Skip to main content

Evolutionary Origins of Aging

  • Chapter
  • First Online:
The Future of Aging

Abstract

How we search for anti-aging interventions depends on what we think aging is. Surprisingly, the origin and significance of aging are unresolved questions of evolutionary theory, because experiments have diverged starkly from theoretical expectations. If we think that aging is a process of stochastic degradation, then we seek interventions that will repair the damage. If we think aging is a side-effect of fertility, we may look at ways that fertility hormones can be manipulated. But if we think that aging is an independent genetic program, with no other purpose than to assure our demise, then the most effective approach will be to discover what clocks trigger the self-destruction, and to seek interventions that reset the body’s primary clocks.

Much evolutionary theory has been developed based on the premise that fitness is a property of the individual organism. Since aging contributes negatively to individual fitness, theoreticians have insisted that aging cannot be adaptive. Contrary to this expectation, a robust and diverse body of experimental evidence points to the fact that aging has indeed evolved as an independent adaptation, selected for its own sake.

The implications for aging medicine are remarkable. First, that the prospects for success are good, and, in fact, the quest might not be terribly difficult. Aging is a process that is tightly regulated by biochemical signals. Targeting key receptors in this pathway is a research program that may be feasible over the next few years. Elsewhere in this volume are examples of promising approaches. Second, that natural healing traditions, herbs and whole foods are unlikely to be effective for slowing the rate of aging. Natural foods and medicines may restore some ancestral conditions under which the body was optimized in our evolutionary past; but if a programmed life span is part of that optimization, then natural remedies will have little effect on aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In populations that are at or near their density limit, competition is sufficiently intense that offspring (small and undeveloped) rarely grow to maturity unless an older conspecific dies or migrates, creating a vacancy. It is in this sense that senescence can contribute to a higher population turnover, and a shorter effective generation cycle.

References

  • Andziak B et al. (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:463–471

    Article  PubMed  CAS  Google Scholar 

  • Andziak B, O’Connor TP, Buffenstein R (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 126:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Anson M, Jones B, de Cabod R (2005) The diet restriction paradigm: a brief review of the effects of every-other-day feeding. AGE 27(1):17–25

    Article  CAS  Google Scholar 

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    Article  PubMed  CAS  Google Scholar 

  • Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295:502–505

    Article  PubMed  CAS  Google Scholar 

  • Arantes-Oliveira N, Berman JR, Kenyon C (2003) Healthy animals with extreme longevity. Science 302:611

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    Article  PubMed  CAS  Google Scholar 

  • Austad S (1999) Why We Age. Wiley, New York

    Google Scholar 

  • Ayyadevara S, Alla R et al. (2008) Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 7(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Barbieri M, Bonafe M, Franceschi C, Paolisso G (2003) Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285:E1064–E1071

    PubMed  CAS  Google Scholar 

  • Barger JL, Kayo T et al. (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLOS One 3(6):e2264

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE et al. (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci USA 97:4279–4284

    Article  PubMed  CAS  Google Scholar 

  • Baur JA et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  PubMed  CAS  Google Scholar 

  • Beck LS DL, Lee WP, Xu Y, Siegel MW, Amento EP (1993) One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest 92:2841–2849

    Article  PubMed  CAS  Google Scholar 

  • Bell G (1982) The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley

    Google Scholar 

  • Berman-Frank IH, Bidle KD et al. (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol Oceanogr 49(4):997–1005

    Article  Google Scholar 

  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (1997) Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 11:421–440

    PubMed  CAS  Google Scholar 

  • Bonduriansky R, Brassil CE (2002) Senescence: rapid and costly ageing in wild male flies. Nature 420:377

    Article  PubMed  CAS  Google Scholar 

  • Bowles JT (1998) The evolution of aging: a new approach to an old problem of biology. Med Hypotheses 51:179–221

    Article  PubMed  CAS  Google Scholar 

  • Bredesen DE (2004) The non-existent aging program: how does it work? Aging Cell 3:255–259

    Article  PubMed  CAS  Google Scholar 

  • Bronikowski AM, Promislow DE (2005) Testing evolutionary theories of aging in wild populations. Trends Ecol Evol 20:271–273

    Article  PubMed  Google Scholar 

  • Brouilette SW, Moore JS et al. (2007) Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369(9556):107–114

    Article  PubMed  CAS  Google Scholar 

  • Brunet A (2009) Cancer: When restriction is good. Nature 458(7239):713–714

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Abramovich A et al. (2007) Longevity network: construction and implications. Mech Ageing Dev 128(1):117–124

    Article  PubMed  CAS  Google Scholar 

  • Butov A et al. (2001) Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between cell damage and HSP levels. Exp Gerontol 37:57–66

    Article  PubMed  CAS  Google Scholar 

  • Carlson LD, Scheyer WJ, Jackson BH (1957) The combined effects of ionizing radiation and low temperature on the metabolism, longevity, and soft tissues of the white rat. I. Metabolism and longevity. Radiat Res 7:190–197

    Article  PubMed  CAS  Google Scholar 

  • Caroll L (pen name of CL Dodgson) (1871) Through the Looking Glass and What Alice Found There. Macmillian & Co, London

    Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  PubMed  CAS  Google Scholar 

  • Chen J et al. (2007) A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 62:126–135

    Article  PubMed  Google Scholar 

  • Cichon M (1997) Evolution of longevity through optimal resource allocation. Proc Royal Soc B 264:1383–1388

    Article  Google Scholar 

  • Clark WR (1999) A Means to an End: The Biological Basis of Aging and Death. Oxford University Press, New York, Oxford

    Google Scholar 

  • Clark WR (2004) Reflections on an unsolved problem of biology: the evolution of senescence and death. Adv Gerontol 14:7–20

    PubMed  CAS  Google Scholar 

  • Clausius R (1867) On a modified form of the second fundamental theorem in the mechanical theory of heat. In: Hirst TA (ed) The Mechanical Theory of Heat. van Voorst, pp. 111–135

    Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  • Crespi BJ, Teo R (2002) Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evol Int J Org Evol 56:1008–1020

    Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    Article  PubMed  CAS  Google Scholar 

  • Cushing JM, Li J (1992) Intra-specific competition and density dependent juvenile growth. Math Biol 54:503–519

    Google Scholar 

  • Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57:B109–B114

    Article  PubMed  Google Scholar 

  • de Grey AD (2006a) Compression of morbidity: the hype and the reality, part 1. Rejuvenation Res 9:1–2

    Article  PubMed  Google Scholar 

  • de Grey AD (2006b) Compression of morbidity: the hype and the reality, part 2. Rejuvenation Res 9:167–168

    Article  PubMed  Google Scholar 

  • de Jong G (1993) Covariances between traits deriving from successive allocations of a resource. Funct Ecol 7:75–83

    Article  Google Scholar 

  • de Jong G, van Noordwijk AJ (1992) Acquisition and allocation of resources: genetic (CO) variances, selection, and life histories. Am Nat 139:749–770

    Article  Google Scholar 

  • Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834

    Article  PubMed  CAS  Google Scholar 

  • Dudley J, Das S (2008) Resveratrol, a unique phytoalexin present in red wine, delivers either survival signal or death signal to the ischemic myocardium depending on dose. J Nutr Biochem 20(6):443–452

    Google Scholar 

  • Dytham C, Travis JM (2006) Evolving dispersal and age at death. Oikos 113:530–538

    Article  Google Scholar 

  • Edney EB, Gill RW (1968) Evolution of senescence and specific longevity. Nature 220:281–282

    Article  PubMed  CAS  Google Scholar 

  • Eidelman RS, Hebert PR, Weisman SM, Hennekens CH (2003) An Update on Aspirin in the Primary Prevention of Cardiovascular Disease, pp. 2006–2010

    Google Scholar 

  • Engels WR, Johnson-Schlitz D, Flores C, White L, Preston CR (2007) A third link connecting aging with double strand break repair. Cell Cycle 6:131–135

    Article  PubMed  CAS  Google Scholar 

  • Epel ES, Burke, H.M., and Wolkowitz, O.M. (2007) Anabolic and catabolic hormones. In: Aldwin CM (ed) Handbook of Health Psychology and Aging. Guilford, pp. 119–142

    Google Scholar 

  • Epel ES et al. (2006) Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology 31:277–287

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P et al. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Fahy GM (2003) Apparent induction of partial thymic regeneration in a normal human subject: A case report. J Anti-aging Med 6:219–227

    Google Scholar 

  • Feldman HA, Johannes CB, Araujo AB, Mohr BA, Longcope C, McKinlay JB (2001) Low dehydroepiandrosterone and ischemic heart disease in middle-aged men: prospective results from the Massachusetts Male Aging Study. Am J Epidemiol 153:79–89

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1990) Longevity, Senescence and the Genome. University of Chicago Press, Chicago

    Google Scholar 

  • Finch CE (2007) The Biology of Human Longevity. Elsevier, Burlington, MA

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. The Clarendon Press, Oxford

    Google Scholar 

  • Fitzpatrick AL, Kronmal RA et al. (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165(1):14–21

    Article  PubMed  Google Scholar 

  • Fleisig HB, Wong JMY (2007) Telomerase as a clinical target: current strategies and potential applications. Exp Gerontol 42(1–2):102–112

    Article  PubMed  CAS  Google Scholar 

  • Flick ED, Chan KA, Bracci PM, Holly EA (2006) Use of nonsteroidal antiinflammatory drugs and non-Hodgkin lymphoma: a population-based case-control study. Am J Epidemiol 164:497–504

    Article  PubMed  Google Scholar 

  • Forbes V (2000) Is hormesis an evolutionary expectation? Funct Ecol 14:12–24

    Article  Google Scholar 

  • Gavrilov LA, Gavrilova NS (2004) The reliability-engineering approach to the problem of biological aging. Ann N Y Acad Sci 1019:509–512

    Article  PubMed  Google Scholar 

  • Gavrilov LA, Gavrilova NS et al. (1978) [Basic patterns of aging and death in animals from the standpoint of reliability theory]. Zh Obshch Biol 39(5):734–742

    PubMed  CAS  Google Scholar 

  • Genazzani AD, Lanzoni C, Genazzani AR (2007) Might DHEA be considered a beneficial replacement therapy in the elderly? Drugs Aging 24:173–185

    Article  PubMed  CAS  Google Scholar 

  • Gill J, Malin M, Hollander GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3:635–642

    Article  PubMed  CAS  Google Scholar 

  • Gilpin ME (1975) Group Selection in Predator-Prey Communities. Princeton University Press, Princeton

    Google Scholar 

  • Gilpin ME, Rosenzweig ML (1972) Enriched predator-prey systems: theoretical stability. Science 177:902–904

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith T (2003, 2nd edition 2008) The Evolution of Aging. Azinet

    Google Scholar 

  • Goodrick CL, Ingram DK et al. (1990) Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech Ageing Dev 55(1):69–87

    Article  PubMed  CAS  Google Scholar 

  • Gordeeva AV, Labas YA et al. (2004) Apoptosis in unicellular organisms: mechanisms and evolution. Biochem-Moscow 69(10):1055–1066

    Article  CAS  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Hoek JB (2007) Cell signaling. Mitochondrial longevity pathways. Science 315:607–609

    Article  PubMed  Google Scholar 

  • Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12(1):12–45

    Article  PubMed  CAS  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  CAS  Google Scholar 

  • Hass WK et al. (1989) A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. Ticlopidine Aspirin Stroke Study Group. N Engl J Med 321:501–507

    Article  PubMed  CAS  Google Scholar 

  • Haussmann MF, Winkler DW et al. (2005) Longer telomeres associated with higher survival in birds. Biol Lett 1(2):212–214

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2006) Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse. Rejuvenation Res 9:3–9

    Article  PubMed  Google Scholar 

  • Heber-Katz E, Leferovich JM, Bedelbaeva K, Gourevitch D (2004) Spallanzani’s mouse: a model of restoration and regeneration. Curr Top Microbiol Immunol 280:165–189

    Article  PubMed  CAS  Google Scholar 

  • Heywood R et al. (1979) Safety evaluation of toothpaste containing chloroform. III. Long-term study in beagle dogs. J Environ Pathol Toxicol 2:835–851

    PubMed  CAS  Google Scholar 

  • Holloszy JO, Smith EK (1986) Longevity of cold-exposed rats: a reevaluation of the “rate-of-living theory”. J Appl Physiol 61:1656–1660

    PubMed  CAS  Google Scholar 

  • Holmes DJ, Fluckiger R, Austad SN (2001) Comparative biology of aging in birds: an update. Exp Gerontol 36:869–883

    Article  PubMed  CAS  Google Scholar 

  • Howitz KT et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  PubMed  CAS  Google Scholar 

  • Joeng KS, Song EJ et al. (2004) Long lifespan in worms with long telomeric DNA. Nat Genet 36(6):607–611

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, Tedesco PM, Lithgow GJ (1993) Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Genetica 91:65–77

    Article  PubMed  CAS  Google Scholar 

  • Kalaany NY, Sabatini DM (2009) Tumours with PI3K activation are resistant to dietary restriction. Nature 458(7239):725–731

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kirchner JW, Roy BA (1999) The evolutionary advantages of dying young: epidemiological implications of longevity in metapopulations. Am Nat 154:140–159

    Article  Google Scholar 

  • Kirkwood T (1977) Evolution of aging. Nature 270:301–304

    Article  PubMed  CAS  Google Scholar 

  • Korpelainen H (2000) Fitness, reproduction and longevity among European aristocratic and rural Finnish families in the 1700s and 1800s. Proc Biol Sci 267(1454):1765–1770

    Article  PubMed  CAS  Google Scholar 

  • Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci 17:5089–5100

    PubMed  CAS  Google Scholar 

  • Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126:365–379

    Article  PubMed  CAS  Google Scholar 

  • Lane N (2008) Origins of death. Nature 453 (29 May 2008):583–585

    Article  PubMed  CAS  Google Scholar 

  • Lapointe J, Hekimi S (2008) Early mitochondrial dysfunction in long-lived Mclk1+/– mice. J Biol Chem 283(38):26217–26227

    Article  PubMed  CAS  Google Scholar 

  • Le Bourg E, Thon B et al. (1993) Reproductive life of French-Canadians in the 17–18th centuries: a search for a trade-off between early fecundity and longevity. Exp Gerontol 28(3):217–232

    Article  PubMed  Google Scholar 

  • Leroi A, Chippindale, AK, Rose, MR (1994) Long-term evolution of a genetic life-history trade-off in Drosophila: the role of genotype-by-environment interaction. Evolution 48:1244–1257

    Article  Google Scholar 

  • Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Libertini G (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild. J Theor Biol 132:145–162

    Article  PubMed  CAS  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW et al. (2002) Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 959:396–411; discussion 463–395

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19:2424–2434

    Article  PubMed  CAS  Google Scholar 

  • Lotka AJ (1907) Relation between birth rates and death rates. Science, N. S. 26:21–22

    Article  CAS  Google Scholar 

  • Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Lu DC et al. (2000) A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med 6:397–404

    Article  PubMed  CAS  Google Scholar 

  • Luckey TD (1999) Nurture with ionizing radiation: a provocative hypothesis. Nutr Cancer 34:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lycett JE, Dunbar RI et al. (2000) Longevity and the costs of reproduction in a historical human population. Proc Biol Sci 267(1438):31–35

