Skip to main content

Chapter 9 The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells

  • Chapter
Book cover The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Isoprenylation of proteins, a fundamental process in eukaryotic cells, is characterized by the formation of a thioether bond between the cysteine residue of a carboxyterminal CaaX motif and a C15 (farnesyl) or a C20 (geranylgeranyl) isoprenyl group. Using a rice calmodulin (Oriza sativa CaM61) fragment with a motif for geranylgeranylation, we developed an experimental system allowing us to visualize the localization of isoprenylated proteins in tobacco bright yellow-2 (TBY-2) cells.

Our results clearly demonstrate that the geranylgeranylated proteins are mainly associated with the plasma membrane. Abbrogation of the isoprenylation reaction by inhibitors or mutations in the CaaX box triggers a change in the intracellular targeting of the chimeric proteins, leading to their accumulation in the nucleus instead of at the plasma membrane.

By using specific inhibitors (mevinolin and fosmidomycin) of both isoprenoid precursor pathways occurring in higher plants, we provide evidence for the essential role played by the plastidial methylerythritol phosphate (MEP) pathway in the synthesis of geranylgeranyl diphosphate needed for the covalent modification of such proteins and their association with the plasma membrane in TBY-2 cells. Interestingly, low µM concentrations of exogenous geranylgeraniol were capable of complementing inhibition of the MEP pathway. Such chemical complementation experiments allow for distinguishing between different levels of inhibition, for instance inhibition of precursor biosynthesis versus inhibition of prenyltransferases.

This experimental system can be used to evaluate new herbicides and drugs, which could interact with the MEP pathway or the geranylgeranylation of proteins after having entered the cells and after their potential conversion into an active compound by cellular metabolic processes. It might also be useful in demonstrating toxic effects of specific inhibitors and in measuring biosynthetic fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BD:

basic domain

DMAPP:

dimethylallyl diphosphate

DX:

deoxyxylulose

Fol:

farnesol

FPP:

farnesyl diphosphate

Ftase:

FPP-specific prenyltransferase

GFP:

green fluorescent protein

GFP-BD-CVIL:

GFP, to which the basic domain of rice calmodulin CaM61 bearing a carboxyterminal isoprenylation motif has been fused

GFP-BD-SVIL:

the same, but with the isoprenylation motif disrupted by site-directed mutagenesis

GGol:

geranyl­geraniol

GGPP:

geranylgeranyl diphosphate

GGTase:

I GGPP-specific prenyltransferase type I

IPP:

isopentenyl diphosphate

MEP:

methylerythritol phosphate

MVA:

mevalonic acid

TBY-2:

tobacco Bright Yellow-2

References

  • Adam KP, Thiel R and Zapp J (1999) Incorporation of 1-[1-13C]Deoxy-D-xylulose in chamomile sesquiterpenes. Arch Biochem Biophys 369: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Alberts AW, Chen J, Kuron G, Hunt, V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monagan R, Curries S, Stapley E, Albers-Schönberg G, Hensens O, Hirshfield J, Hogsteen K, Liesch J and Springer J (1980) Mevinolin, a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77: 3957–3961

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T and Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11: 605–612

    Article  PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A and Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94: 10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants – a review. Lipids 30: 191–202

    Article  PubMed  CAS  Google Scholar 

  • Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E and Yalovsky S (2005) Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 16: 1913–1927

    Article  PubMed  CAS  Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV and Rodwell VW (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane DE (ed) Comprehensive Natural Product Chemistry, Isoprenoids Including Steroids and Carote­noids, Vol 2. Pergamon Press, Tarrytown, New York, pp. 15–44

    Chapter  Google Scholar 

  • Bolte S, Talbot C, Boutté Y, Catrice O, Read ND and Satiat-Jeunemaître B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214: 159–173

    Article  PubMed  CAS  Google Scholar 

  • Bonetta D, Bayliss P, Sun S, Sage T and McCourt P (2000) Farnesylation is involved in meristem organization in Arabidopsis. Planta 211: 182–190

    Article  PubMed  CAS  Google Scholar 

  • Boronat A (2010) The methylerythritol 4-phosphate pathway: regulatory role in plastid isoprenoid biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Applications. Springer, Netherlands, pp. 119–126

    Chapter  Google Scholar 

  • Bracha K, Lavy M and Yalovsky S. (2002) The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity. J Biol Chem 277: 29856–29864

    Article  PubMed  CAS  Google Scholar 

  • Breitling R and Krisans SK (2002) A second gene for peroxisomal HMG-CoA reductase? A genomic reassessment. J Lipid Res 43: 2031–2036

    Article  PubMed  CAS  Google Scholar 

  • Burnett EC, Desikan R, Moser RC and Neill SJ (2000) ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot 51: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Cadinaños J, Varela I, Mandel DA, Schmidt WK, Diaz-Perales A, Lopez-Otin C and Freije JM. (2003) AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes. J Biol Chem 278: 42091–42097

    Article  PubMed  Google Scholar 

  • Caplin BE, Ohya Y and Marshall MS (1998) Amino acid residues that define both the isoprenoid and CAAX preferences of the Saccharomyces cerevisiae protein farnesyltransferase. Creating the perfect farnesyltransferase. J Biol Chem 273: 9472–9479

    Article  PubMed  CAS  Google Scholar 

  • Chang MJ, Eachus RA, Trieu W, Ro DK and Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 2007 5: 274–277

    Article  Google Scholar 

  • Clarke S. (1992) Protein isoprenylation and methylation at a carboxyterminal cysteine residue. Annu Rev Biochem 61: 355–386

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM and Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants, Chapter 24. American Society of Plant Physiologists, Rockville, MD, pp. 1250–1318

    Google Scholar 

  • Crowell DN (2000) Functional implications of protein isoprenylation in plants. Progr Lipid Res 39: 393–408

    Article  CAS  Google Scholar 

  • Crowell DN and Randall SK (1996) Protein farnesylation and phytohormone signal transduction. Trends Plant Sci 1: 407–408

    Article  Google Scholar 

  • Crowell DN, Sen SE and Randall SK (1998) Prenylcysteine alpha-carboxyl methyltransferase in suspension-cultured tobacco cells. Plant Physiol 118: 11–123

    Article  Google Scholar 

  • Crowell DN and Kennedy M (2001) Identification and functional expression in yeast of a prenylcysteine alpha-carboxyl methyltransferase gene from Arabidopsis thaliana. Plant Mol Biol 45: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S and McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273: 1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Disch A, Hemmerlin A, Bach TJ and Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J 331: 615–621

    PubMed  CAS  Google Scholar 

  • Dykema PE, Sipes PR, Marie A, Biermann BJ, Crowell DN and Randall SK (1999) A new class of proteins capable of binding transition metals. Plant Mol Biol 41: 139–150

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH and Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5: R22–R233

    Article  Google Scholar 

  • Galichet A and Gruissem W (2003) Protein farnesylation in plants: old friends and new targets. Curr Opin Plant Biol 6: 530–535

    Article  PubMed  CAS  Google Scholar 

  • Gerber E, Hemmerlin A, Hartmann, M, Hartmann MA, ­Heintz D, Mutterer J, Rodriguez-Concepcion M, Boronat M, Rohmer M, Crowell DN and Bach TJ (2009) The ­plastidial 2C-methyl-D-drythriol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell 21: 285–300

    Article  PubMed  CAS  Google Scholar 

  • Gutkowska M, Bienkowski T, Hung VS, Wanke M, Hertel J, Danikiewicz W and Swiezewska E (2004) Proteins are polyisoprenylated in Arabidopsis thaliana. Biochem Biophys Res Commun 322: 998–1004

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A and Bach TJ (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 14: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A and Bach TJ (2000) Farnesol-induced cell death and stimulation of HMG-CoA reductase activity in tobacco BY-2 cells. Plant Physiol 123: 1257–1268

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Brown SC and Bach TJ (1999) Function of mevalonate in tobacco cell proliferation. Acta Bot Gall 146: 85–100

    CAS  Google Scholar 

  • Hemmerlin A, Fischt I and Bach TJ (2000) Differential interaction of branch-specific inhibitors of isoprenoid biosynthesis with cell cycle progression in tobacco BY-2 cells. Physiol Plant 110: 343–350

    Google Scholar 

  • Hemmerlin A, Hoeffler J-F, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M and Bach TJ (2003a) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco Bright Yellow-2 cells. J Biol Chem 278: 26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Rivera SB, Erickson HK and Poulter CD (2003b) Enzymes encoded by the farnesyl diphosphate synthase gene family in the Big Sagebrush Artemisia tridentata ssp. spiciformis. J Biol Chem 278: 32132–32140

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Gerber E, Feldtrauer J-F, Wentzinger L, Hartmann M-A, Tritsch D, Hoeffler J-F, Rohmer M and Bach TJ (2004) A review of tobacco BY-2 cells as an excellent system to study the biosynthesis and function of sterols and other isoprenoids. Lipids 39: 723–735

    PubMed  CAS  Google Scholar 

  • Hemmerlin A, Reents R, Mutterer J, Feldtrauer J-F, Waldmann H and Bach TJ (2006a) Monitoring farnesol-induced toxicity in tobacco BY-2 cells: application of a fluorescent analog. Arch Biochem Biophys 448: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Tritsch D, Hartmann M, Pacaud K, Hoeffler J-F, van Dorsselaer A, Rohmer M and Bach TJ (2006b) A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway. Plant Physiol 142: 441–457

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler J-F, Hemmerlin A, Grosdemange-Billiard C, Bach TJ and Rohmer M (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Jux A, Gleixner G and Boland W (2001) Classification of terpenoids according to the methylerythritolphosphate or the mevalonate pathway with natural 12C/13C isotope ratios: dynamic allocation of resources in induced plants. Angew Chem Int Ed 40: 2091–2093

    Article  CAS  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y and Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277: 45188–45194

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Olivier LM and Krisans SK (2002) Central role of peroxisomes in isoprenoid biosynthesis. Progr Lipid Res 41: 369–391

    Article  CAS  Google Scholar 

  • Kuzuyama T and Seto H (2003) Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20: 171–183

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T, Shimizu T, Takahashi S and Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39: 7913–7916

    Article  CAS  Google Scholar 

  • Laule O, Fürholz A, Chang H-S, Zhu T, Wang X, Heifetz PB, Gruissem W and Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100: 6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Li H, Shen JJ, Zheng ZL, Lin Y and Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126: 670–684

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50: 47–65

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A and Rohmer M (1997a) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M and Schwender J (1997b) Two independent biochemical pathways for isopentenyl diphosphate (IPP) and isoprenoid biosynthesis in higher plants. Physiol Plant 101: 643–652

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (2010) The non-mevalonate DOXP/MEP pathway of chloroplast isoprenoid and pigment biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Applications. Springer, Netherlands, pp. 93–118

    Google Scholar 

  • Lin Y, Wang Y, Zhu JK and Yang Z. (1996) Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8: 293–303

    PubMed  CAS  Google Scholar 

  • Miyazawa Y, Kato H, Muranaka T and Yoshida S (2002) Amyloplast formation in cultured tobacco BY-2 cells requires a high cytokinin content. Plant Cell Physiol 43: 1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Morehead TA, Biermann BJ, Crowell DN and Randall SK (1995) Changes in protein isoprenylation during the growth of suspension-cultured tobacco cells. Plant Physiol 109: 277–284

    PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y and Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in cell biology of higher plants. Int Rev Cytol 132: 1–30

    Article  CAS  Google Scholar 

  • Nagegowda DA, Rhodes D and Dudareva N (2010) The role of the methyl-erythritol-phosphate pathway in rhythmic emission of volatiles. In: Rebeiz CA, Benning C, Daniel H, Green B, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Applications. Springer, Netherlands, pp. 139–153

    Chapter  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M and Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expre­ssed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122: 1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Parmryd I, Andersson B and Dallner G. (1999) Protein prenylation in spinach chloroplasts. Proc Natl Acad Sci USA 96: 10074–10079

    Article  PubMed  CAS  Google Scholar 

  • Parmryd I, Shipton CA, Andersson B and Dallner G (1997) Protein prenylation in spinach – tissue specificity and greening-induced changes. Arch Biochem Biophys 339: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P and Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282: 287–290

    Article  PubMed  CAS  Google Scholar 

  • Piel J, Donath J, Bandemer K and Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew Chem Int Ed 37: 2478–2481

    Article  CAS  Google Scholar 

  • Qian D, Zhou D, Ju R, Cramer CL and Yang Z (1996) Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control. Plant Cell 8: 2381–2394

    PubMed  CAS  Google Scholar 

  • Randall SK, Marshall MS and Crowell DN (1993) Protein isoprenylation in suspension-cultured tobacco cells. Plant Cell 5: 433–442

    PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H and Gruissem W. (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18: 1996–2007

    Article  PubMed  Google Scholar 

  • Rodríguez-Concepción M, Toledo-Ortiz G, Yalovsky S, Caldelari D and Gruissem W (2000) Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant J 24: 775–784

    Article  PubMed  Google Scholar 

  • Rodríguez-Concepción M and Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130: 1079–1089

    Article  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16: 565–574

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B and Sahm H. (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295: 517–524

    PubMed  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S and Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118: 2564–2566

    Article  CAS  Google Scholar 

  • Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N and Yalovsky S (2004) Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci U S A 101: 7815–7820

    Article  PubMed  CAS  Google Scholar 

  • Sacchettini JC and Poulter CD (1997) Creating isoprenoid diversity. Science 277: 1788–1789

    Article  PubMed  CAS  Google Scholar 

  • Schafer WR and Rine J (1992) Protein prenylation: genes, enzymes, targets, and functions. Annu Rev Genet 26: 209–237

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M. (1994) Terpen-Biosynthese in Ginkgo biloba: Eine überraschende Geschichte. Ph.D. thesis 10951, Eidgenössische Technische Hochschule, Zürich, Switzerland

    Google Scholar 

  • Shigy Y (1989) Inhibition of bacterial isoprenoid synthesis by fosmidomycin, a phosphonic acid-containing antibiotic. J Antimicrob Chemother 24: 131–145

    Article  Google Scholar 

  • Shipton CA, Parmryd I, Swiezewska E, Andersson B and Dallner G (1995) Isoprenylation of plant proteins in vivo. Isoprenylated proteins are abundant in the mitochondria and nuclei of spinach. J Biol Chem 270: 566–572

    Article  PubMed  CAS  Google Scholar 

  • Sinensky M (2000) Functional aspects of polyisoprenoid protein substituents: roles in protein-protein interaction and trafficking. Biochim Biophys Acta 1529: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Thai L, Rush JS, Maul JE, Devarenne T, Rodgers DL, Chappell J and Waechter CJ (1999) Farnesol is utilized for isoprenoid biosynthesis in plant cells via farnesyl pyrophosphate formed by successive monophosphorylation reactions. Proc Natl Acad Sci U S A 96: 13080–13085

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young CA and Gruissem W (2000) Functional requirement of plant farnesyltransferase during development in Arabidopsis. Plant Cell 12: 1267–1278

    PubMed  CAS  Google Scholar 

  • Zhang FL and Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65: 241–269

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Bressan RA and Hasegawa PM (1993) Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA 90: 8557–8561

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer EC, Medrano LJ and Meyerowitz EM (2000) Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA 97: 7633–7638

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work is supported by the CNRS and the Agence Nationale de la Recherche (AH, MR, TJB), by the Université Louis Pasteur (MR) and by the Institut Universitaire de France (MR). We also thank the CNRS, the Université Louis Pasteur, the Région Alsace, and the Association pour la Recherche sur le Cancer for the support of the Inter-Institute confocal microscopy equipment at the IBMP in Strasbourg. We wish to thank Prof. N.-H. Chua for the pTA plasmid, Dr. A.W. Alberts for a generous gift of mevinolin and Dr. R.J. Eilers for a sample of fosmidomycin. We express our thanks to technical staff members at the IBMP’s central services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gerber, E., Hemmerlin, A., Bach, T.J. (2010). Chapter 9 The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_9

Download citation

Publish with us

Policies and ethics