. 70–71, 2007.

    Google Scholar 

  8. J. Guo, A. Javey, H. Dai, and M. Lundstrom, “Performance analysis and design optimization of near ballistic carbon nanotube FETs,” IEDM tech. digest, pp. 703–706, 2004.

    Google Scholar 

  9. G. Pennington and N. Goldsman, “Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes,” Physical Review B, vol. 68, pp. 045426-1–045426-11, 2003.

    Article  Google Scholar 

  10. C. Dwyer, M. Cheung, and D J. Sorin, “Semi-empirical SPICE Models for Carbon Nanotube FET Logic,” IEEE Conf. on Nanotechnology, pp. 386–388, 2004.

    Google Scholar 

  11. A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, and H. Dai, “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays,” Nano Letters, vol. 4, n. 7, pp. 1319–1322, 2004.

    Article  Google Scholar 

  12. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistor,” Nature, vol. 424, pp. 654–657, 2003.

    Article  Google Scholar 

  13. Y. Lin, J. Appenzeller, Z. Chen, Z. G. Chen, H. M. Cheng, and P. Avouris, “High-performance dual-gate carbon nanotube FETs with 40-nm gate length,” IEEE Electron Device Lett., vol. 26, n-11, 2005.

    Google Scholar 

  14. L. C. Castro and D. L. Pulfrey, “Extrapolated fmax for carbon nanotube field-effect transistors,” Nanotechnology, vol. 17, pp. 300–304, 2006.

    Article  Google Scholar 

  15. K. Alam and R. Lake, “Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps,” Applied Physics Letters, vol. 87, pp. 073104-1-3, 2005.

    Article  Google Scholar 

  16. D. L. John, L. C. Castro, and D. L. Pulfrey, “Quantum capacitance in nanoscale device modeling,” Journal of Applied Physics, vol. 96, n-9, pp. 5180–5184, 2004.

    Article  Google Scholar 

  17. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and P. L. McEuen, “High performance electrolyte gated carbon nanotube transistors,” Nano Letters, vol. 2, n-8, pp. 869–872, 2002.

    Article  Google Scholar 

  18. D. L. John and D. L. Pulfrey, “Switching-speed calculations for Schottky-barrier carbon nanotube field-effect transistors,” Journal of Vac. Sci. Technol., vol. A24, n-3, pp. 708–712, 2006.

    Article  Google Scholar 

  19. Z. Chen, et al., “An integrated logic circuit assembled on a single carbon nanotube,” Science, vol. 311, n. 5768, p. 1735, March, 2006.

    Article  Google Scholar 

  20. S. Iijima, “Helical microtubules of graphite carbon,” Nature, vol. 354, pp. 56–58, 1991.

    Article  Google Scholar 

  21. J. W. Mintmire and C. T. White, “Universal density of states for carbon nanotubes,” Physical Rev. Lett., vol. 81, pp. 2506–2509, 1998.

    Article  Google Scholar 

  22. S. J. Wind, J. Appenzeller, and P. Avouris, “Lateral scaling in carbon nanotube field-effect transistors,” Physical Review Letters, vol. 91, pp. 058301-1–058301-4, Aug. 2003.

    Google Scholar 

  23. P. L. McEuen, M. S. Fuhrer, and H. Park, “Single walled carbon nanotube electronics,” IEEE Trans. on Nanotechnology, vol. 1, pp. 78–85, 2002.

    Article  Google Scholar 

  24. K. Natori, Y. Kimura, and T. Shimizu, “Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor,” Journal of Applied Physics, vol. 97, pp. 034306-1–034306-7, Jan, 2005.

    Article  Google Scholar 

  25. B. C. Paul, S. Fujita, M. Okajima, and T. Lee, “Modeling and Analysis of Circuit Performance of Ballistic CNFET,” Design Automation Conference (DAC), pp. 717–722, 2006.

    Google Scholar 

  26. S. J. Wing, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes,” Applied Physics Lett., vol. 80, pp. 3817, 2002.

    Article  Google Scholar 

  27. A. Bansal, B. C. Paul, and K. Roy, “Modeling and optimization of fringe capacitance of nanoscale DGMOS devices,” IEEE Trans. on Electron Devices, vol. 52, n 2, pp. 256–262, 2005.

    Article  Google Scholar 

  28. J. Chen, C. Klinke, A. Afzali, and P. Avouris, “Self-aligned carbon nanotube transistors with charge transfer doping,” Applied Physics Letters, vol. 86, pp. 123108-1-3, 2005.

    Google Scholar 

  29. S. Han, X. Liu, and C. Zhou, “Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire,” Jl. AM. CHEM. SOC, vol. 127, pp. 5294–5295, 2005.

    Article  Google Scholar 

  30. N. Patil, J. Deng, H. S. P. Wong, and S. Mitra, “Automated design of misaligned-carbon-nanotube-immune circuits,” Design Automation Conference (DAC), pp. 958–961, 2007.

    Google Scholar 

  31. Y. Lin, J. Appenzeller, J. Knoch, and P. Avouris, “High-performance carbon nanotube field-effect transistor with tunable polarities,” IEEE Trans. on Nanotechnology, vol. 4, n-5, Sept, 2005.

    Article  Google Scholar 

  32. http://www.eas.asu.edu/ptm/

  33. J. Deng and H. S. P. Wong, “A Circuit-Compatible SPICE Model for Enhancement Mode Carbon Nanotube Field Effect Transistors,” SISPAD 2006.

    Google Scholar 

  34. Helix Material Solutions; http://www.helixmaterial.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipul C. Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paul, B.C., Fujita, S., Okajima, M., Lee, T. (2010). The Prospect and Challenges of CNFET Based Circuits: A Physical Insight. In: Huang, C. (eds) Robust Computing with Nano-scale Devices. Lecture Notes in Electrical Engineering, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8540-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8540-5_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8539-9

  • Online ISBN: 978-90-481-8540-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics