Skip to main content

Chapter 7 The Non-mevalonate DOXP/MEP (Deoxyxylulose 5-Phosphate/Methylerythritol 4-Phosphate) Pathway of Chloroplast Isoprenoid and Pigment Biosynthesis

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

The plastidic pathway for isopentenyl diphosphate (IPP) and isoprenoid biosynthesis, the DOXP/MEP pathway, possesses an essential function in the biosynthesis of thylakoidal prenylllipids chlorophylls (phytyl side-chain), carotenoids, plastoquinone-9, phylloquinone K1 and α-tocopherol, as well as for monoterpenes and diterpenes. Here we review its detection, its enzymes, intermediates, genes, cofactor requirements and inhibitors. This plastidic isoprenoid pathway is also contrasted against the acetate/mevalonate(MVA) pathway of isoprenoid biosynthesis operating in the cytosol for the biosynthesis of sterols, sesquiterpenes and polyterpenes. The DOXP/MEP pathway can specifically be inhibited by fosmidomycin and the acetate/MVA pathway by statins (e.g. mevinolin). By applying specifically marked substrates (2H-deoxyxylulose, 14C-DOXP, 3H-MVA or 14C-MVA) and specific inhibitors a cross-talk between both IPP yielding cell pathways was detected that operates preferentially in the chloroplast-to-cytosol direction. The DOXP/MEP pathway is also involved in the biosynthesis of the volatile hemiterpenes isoprene and methylbutenol. The distribution of the DOXP/MEP pathway in photosynthetic organisms (bacteria, algae, higher plants) and its putative origin in anoxigenic photosynthetic bacteria is reviewed. The DOXP/MEP pathway does not occur in Archaea, fungi or animals. The use of etiolated seedlings with their light-induced pigment accumulation as a test system for inhibitors of the DOXP/MEP pathway in the search of active ingredients against pathogenic bacteria and the malaria parasite Plasmodium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

antheraxanthin;

a + b:

total chloro-phylls;

a/b:

ratio of chlorophyll a to b;

CDP-ME:

CDP-methyl-D-erythritol;

CDP-ME2P:

CDP-methyl-D-erythritol-2-phosphate;

Chl:

chlorophyll;

Chls/Cars:

weight ratio of chlorophylls to carotenoids, also known as (a + b)/(x + c);

c:

carotenes;

DMAPP:

dimethylallyl diphosphate;

DOXP:

1-desoxy-D-xylulose-4-phosphate;

DOXP/MEP:

pathway plastidic 1-desoxy-D-xylulose-4-phosphate/2-C-methylerythritol 5-

phosphate:

pathway;

DXR:

DOXP reductoisomerase;

DXS:

DOXP synthase;

GAP:

glyceraldehyde-3-phosphate;

GGPP:

geranylgeranyl diphosphate;

HMBPP:

4-hydroxy-3-methyl-2-(E)-butenyl diphosphate;

IPP:

isopentenyl diphosphate;

MBO:

2-methyl-3-buten-2-ol;

MEcPP:

2-C-methyl-D-erythritol-2,4-cyclodiphosphate;

MEP:

2-C-methylerythritol 5-phosphate;

MVA:

mevalonic acid;

PPFD:

photosynthetic photon flux density;

P:

osmiophilic plastoglobuli;

x + c:

total carotenoids;

x:

xanthophylls;

Z:

zeaxanthin

References

  • Adam KP, Thiel R, Zapp J and Becker H (1998) Involvement of the mevalonic acid pathway and the glyceraldehyde-pyruvate pathway in terpenoid biosynthesis of the liverworts Riccio carpus natans and Conocephalum conicum. Arch Biochem Biophys 354:181–187

    Article  PubMed  CAS  Google Scholar 

  • Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Bacher A and Rohdich F (2002) Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 99:12108–12113

    Article  PubMed  CAS  Google Scholar 

  • Altincicek B, Kollas A-K, Sanderbrand S, Wiesner J, Hintz M, Beck, E and Jomaa H (2001) GcpE is involved in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. J Bacteriol 183:2411–2416

    Article  PubMed  CAS  Google Scholar 

  • Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas A-K, Hintz M, Wagner S, Wiesner J, Beck E and Jomaa H (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532:437–440

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS and Park Y-I (1995) The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    Article  CAS  Google Scholar 

  • Andrews TJ and Kane HJ (1991) Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxigenase. J Biol Chem 266:9447–9452

    PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K and Keeling PJ (2003) Lateral gene transfer and the evolution of plastid targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A and Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Babani F and Lichtenthaler HK (1996) Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. J Plant Physiol 148:555–566

    Article  CAS  Google Scholar 

  • Bach TJ and Lichtenthaler HK (1982) Mevinolin a highly specific inhibitor of microsomal 3-hydroxy-methyl-glutaryl-coenzyme A reductase of radish plants. Z Naturforsch Part C 37: 46–50

    CAS  Google Scholar 

  • Bach TJ and Lichtenthaler HK (1983a) Mechanisms of inhibition by mevinolin (MK 803) of microsome-bound radish and of partially purified yeast HMG-CoA reductase (EC. 1.1.1.34). Z Naturforsch 37c:212–219

    Google Scholar 

  • Bach T J and Lichtenthaler HK (1983b) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59:50–60

    Article  CAS  Google Scholar 

  • Bach TJ, Boronat AJ, Campos NJ, Ferrer AJ and Vollack K-UJ (1999) Mevalonate biosynthesis in plants. Crit Rev Biochem Mol Biol 34:107–122

    Article  PubMed  CAS  Google Scholar 

  • Bick JA and Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  PubMed  CAS  Google Scholar 

  • Boardman N (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Boronat A (2010) The methylerythritol 4-phosphate ­pathway: regulatory role in plastid isoprenoid biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Application. Springer, Dordrecht, The ­Netherlands, pp. 119–126

    Chapter  Google Scholar 

  • Braithwaite GD and Goodwin TW (1960) Studies on carotenogenesis. 27. Incorporation of [2-14C]acetate, D,L-[2-14C]mevalonate and 14CO2 into carrot-root preparations. Biochem J 76:194–197

    PubMed  CAS  Google Scholar 

  • Calvin M and Bassham JA (1962) The Photosynthesis of Carbon Compounds. WA Benjamin, New York

    Google Scholar 

  • Campos N, Rodríguez-Concepción M, Seemann M, Rohmer M and Boronat A (2001) Identification of gcpE as a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Lett 488:170–173

    Article  PubMed  CAS  Google Scholar 

  • Chaykin S, Law J, Philipps AH and Bloch K (1958) Phosphorylated intermediates in the synthesis of squalene. Proc Natl Acad Sci USA 44: 998–1004

    Article  PubMed  CAS  Google Scholar 

  • Cvejić JH and Rohmer M (2000) CO2 as main carbon source for isoprenoid biosynthesis via the mevalonate-independent methylerythritol 4-phosphate route in the marine diatoms Phaeodactylum tricornutum and Nitzschia ovalis. Phytochem 53:21–28

    Article  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Delwiche CF and Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591

    Article  CAS  Google Scholar 

  • Disch A, Schwender J, Müller C, Lichtenthaler HK and Rohmer M (1998a) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    PubMed  CAS  Google Scholar 

  • Disch A, Hemmerlin A, Bach TJ and Rohmer M (1998b) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-cells. Biochem J 331:615–621

    PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W and Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:93–938

    Article  CAS  Google Scholar 

  • Eberl M, Hintz M, Reichenberg A, Kollas A-K, Wiesner J and Jomaa H (2003) Microbial isoprenoid biosynthesis and human γδ T cell activation. FEBS Lett 544:4–10

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Sagner S, Zenk MH and Bacher A (1997) Monoterpene essential oils are not of mevalonate origin. Tetrahedron Lett 39:3889–3892

    Article  Google Scholar 

  • Flügge UI and Gao W (2005) Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol 7:91–97

    Article  PubMed  CAS  Google Scholar 

  • Friedl T (1997) The evolution of the green algae. In: D Bhattacharya (ed) Origin of Algae and Their Plastids. Springer, Vienna, pp. 87–101

    Chapter  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP and Gonzalez-Halphen D (2002) A green algal apicoplast ancestor. Science 298:2155

    Article  PubMed  CAS  Google Scholar 

  • Gerber E, Hemmerlin A, Crowell DN, Rohmer M and Bach TJ (2010) The role of plastids in protein geranylgeranylation in tobacco BY-2 cells. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, ­Tripathy B (eds) The Chloroplast Basics and Application. Springer, Dordrecht, The Netherlands, pp. 127–137

    Chapter  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun vs. shade: a whole plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Golz A and Lichtenthaler HK (1994) Inhibition of the plastidic pyruvate dehydrogenase complex in isolated plastids of oat. Z Naturforsch 49c:421–426

    Google Scholar 

  • Goodwin TW (1958) Studies on carotenogenesis. 25. The incorporation of 14CO2, [2-14C]acetate and D,L-[2-14C]mevalonic acid into β-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617

    PubMed  CAS  Google Scholar 

  • Goodwin TW (1977) The prenyllipids of the membranes of higher plants. In: Tevini M and Lichtenthaler HK (eds), Lipids and Lipid Polymers in Higher Plants. Springer-Verlag, Berlin, pp. 29–44

    Chapter  Google Scholar 

  • Hampel D, Mosandl A and Wüst M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311

    Article  PubMed  CAS  Google Scholar 

  • Harley P, Fridd-Stroud V, Greenberg J, Guenther A and Vasconcellos P (1998) Emission of 2-methyl-3-buten-2-ol by pines: a potential large source of reactive carbon to the atmosphere. J Geophys Res D 103:25479–25486

    Article  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler J-F, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M and Bach TJ (2003) Plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Tritsch D, Hartmann M, Pacaud K, Hoeffler J-F, van Dorsselaer A, Rohmer M and Bach TJ (2006) A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway. Plant Physiol 142:441–457

    Article  PubMed  CAS  Google Scholar 

  • Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lüttgen H, Sagner S, Fellermeier MA, Eisenreich W, Zenk MH, Bacher A and Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490

    Article  PubMed  CAS  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D and Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y and Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194

    Article  PubMed  CAS  Google Scholar 

  • Kesselmeier J and Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Knöss W, Reuter B and Zapp J (1997) Biosynthesis of the labdane diterpene marrubiin in Marubium vulgare via a non-mevlonate pathway. Biochem J 326:449–454

    PubMed  Google Scholar 

  • Kuzuyama T, Shimizu T and Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    Article  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W and Croteau RB (2000) Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Laule O, Fürholz A., Chang S, Zhu T, Wang X, Heifetz PB, Gruissem W and Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour XXVII:144–149

    Google Scholar 

  • Lichtenthaler HK (1969a) Die Bildung überschüssiger Plastidenchinone in den Blättern von Ficus elasticus Roxb. Z Naturforsch 24b:1461–1466

    Google Scholar 

  • Lichtenthaler HK (1969b) Localization and functional concentrations of lipoquinones in chloroplasts. In: Metzner H (ed), Photosynthesis Research, Vol I. International Union of Biological Sciences, Tübingen, Germany, pp. 304–314

    Google Scholar 

  • Lichtenthaler HK (1969c) Light-stimulated synthesis of plastid quinones and pigments in etiolated barley seedlings. Biochim Biophys Acta 184:164–172

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1977) Regulation of prenylquinone biosynthesis in higher plants. In: Tevini M and Lichtenthaler HK (eds) Lipids and Lipid Polymers in Higher Plants. Springer, Berlin, pp. 29–44

    Google Scholar 

  • Lichtenthaler HK (1981) Adaptation of leaves and chloroplasts to high quanta fluence rates. In: Akoyunoglou G (ed) Photosynthesis VI. Balaban Internat Science Service, Philadelphia, PA, pp. 273–287

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods Enzymol 148. Academic, New York, pp. 350–382

    Google Scholar 

  • Lichtenthaler HK (1998) The plants’ 1-deoxy-d-xylulose-5-phospate pathway for biosynthesis of isoprenoids. Fett/Lipid 100:128–138

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:787–792

    Google Scholar 

  • Lichtenthaler HK (2004) Evolution of carotenoid and sterol biosynthesis in photosynthetic and non photosynthetic organisms. In: Biacs P and Gerely P (eds) Proceedings of the 16th Plant Lipid Symposium. Mete Publisher, Budapest, pp. 11–24. http//www.mete.mtesz.hu/pls/proceedings/index.htm

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 93. doi: 10.1007/s11120-007–9204-y

    Google Scholar 

  • Lichtenthaler HK and Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC and Govindjee (eds) Chlorophyll Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 713–736

    Chapter  Google Scholar 

  • Lichtenthaler HK and Calvin M (1964) Quinone and pigment composition of chloroplasts and quantasome aggregates from Spinacia oleracea. Biochim Biophys Acta 79:30–40

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK and Park RB (1963) Chemical composition of chloroplast lamellae from spinach. Nature 198:1070–1072

    Article  CAS  Google Scholar 

  • Lichtenthaler HK and Sprey B (1966) Über die osmiophilen globulären Lipideinschlüsse der Chloroplasten. Z Naturforsch 21b:690–697

    Google Scholar 

  • Lichtenthaler HK and Zeidler J (2002) Isoprene and terpene biosynthesis. In: Gasche R, Papen H and Rennenberg H (eds) Trace Gas Exchange in Forest Ecosystems. Kluwer, Dordrecht, pp. 79–99

    Chapter  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz H-J, Bach T, Kozel U, Meier D and Rahmsdorf U (1981a) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosyn Res 2:115–141

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U, Douce R and Joyard J (1981b) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim Biophys Acta 641:99–105

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U and Kuhn G (1982a) Carotenoid composition of chlorophyll-carotenoid-proteins from radish chloroplasts. Z Naturforsch 37c:10–12

    CAS  Google Scholar 

  • Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C and Meier D (1982b) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Z Naturforsch 37c:464–475

    CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Seemann M and Rohmer M (1995) Carotenoid biosynthesis in green algae proceeds via a novel biosynthetic pathway. In: Mathis P (ed) Photosynthesis: From Light to Biosphere. Kluwer, Amsterdam, pp. 115–118

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A and Rohmer M (1997a) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M and Schwender J (1997b) Two independent biochemical pathways for isopentenyl diphosphate (IPP) and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Babani F, Langsdorf G and Buschmann C (2000a) Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica 38:521–529

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Zeidler J, Schwender J and Müller C (2000b) The non-mevalonate isoprenoid biosynthesis of plants as a test-system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z Naturforsch 55c:305–313

    Google Scholar 

  • Little HN and Bloch K (1950) Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J Biol Chem 138:33–46

    Google Scholar 

  • Lynen F, Reichart E and Rueff L (1951) Zum biologischen Abbau der Essigsäure VI, “aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann Chem 574:1–32

    Article  CAS  Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M and León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658

    Article  PubMed  CAS  Google Scholar 

  • McGarvey DJ and Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    PubMed  CAS  Google Scholar 

  • Meier D and Lichtenthaler HK (1981) Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon. Protoplasma 107:195–207

    Article  CAS  Google Scholar 

  • Müller C, Schwender J, Zeidler J and Lichtenthaler HK (2000) Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis. Biochem Soc Trans 28:794–795

    Article  Google Scholar 

  • Nabeta K, Ishikawa T and Okuyama H (1995) Sesqui- and di-terpene biosynthesis from 13C labelled acetate and mevalonate in cultured cells of Heteroscyphus planus. J Chem Soc Perkin Trans I: 3111–3115

    Article  Google Scholar 

  • Nabeta K, Kawae T, Saitoh T and Kikuchi T (1997) Synthesis of chlorophyll a and ß-carotene from 2H and 13C-labelled mevalonates and 13C-labeled glycin in cultured cells of liwerworts Heterocyphus planus and Lophocolea heterophylla. J Chem Soc Perkin Trans 1:261–267

    Article  Google Scholar 

  • Nagata N, Suzuki M, Yoshida S and Muranaka T (2002). Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216:345–350

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA, Rhodes D and Doudareva N (2010) The role of the methyl-erythritol-phosphate pathway in rhythmic emission of volatiles. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Application. Springer, Dordrecht, The Netherlands, pp. 139–153

    Chapter  Google Scholar 

  • Proteau, P.J. (1998) Biosynthesis of phytol in the cyanobacterium Synechocystis spec. UTEX 2470: utilization of the non-mevalonate pathway. J. Nat Prod 61:841–843.

    Article  PubMed  CAS  Google Scholar 

  • Querol J, Campos N, Imperial S, Boronat A and Rodríguez-Concepción M (2002) Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett 514: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen RH and Khalil MAK (1998) Isoprene over the Amazon Basin. J Geophys Res 93:1417–1421

    Article  Google Scholar 

  • Rodríguez-Concepción M and Boronat A (2002) Eluci­dation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A and Zenk MH (1999) Cytidine 5’-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2 -C-methylerythritol. Proc Natl Acad Sci USA 96: 11758–11763

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A and Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B and Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Fisher AJ, Fall R and Monson RK (2002) Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. Plant Physiol 129:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka L (1938) Die architektur der polyterpene. Angew Chem 51:5–11

    Article  CAS  Google Scholar 

  • Ruzicka L, Eschenmoser A and Heusser H (1953) The isoprene rule and the biogenesis of isoprenoid compounds. Experientia 9:357–396

    Article  PubMed  CAS  Google Scholar 

  • Sarijeva G, Knapp M and Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol 164:950–955

    Article  PubMed  CAS  Google Scholar 

  • Schade GW, Goldstein AH, Gray DW and Lerdau MT (2000) Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation. Atmos Environ 34:3535–3544

    Article  CAS  Google Scholar 

  • Schindler C, Reith P and Lichtenthaler HK (1994) Differential levels of carotenoids and decrease of zeaxanthin cycle performance during leaf development in a green and an aurea variety of tobacco. J Plant Physiol 143:500–507

    Article  CAS  Google Scholar 

  • Schnarrenberger C, Jacobshagen S, Müller B and Krüger I (1990) Evolution of isozymes of sugar phosphate metabolism in green algae. In: Ogita ZI and Market CL (eds) Isozymes. Structure, Function and Use in Biology and Medicine. Wiley Liss, New York, pp. 743–764

    Google Scholar 

  • Schnitzler J-P, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A and Hansel A (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135:152–160

    Article  PubMed  CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F and Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Schulze-Siebert D and Schulze G (1987) ß-carotene synthesis in isolated chloroplasts. Plant Physiol 84:1233–1237

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Siebert D, Heinecke D, Scharf H and Schulze G (1984) Pyruvate-derived amino acids in spinach chloroplasts. Plant Physiol 76:465–471

    Article  PubMed  CAS  Google Scholar 

  • Schwarz MK (1994) Terpenbiosynthese in Ginkgo biloba. Ph.D. thesis, Eidgen Techn Hochschule. Zürich, Switzerland

    Google Scholar 

  • Schwender J, Lichtenthaler HK, Seemann M and Rohmer M (1995) Biosynthesis of isoprenoid chains of chlorophylls and plastoquinone in Scenedesmus by a novel pathway. In: Mathis P (ed) Photosynthesis: From Light to Biosphere. Kluwer, Amsterdam, pp. 1001–1004

    Google Scholar 

  • Schwender J, Seeman M, Lichtenthaler HK and Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophyll and plastoquinone) via a novel pyruvate/glycero-aldehyde-3-phosphate non-mevalonate pathway in the green alga Scenedesmus. Biochem J 316:73–80

    PubMed  CAS  Google Scholar 

  • Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, Lichtenthaler FW and Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    Article  PubMed  CAS  Google Scholar 

  • Schwender J, Müller C, Zeidler J and Lichtenthaler HK (1999) Cloning and heterologous expression of a cDNA encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett 455:140–144

    Article  PubMed  CAS  Google Scholar 

  • Schwender J, Gemünden C and Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    Article  PubMed  CAS  Google Scholar 

  • Seemann M, Campos N, Rodríguez-Concepción M, Hoeffler J-F, Grosdemange-Billiard C, Boronat A and Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: accumulation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate in a gcpE deficient mutant of Escherichia coli. Tetrahedron Lett 43:775–778

    Article  CAS  Google Scholar 

  • Sharkey TD (1996) Isoprene emission by plants and animals. Endeavour 20:74–78

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD and Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D and Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    Article  PubMed  CAS  Google Scholar 

  • Silver GM and Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016

    Article  PubMed  CAS  Google Scholar 

  • Sisler EC and Klein WH (1963) The effect of age and various chemicals on the lag phase of chlorophyll synthesis in dark grown bean seedlings. Physiol Plant 16:315–322

    Article  CAS  Google Scholar 

  • Stumpf PK (1984) Fatty acid biosynthesis in higher plants. In: Numa S (ed) Fatty Acid Metabolism and Its Regulation. Elsevier Science Publishers BV, Amsterdam, pp. 155–179

    Chapter  Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158

    Article  CAS  Google Scholar 

  • Van den Hoek C, Mann DG and Jahn HM (1995) Algae, an Introduction to Phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wallach O (1885) Zur Kenntnis der Terpene und der ätherischen Öle. Justus Liebigs Ann Chem 227:277–302

    Article  Google Scholar 

  • Wild A, Höpfner M, Rühle W and Richter M (1986) Changes in the stochiometry of photosystem II components as an adaptive response to high-light and low-light conditions during growth. Z Naturforsch C 41:597–603

    CAS  Google Scholar 

  • Wildermuth MC and Fall R (1996) Light-dependent isoprene emission (Characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol 112:171–182

    PubMed  CAS  Google Scholar 

  • Wildermuth MC and Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJM (2002) Progress with parasite plastids. J Mol Biol 319:257–274

    Article  PubMed  CAS  Google Scholar 

  • Wolf DE, Hoffmann CH, Aldrich PE, Skeggs HR, Wright LD and Folkers K (1956) β-Hydroxy-β-methyl-δ-dihydroxy-β-methylvaleric acid (divalonic acid), a new biological factor. J Am Chem Soc 78:4499

    Article  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W and Kuhnemann F (2004) Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol 135:1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Zeidler J (2001) Precursors and inhibitors of isoprene synthesis in plants (in German). Karlsruhe Contr Plant Physiol 38:1–157

    Google Scholar 

  • Zeidler J and Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213:323–326

    Article  PubMed  CAS  Google Scholar 

  • Zeidler JG, Lichtenthaler HK, May HU and Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via the novel isopentenylpyrophosphate pathway? Z Naturforsch 52c:15–23

    CAS  Google Scholar 

  • Zeidler JG, Schwender J, Müller C, Wiesner J, Weidemeyer C, Beck E, Jomaa H and Lichtenthaler HK (1998) Inhibition of the non-mevalonate 1-deoxy-d-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch 53c:980–986

    CAS  Google Scholar 

  • Zeidler J, Schwender J, Müller C and Lichtenthaler HK (2000) The isoprenoid biosynthesis of plants as test-system for drugs against malaria and pathogenic bacteria. Biochem Soc Trans 28:798–800

    Article  Google Scholar 

  • Zhang H, Sharifi MR and Nobel PS (1995) Photosynthetic characteristics of sun versus shade plants of Encelia farinosa as affected by photosynthetic photon flux density. Intercellular CO2 concentration, leaf water potential, and leaf temperature. Austr J Plant Physiol 22:833–841

    Article  Google Scholar 

  • Zhou WX and Nes WD (2000) Stereochemistry of hydrogen introduction at C-25 in ergosterol synthesized by the mevalonate-independent pathway. Tetrahedron Lett 41:2791–2795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to several of my former Ph.D. students and group members who carried out parts of the research on plant isoprenoid biosynthesis (T. J. Bach, C. Müller, J. Schwender, J. Zeidler). I also wish to thank Ms Sabine Zeiler for the excellent implementation of pigment determinations, and to Ms Gabrielle Johnson for English language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut K. Lichtenthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lichtenthaler, H.K. (2010). Chapter 7 The Non-mevalonate DOXP/MEP (Deoxyxylulose 5-Phosphate/Methylerythritol 4-Phosphate) Pathway of Chloroplast Isoprenoid and Pigment Biosynthesis. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_7

Download citation

Publish with us

Policies and ethics