Skip to main content

Chapter 22 Regulation of Photosynthetic Electron Transport

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

The photosynthetic machinery of plants has two conflicting functions. It has to perform at maximum efficiency under light-limited conditions, but has to avoid photo-damage when the incoming light energy exceeds the capacity for utilization. To survive in the field and compete with other species, it is essential for plants to develop multiple strategies for responding to fluctuating light conditions. Thermal dissipation is triggered by acidification of the thylakoid lumen, which allows absorbed excessive light energy to be discarded as heat from photosystem II. The alternative electron transport pathways, photosystem I cyclic electron transport and the water-water cycle, are thought to regulate the induction of thermal dissipation. In higher plants, PSI cyclic electron transport consists of two partly redundant pathways: the PGR5- and NAD(P)H dehydrogenase-dependent pathways. On the other hand, state transition regulates the balance of excitation between the two photosystems by monitoring the reduction level of the plastoquinone pool. Recent genetic investigations have contributed to identifying mutants specifically defective in each pathway, making it possible to evaluate their physiological significance. However, the actual regulatory system is likely to consist of complex interactions between each component, and unfortunately our knowledge is still limited to discussing this network rather than the molecular details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOX:

alternative oxidase

CCD:

charge-coupled device

crr2 :

chlororespiratory reduction 2

cyt :

cytochrome

Fd:

ferredoxin

FNR:

ferredoxin-NADP+ oxidoreductase

LHCII:

light harvesting complex II

hcf :

high chlorophyll fluorescence

MDA:

monodehydroascorbate

MDAR:

monodehydroascorbate reductase

NDH:

NAD(P)H dehydrogenase

NPQ:

non-photochemical quenching

PAM:

pulse-amplitude modulation

pgr5 :

proton gradient regulation 5

pgrl1 :

proton gradient regulation 5-like 1

PPR :

pentatricopeptide repeat

PQ:

plastoquinone

PSI and PSII:

photosystem I and II

PTOX:

plastid terminal oxidase

qE, qT, qI:

quenching depending on thylakoid energization, state transition and photoinhibition

qP:

photochemical quenching

ROS:

reactive oxygen species

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose-1,5-bisphosphate

SOD:

superoxide dismutase

stt7:

state transition deficient mutant 7

UV:

ultraviolet

References

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 273–335

    Google Scholar 

  • Allen JF, Bennett J, Steinback KE and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 25–29

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Avenson TJ, Cruz JA, Kanazawa A and Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 101: 5530–5555

    Article  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S and Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B 355: 1433–1446

    Article  CAS  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallett KE and Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132: 485–493

    Article  PubMed  CAS  Google Scholar 

  • Battchikova N, Zhang P, Rudd S, Ogawa T and Aro E-M (2004) Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp. PCC 6803. J Biol Chem 280: 2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G and Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895

    Article  PubMed  CAS  Google Scholar 

  • Bendall D and Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229: 23–38

    Article  Google Scholar 

  • Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P and Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437: 1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura C and Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 3: 366–383

    Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    Article  PubMed  CAS  Google Scholar 

  • Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G and Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11: 57–68

    PubMed  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R and Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132: 273–285

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1996) The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III, Baker DH, Logan BA, Bowling DR and Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excessive excitation. Physiol Plant 98: 253–264

    Article  CAS  Google Scholar 

  • Depege N, Bellafiore S and Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K and Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Kawase D and Sato F (2005) Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance. Plant Cell Physiol 46: 775–781

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J-D, Zito F and Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Zito F and Forti G (1999) Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 274: 30987–30994

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT and Badger MR (1983) Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids. Biochim Biophys Acta 723: 400–409

    Article  CAS  Google Scholar 

  • Golding AJ and Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Golding AJ, Finazzi G and Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants – evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220: 356–363

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transition. Trends Plant Sci 6: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M and Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Heber U and Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100: 1621–1626

    Article  PubMed  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I and Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13: 230–235

    Article  PubMed  CAS  Google Scholar 

  • Horton P and Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Anne Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  Google Scholar 

  • Horváth EM, Peter SO, Joët T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G and Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123: 1337–1350

    Article  PubMed  Google Scholar 

  • Jahns P, Graf M, Munekage Y and Shikanai T (2002) Single point mutation in the Rieske iron-sulfur subunit of cytochrome b 6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. FEBS Lett 519: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR and Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410: 952–954

    Article  PubMed  CAS  Google Scholar 

  • Joët T, Genty B, Josse EM, Kuntz M, Cournac L and Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277: 31623–31630

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN (2004) Controversy remains: regulation of pH gradient across the thylakoid membrane. Trends Plant Sci 9: 570–571

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Josse EM, Simkin AJ, Gaffe J, Laboure AM, Kuntz M and Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123: 1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A and Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99: 12789–12794

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K and Wada M (2001) Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291: 2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M and Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420: 829–832

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M and Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414: 656–660

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Cruz JA and Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Kofer W, Koop H-U, Wanner G and Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258: 166–173

    Article  PubMed  CAS  Google Scholar 

  • Kotera E, Tasaka M and Shikanai T (2005) A pentatricopetide repeat protein is essential for RNA editing in chloroplasts. Nature 433: 326–330

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A and Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384: 557–560

    Article  CAS  Google Scholar 

  • Kruse O, Nixon P, Schmid GH and Mullineaux CW (1999) Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth Res 61: 43–51

    Article  CAS  Google Scholar 

  • Külheim C, Ã…gren J and Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93

    Article  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009– 014

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D and Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279: 22866–22874

    Article  PubMed  CAS  Google Scholar 

  • Long TA, Okegawa Y, Shikanai T, Schmidt GW and Covert SF (2008) Conserved role of PROTON GRADIENT REGULATOR 5 (PGR5) in the regulation of PSI cyclic electron transport. Planta 228: 907–918

    Article  PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408: 613–615

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L and Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16: 2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Makino A, Miyake C and Yokota A (2002) Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43: 1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi T, Wakasugi T, Shinozaki K, Yamaguchi-Shinozaki K, Zaita N, Hidaka T, Meng BY, Ohto C, Tanaka M, Kato A, Maruyama T and Sugiura M (1987) Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet 210: 385–393

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    Article  PubMed  CAS  Google Scholar 

  • Meurer J, Meierhoff K and Westhoff P (1996) Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and northern hybridisation. Planta 198: 385–396

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U, Ogawa T and Asada K (1992) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synochocystis PCC6803. Plant Cell Physiol 33: 1233–1237

    CAS  Google Scholar 

  • Mi HL, Endo T, Schreiber U, Ogawa T and Asada K (1994) NAD(P)H-dehydrogenase-dependent cyclic electron flow around photosystem-I in the cyanobacterium Synochocystis – a study of dark-starved cells and spheroplasts. Plant Cell Physiol 35: 163–173

    CAS  Google Scholar 

  • Mi H, Endo T, Ogawa T and Asada K (1995) Thylakoid membrane-bound pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacteria Synechocystis PCC 6803. Plant Cell Physiol 36: 661–668

    CAS  Google Scholar 

  • Miles D (1980) Mutants of higher plants: maize. Meth Enzymol 69: 3–23

    Article  CAS  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S and Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39: 821–829

    Article  CAS  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y and Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves – relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46: 629–637

    Article  PubMed  CAS  Google Scholar 

  • Müller P, Li X-P and Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558–1566

    Article  PubMed  Google Scholar 

  • Mullineaux P and Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y and Shikanai T (2005) Cyclic electron transport though photosystem I. Plant Biotech 22: 361–69

    Article  CAS  Google Scholar 

  • Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T and Shikanai T (2001) Cytochrome b 6 f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M and Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M and Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579–582

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Shikanai T and Asada K (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and α-tocopherol quinone accumulation in water-stressed ndhB-inactivated tobacco mutants. Planta 222: 502–511

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172: 242–251

    Article  PubMed  CAS  Google Scholar 

  • Munshi MK, Kobayashi Y and Shikanai T (2005) Identification of a novel protein CRR7 required for the stabilization of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant J 44: 1036–1044

    Article  CAS  Google Scholar 

  • Munshi MK, Kobayashi Y and Shikanai T (2006) CRR6 is a novel factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiol 141: 737–744

    Article  PubMed  CAS  Google Scholar 

  • Muraoka R, Okuda K, Kobayashi Y and Shikanai T (2006) A eukaryotic factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiol 142: 1683–1689

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 84: 14162–14167

    Article  Google Scholar 

  • Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Li X-P, Rosenberg V and Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci USA 88: 4275–4279

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T and Mi HL (2007) Cyanobacterial NADPH dehydrogenase complexes. Photosynth Res 93: 69–77

    Article  PubMed  CAS  Google Scholar 

  • Okegawa Y, Tsuyama M, Kobayashi Y and Shikanai T (2005) The pgr1 mutation in the Rieske subunit of the cytochrome b 6 f complex does not affect PGR5-dependent cyclic electron transport around photosystem I. J Biol Chem 280: 28332–28336

    Article  PubMed  CAS  Google Scholar 

  • Okegawa Y, Long TA, Iwano M, Takayama S, Kobayashi Y, Covert SF and Shikanai T (2007) Balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiol 48: 1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Okegawa Y, Kagawa Y, Kobayashi Y and Shikanai T (2008) Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Plant Cell Physiol 49: 825–834

    Article  PubMed  CAS  Google Scholar 

  • Okuda K, Nakamura T, Sugita M, Shimizu T and Shikanai T (2006) A pentatricopeptide repeat protein is a site-recognition factor in chloroplast RNA editing. J Biol Chem 281: 37661–37667

    Article  PubMed  CAS  Google Scholar 

  • Ort DR and Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Shimizu H and Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 283: 34873–34879

    Article  PubMed  CAS  Google Scholar 

  • Peterson RB and Havir EA (2000) A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta 210: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Prommeenate P, Lennon AM, Markert C, Hippler M and Nixon PJ (2004) Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279: 28165–28173

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H and Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278: 38921–38995

    Article  PubMed  CAS  Google Scholar 

  • Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP and Hüner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiol 142: 574–585

    Article  PubMed  CAS  Google Scholar 

  • Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Garin J and Peltier G (2005) New Subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17: 219–232

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K and Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14: 1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 63: 698–708

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T (2007a) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58: 199–217

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T (2007b) The NAD(P)H dehydrogenase complex in photosynthetic organisms: Subunit composition and physiological function. Func Plant Biol Biotech 1: 129–137

    Google Scholar 

  • Shikanai T and Endo T (2000) Physiological function of a respiratory complex, NAD(P)H dehydrogenase in chloroplasts: dissection by chloroplast reverse genetics. Plant Biotech 17: 79–86

    Article  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K and Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95: 9705–9709

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Munekage Y, Shimizu K, Endo T and Hashimoto T (1999) Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol 40: 1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H and Shikanai T (2007) Dihydrodipicolinate reductase-like protein, CRR1, is essential for chloroplast NAD(P)H dehydrogenase in Arabidopsis. Plant J 52: 539–547

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Peng L, Myouga F, Motohashi R, Shinozaki K and Shikanai T (2008) CRR23/NdhL is a subunit of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol 49: 835–842

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125: 20–24

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR and Ogren WL (1979) Phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature 280: 833–836

    Article  CAS  Google Scholar 

  • Sonoike K and Terashima I (1994) Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta 194: 287–293

    Article  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Svab Z and Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913–917

    Article  PubMed  CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY and Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49: 567–572

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y and Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103: 447–482

    Article  CAS  Google Scholar 

  • Takemiya A, Inoue S, Doi M, Kinoshita T and Shimazaki K (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17: 1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y and Aro E-M (2006) State transitions revisited – a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62: 779–793

    Article  PubMed  CAS  Google Scholar 

  • Vainonen JP, Hansson M and Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280: 33679–33686

    Article  PubMed  CAS  Google Scholar 

  • Vener AV, van Kan PJ, Rich PR, Ohad I and Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94: 1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Walters RG, Shephard F, Rogers JJ, Rolfe SA and Horton P (2003) Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiol 131: 472–481

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY and Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141: 465–474

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP and Leegood, RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phylos Trans R Soc Lond B 355: 1517–1529

    Article  CAS  Google Scholar 

  • Wu D, Wright DA, Wetzel C, Voytas DF and Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11: 43–55

    PubMed  CAS  Google Scholar 

  • Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T and Aro E-M (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell 16: 3326–3340

    Article  PubMed  CAS  Google Scholar 

  • Zito F, Finazzi G, Delosme R, Nitschke W, Picot D and Wollman FA (1999) The Qo site of cytochrome b 6 f complexes controls the activation of the LHCII kinase. EMBO J 18: 2961–2969

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid for Scientific Research on Priority Areas (16085296) and for Creative Scientific Research (17GS0316) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Shikanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shikanai, T. (2010). Chapter 22 Regulation of Photosynthetic Electron Transport. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_22

Download citation

Publish with us

Policies and ethics