Skip to main content

Chapter 13 Biosynthesis and Function of Monogalactosyldiacylglycerol (MGDG), the Signature Lipid of Chloroplasts

  • Chapter
Book cover The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Monogalactosyldiacylglycerol (MGDG) is a predominant membrane constituent of chloroplasts and other plastids, which occupies more than 50% of total photosynthetic membrane lipids. Therefore, the biosynthesis of MGDG has been considered to be crucial for plant photosynthetic function. Since the success in the identification of MGDG synthase from cucumber, significant progress was made in this decade to unravel the nature of MGDG synthase. These include not only basic studies with regard to biochemical features, regulatory systems, in vivo function, but also emerging new focus such as tools for searching the evolutionary origin of chloroplasts, design of herbicides and functions of novel class of oxylipin-containing galactolipids. In this article, we review advances made in this decade to understand a broad array of function and biosynthetic pathways of MGDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

6-benzyladenine

DAG:

sn-1,2 diacylglycerol

DGDG:

digalactosyldiacylglycerol

DTT:

dithiothreitol

GL2:

GLABRA2

GT:

glycosyltransferase

IAA:

indole-3-acetic acid

LPP:

lipid phosphate phosphatase

MGD:

monogalactosyldiacylglycerol synthase

MGDG:

monogalactosyldiacylglycerol

MGDG-O:

12-oxophytodienoic acid-containing monogalactosyldiacylglycerol

MGlcDG:

monoglucosyldiacylglycerol

NEM:

N-ethylmaleimide

NPA:

N-(1-naphthyl) phthalamic acid

NPC:

non-specific phospholipase C

OPDA:

12-oxophytodienoic acid

PA:

phosphatidic acid

PAP:

phosphatidic acid phosphatase

PC:

phosphatidylcholine

PCIB:

p-chlorophenoxyisobutyric acid

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

Phi:

phosphite

Pi:

phosphate

PI:

phosphatidylinositol

PLC:

phospholipase C

PLD:

phospholipase D

SQDG:

sulfoquinovosyldiacylglycerol

TAG:

triacylglycerol

TIBA:

2,3,5-triiodobenzole

UDP-Gal:

uridine diphosphate-galactose

UDP-Glc:

uridine diphosphate-glucose

WT:

wild type

References

  • Aloni R, Schwalm K, Kanghans M and Ullrich CI (2003) Gradual shift in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    PubMed  CAS  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C and Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Kjellberg JM and Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidylcholine to substrate for galactolipid synthesis in the chloroplast envelope. Biochim Biophys Acta 1684:46–53

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellström H, Liljenberg C and Sandelius AS (2005) Phosphate-limited oat. J Biol Chem 280(30):27578–27586

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenko O, Brunnström Å, McPhail KL, Gerwick WH, Göbel C, Feussner I and Ellerström M (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. J Biol Chem 281(42):31528–31537

    Article  PubMed  CAS  Google Scholar 

  • Avsian-Kretchmer O, Cheng JC, Chen L, Moctezuma E and Sung ZR (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130:199–209

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid synthesis in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98(19):10960–10965

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Kakimoto T, Awai C, Kaneko T, Nakamura Y, Takamiya K, Wada H and Ohta H (2006a) Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, and enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Xu C, Tamot B and Benning C (2006b) A phosphatidic acid-binding protein of the chloroplast inner envelope involved in lipid trafficking. Proc Natl Acad Sci USA 103(28):10817–10822

    Article  PubMed  CAS  Google Scholar 

  • Bishop WR and Bell RM (1985) Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholipe transporter. Cell 42:51–60

    Article  PubMed  CAS  Google Scholar 

  • Block MA, Dorne A-J, Joyard J and Douce R (1983) The phosphatidic acid phosphatase of the chloroplast envelope is located on the inner envelope membrane. FEBS Lett 164:111–115

    Article  CAS  Google Scholar 

  • Benning C and Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280(4):2397–2400

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Xu C and Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:1–7

    Article  Google Scholar 

  • Botté C, Jeanneau C, Snajdrova L, Bastien O, Imberty A, Breton C and Maréchal E (2005) Molecular modeling and site-directed mutagenesis of plant chloroplast monogalactosyldiacylglycerol syntghase reveal critical residues for activity. J Biol Chem 280(41):34691–34701

    Article  PubMed  Google Scholar 

  • Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD and Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic aicd in Arabidopsis leaves. Plant Physiol 142:2839

    Article  Google Scholar 

  • Camara B, Bardat F, Dobgo O, Brangeon J and Monéger R (1983) Terpenoid metabolism in plastids. Isolation and biochemical characteristics of capsicum annuum chromoplasts. Plant Physiol 3:94–99

    Article  Google Scholar 

  • Carman GM and Henry SA (1989) Phospholipid biosynthesis in yeast. Annu Rev Biochem 58:635–669

    Article  PubMed  CAS  Google Scholar 

  • Charnock SJ, Henrissat B and Davies GJ (2001) Three-dimensional structures of UDP-sugar glycosyltransferase illuminate the biosynthesis of plant polysaccharides. Plant Physiol 125:527–531

    Article  PubMed  CAS  Google Scholar 

  • Chrastil J and Parrish FW (1987) Phospholipase C and D in Rice Grains. J Agric Food Chem 35:624--627

    Article  CAS  Google Scholar 

  • Cline K and Keegstra K (1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea chloroplast envelopes. Plant Physiol 71:366–372

    Article  PubMed  CAS  Google Scholar 

  • Covès J, Joyard J and Douce R (1988) Lipid requirement and kinetic studies of solubilized UDP-galactose:diacylglycerol galactosyltransferase activity from spinach chloroplast envelope membranes. Proc Natl Acad Sci USA 85:4966–4970

    Article  PubMed  Google Scholar 

  • Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, Ramírez-Chávez E and Herrera-Estrella R (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103(17):6765–6770

    Article  PubMed  Google Scholar 

  • Dörmann P and Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118

    Article  PubMed  Google Scholar 

  • Dorne A-J, Block MA, Joyard J and Douce R (1982) The Galactolipid:galactolipid galactosyltransferase is located on the outer membrane of the chloroplast envelope. FEBS Lett 145:30–34

    Article  CAS  Google Scholar 

  • Douce R and Joyard J (1980) Lipids: structure and function. In: Stumpf PK (ed) The Biochemistry of Plants Vol.4. Academic, New York, pp. 321–362

    Google Scholar 

  • Frentzen M, Heinz E, McKeon TA and Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129:629–636

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SE and Roughan PG (1983) Relationship between fatty acyl-composition of diacylgalactosylglycerol and turnover of chloroplast phosphatidate. Biochem J 210:949–952

    PubMed  CAS  Google Scholar 

  • Gaude N, Nakamura Y, Scheible W-R, Ohta H and Dörmann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    Google Scholar 

  • Härtel H, Dörmann P and Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate starvation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Article  PubMed  Google Scholar 

  • Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Tevini M and Licthenthaler HK (eds) Lipids and Lipid Polymers. Springer, Berlin, pp. 102–120

    Chapter  Google Scholar 

  • Heinz E and Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Hasegawa K and Shigemori H (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett 44:5553–5556

    Article  CAS  Google Scholar 

  • Hisamastu Y, Goto N, Sejiguchi M, Hasegawa K and Shigemori H (2005) Oxylipins Arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603

    Article  Google Scholar 

  • Hobbie L and Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7:211–220

    Article  PubMed  CAS  Google Scholar 

  • Hölzl G, Zähringer U, Warnecke D and Heinz E (2005) Glycoengineering of cyanobacterial thylakoid membrane for future studyes on the role of glycolipid in photosynthesis. Plant Cell Physiol 46:1766–1778

    Article  PubMed  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C and Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 Mutant. Proc Natl Acad Sci USA 97:8175–8179

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Bligny R, Joyard J and Block MA (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544:63–68

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J and Block, MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    Article  PubMed  CAS  Google Scholar 

  • Joyard J and Douce R (1977) Site of synthesis of phosphatidic acid and diacylglycerol in spinach chloroplast. Biochim Biophys Acta 486(2):273–85

    Article  PubMed  CAS  Google Scholar 

  • Joyard J and Douce R (1979) Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes. FEBS Lett 102:147–150

    Article  PubMed  CAS  Google Scholar 

  • Joyard J and Douce R (1987) Galactolipid Synthesis. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9. Academic, New York, pp. 215–274

    Google Scholar 

  • Joyard J, Maréchal E, Miège C, Block MA, Dorne A-J and Douce R (1998) Structure distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, The Netherlands, pp. 21–52

    Google Scholar 

  • Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M and Shinozaki, K (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J 43:107–117

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1955) Hydrolysis of lecithin by plant plastid enzymes. Can J Biochem Physiol 33:575–589

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a udp-galactose-dependent digalactosyldiacylglycerol synthas is expressed during growth under phosphate-limiting conditions. J Biol Chem 277(2):1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Froelich JE and Dörmann P (2003) Disruption of two digalactosyldiacylglycerol synthases genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H and Liedvogel B (1978) Fatty acid synthesis by isolated chromoplasts from the daffodil. Eur J Biochem 83:499–505

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Awai K, Takamiy K and Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134:640–648

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Masuda T, Takamiya K and Ohta H (2006) Membrane lipid alteration during phosphate starvation in regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 47:238–248

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda A, Nishimura M and Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221

    Google Scholar 

  • Kocsis MG and Weselake RJ (1996) Phosphatidate phosphatases of mammals, yeast, and higher plants. Lipids 31(8):785–802

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Thacker J, Li Y and Doerner P (2007) Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Plant J 50:545–556

    Article  PubMed  CAS  Google Scholar 

  • Li M, Qin C, Welti R and Wang X (2006a) Double knockouts of phospholipase Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    Article  PubMed  CAS  Google Scholar 

  • Li M, Welti R and Wang X (2006b) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipase Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  Google Scholar 

  • Malherbe A, Block MA, Joyard J and Douce R (1992) Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol. J Biol Chem 267:23546–23553

    PubMed  CAS  Google Scholar 

  • Maréchal E, Miège C, Block MA, Douce R and Joyard J (1995) The catalytic site of MGDG synthase from spinach chloroplast envelope: a biochemical study of the structure and metal content. J Biol Chem 270:5714–5722

    Article  PubMed  Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1991) Purification of UDP-galactose:1,2-diacylglycerol galactosyltransferase from spinach chloroplast envelope membranes. C R Acad Sci Paris, t 313 Série III:521–528

    Google Scholar 

  • Maréchal E, Azzouz N, Macedo CS, Block MA, Feagin JE, Schwarz RT and Joyard J (2002) Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot Cell 1(4):653–656

    Article  PubMed  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R and Joyard J (1999) Biochemical and topological properties of type a MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both pokaryotic and eukaryotic MGDG. Eur J Biochem 265:990–1001

    Article  PubMed  Google Scholar 

  • Mongrand S, Bessoule J-J and Cassagne C (1997) A re-examination in vivo of the phosphatidylcholine-galactolipid metabolic relationship during plant lipid biosynthesis. Biochem J 327:853–858

    PubMed  CAS  Google Scholar 

  • Mongrand S, Cassagne C and Bessoule J-J (2000) Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122:845–852

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (1982) The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Lett 150:19–26

    Article  CAS  Google Scholar 

  • Nakamura Y, Arimitsu H, Yamaryo Y, Awai K, Masuda T, Shimada H, Takamiya K and Ohta H (2003) Digalactosyldiacylglycerol is a major glycolipid in floral organs of petunia hybrida. Lipids 38:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K and Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Tsuchiya M and Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021

    Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G and Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Shimojima M, Ookata K, Masuda T, Shioi Y and Takamiya K (1995a) A close relationship between increases in galactosyltransferase activity and the accumulation of galactolipids during plastid development in cucumber seedlings. Plant Cell Physiol 36(6):1115–1120

    CAS  Google Scholar 

  • Ohta H, Shimojima M, Arai T, Masuda T, Shioi Y and Takamiya K (1995b) UDP-galactose :diacylglycerol galactosyltransferase in cucumber seedlings: purification of the enzyme and the activation by phosphatidic acid. In: Kader JC and Mazliak P (eds) Plant Lipid Metabolism. Kluwer, The Netherlands, pp. 152–155

    Google Scholar 

  • Oursel A, Escoffier JC, Kader JP, Dubacq JP and Trémolières (1987) Last step in the cooperative pathway for galactolipid synthesis in spinach leaves: formation of monogalactosyldiacylglycerol with C18 polyunsaturated acyl group at both carbon atoms of the glycerol. FEBS Lett 219:393–399

    Article  CAS  Google Scholar 

  • Pierrugues O, Brutesco C, Oshiro J, Gouy M, Deveaux Y, Carman GM, Thuriaux P and Kazmaier M (2001) Lipid phosphate phosphatases in Arabidopsis. J Biol Chem 276:20300–20308

    Article  PubMed  CAS  Google Scholar 

  • Qin C and Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-sensitive PLDζ1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  • Rouet-Mayer MA, Valentova O, Simond-Cote E, Daussan J and Thévenot C (1995) Critical analysis of phospholipid hydrolyzing activities in ripening tomato fruits. Study by spectrofluorimetry and high-performance liquid chromatography. Lipids 30(8):739–746

    Article  PubMed  CAS  Google Scholar 

  • Roughan PG (1970) Turnover of the glycerolipids of pumpkin leaves. The importance of phosphatidylcholine. Biochem J 117:1–8

    PubMed  CAS  Google Scholar 

  • Roughan PG and Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    Article  CAS  Google Scholar 

  • Sato N (1994) Effect of Exogenous glucose on the accumulation of monoglucosyl diacylglycerol in the cyanobacterium synechosystis PCC6803. Plant Physiol Biochem 32:121–126

    CAS  Google Scholar 

  • Sato N and Murata N (1982a) Lipid biosynthesis in the blue-green alga, Anabaena variabilis I, lipid classes. Biochim Biophys Acta 710:271–278

    Article  CAS  Google Scholar 

  • Sato N and Murata N (1982b) Lipid biosynthesis in the blue-green alga, Anabaena variabilis III, UDPglucose:diacylglycerol glucosyltransferase activity in vitro. Plant Cell Physiol 23:1115–1120

    CAS  Google Scholar 

  • Scherer GFE, Paul RU, André H and Martinec J (2002) Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 293:766–770

    Article  PubMed  CAS  Google Scholar 

  • Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y and Takamiya K (1997) Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94:333–337

    Article  PubMed  CAS  Google Scholar 

  • Slabas T (1997) Galactolipid biosynthesis genes and endosymbiosis. Trends Plant Sci 2(5):161–162

    Article  Google Scholar 

  • Stelmach BA, Müller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M and Weiler EW (2001) A novel class of oxylipins, sn1-O-(12-Oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276(16):12832–12838

    Article  PubMed  CAS  Google Scholar 

  • Stinzi A, Weber H, Reymond P, Browse J and Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    Google Scholar 

  • Strauss H, Leibovitz-Ben Gershon Z and Heller M (1976) Enzymatic hydrolysis of 1-monoacyl-sn-glycerol-3-phosphorylcholine (1-lysolecithin) by phospholipases from peanut seeds. Lipids 11:442–448

    Google Scholar 

  • Stymne S and Stobart AK (1987) Triacylglycerol biosynthesis. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9, Lipids: Structure and Function. Academic, New York, pp. 175–214

    Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y and Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Pysiol 136:1268–1283

    Article  Google Scholar 

  • Teucher T and Heinz E (1991) Purification of UDP-galactose:diacylglycerol galactosyltransferase from chloroplast envelopes of spinach (Spinacia oleracea L.). Planta 184:319–326

    Article  CAS  Google Scholar 

  • Ticconi CA, Delatorre CA and Abel S (2001) Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol 127:963–972

    Article  PubMed  CAS  Google Scholar 

  • Varadarajan DK, Karthikeyan AS, Matilda PD and Ragothama KG (2002) Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol 129:1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Wada H and Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, The Netherlands, pp. 65–81

    Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  PubMed  CAS  Google Scholar 

  • Williams JP, Imperial V, Khan MU and Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves. Biochem J 349:127–133

    Article  CAS  Google Scholar 

  • Wu SSH, Platt KA, Ratnayake C, Wang T-W, Ting JTL and Huang AHC (1997) Isolation and characterization of neutral-lipid-containing organelles and globuli-filled plastids from Brassica napus tapetum. Proc Natl Acad Sci USA 94:12711–12716

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE and Benning C (2003) A permiase-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22:2370–2379

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Froehlich JE, Awai K and Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M and Yamamoto KT (1999) Effects of neutral and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4. J Plant Res 112:391–396

    Article  PubMed  CAS  Google Scholar 

  • Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shimada H, Takamiya K and Ohta H (2003) Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol 44:844–855

    Article  PubMed  CAS  Google Scholar 

  • Yamaryo Y, Motohashi K, Takamiya K, Hisabori T and Ohta H (2006) In vitro reconstitution of monogalactosyldiacylglycerol (MGDG) synthase regulation by thioredoxin. FEBS Lett 580:4086–4090

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grand-in-aid for Scientific Research on Priority Areas Nos.17051009 and 18056007 from MEXT of Japan. Y.N, and K.K were supported by a doctoral fellowship from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nakamura, Y., Shimojima, M., Ohta, H., Shimojima, K. (2010). Chapter 13 Biosynthesis and Function of Monogalactosyldiacylglycerol (MGDG), the Signature Lipid of Chloroplasts. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_13

Download citation

Publish with us

Policies and ethics