    Article  PubMed  CAS  Google Scholar 

  • Mangel M (2008) Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake. Func Ecol 22(3):422–430

    Article  Google Scholar 

  • Marden JH, Rogina B, Montooth KL, Helfand SL (2003) Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 100:3369–3373

    Article  PubMed  CAS  Google Scholar 

  • Masoro EJ (2007) The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 35:1–17

    PubMed  CAS  Google Scholar 

  • Maynard Smith J (1976) Group selection. Q Rev Biol 51:277–283

    Article  Google Scholar 

  • Maynard Smith J, Slatkin M (1973) The stability of predator-prey systems. Ecology 54:384–391

    Article  Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. Published for the college by H. K. Lewis, London

    Google Scholar 

  • Merry BJ, Holehan AM (1981) Serum profiles of LH, FSH, testosterone and 5 alpha-DHT from 21 to 1000 days of age in ad libitum fed and dietary restricted rats. Exp Gerontol 16:431–444

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio E et al. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  PubMed  CAS  Google Scholar 

  • Mitteldorf J (2001) Can experiments on caloric restriction be reconciled with the disposable soma theory for the evolution of senescence? Evol Int J Org Evol 55:1902–1905; discussion 1906

    CAS  Google Scholar 

  • Mitteldorf J (2004) Aging selected for its own sake. Evol Ecol Res 6:1–17

    Google Scholar 

  • Mitteldorf J (2006) Chaotic population dynamics and the evolution of aging: proposing a demographic theory of senescence. Evol Ecol Res 8:561–574

    Google Scholar 

  • Mitteldorf J (2009) Female Fertility and Longevity, ArXiv http://arxiv.org/ftp/arxiv/papers/0904/0904.1815.pdf

  • Mitteldorf J, Pepper J (2007) How can evolutionary theory accommodate recent empirical results on organismal senescence? Theory Biosci 126:3–8

    Article  PubMed  Google Scholar 

  • Mitteldorf J, Pepper J (2009) Senescence as an adaptation to limit the spread of disease. J Theor Biol 260:186–195

    Google Scholar 

  • Moysich KB, Baker JA, Rodabaugh KJ, Villella JA (2005) Regular analgesic use and risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev 14:2923–2928

    Article  PubMed  CAS  Google Scholar 

  • Muller HG, Chiou JM et al. (2002) Fertility and life span: late children enhance female longevity. J Gerontol A Biol Sci Med Sci 57(5):B202–B206

    Article  PubMed  Google Scholar 

  • Nair KS et al. (2006) DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 355:1647–1659

    Article  PubMed  CAS  Google Scholar 

  • Nesse RM (1988) Life table tests of evolutionary theories of senescence. Exp Gerontol 23:445–453

    Article  PubMed  CAS  Google Scholar 

  • Northcote TG (1978) Migratory strategies and production in freshwater fishes. In: Gerking SD (ed) Ecology of Freshwater Fish Production. Blackwell Scientific, Oxford, pp. 326–359

    Google Scholar 

  • Ordy JM, Samorajski T, Zeman W, Curtis HJ (1967) Interaction effects of environmental stress and deuteron irradiation of the brain on mortality and longevity of C57BL/10 mice. Proc Soc Exp Biol Med 126:184–190

    Google Scholar 

  • Palmer AK, Street AE, Roe FJ, Worden AN, Van Abbe NJ (1979) Safety evaluation of toothpaste containing chloroform. II. Long term studies in rats. J Environ Pathol Toxicol 2:821–833

    PubMed  CAS  Google Scholar 

  • Partridge L, Gems D (2006) Beyond the evolutionary theory of ageing, from functional genomics to evo-gero. Trends Ecol Evol 21:334–340

    Article  PubMed  Google Scholar 

  • Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120:461–472

    Article  PubMed  CAS  Google Scholar 

  • Pauliny A, Wagner RH et al. (2006). Age-independent telomere length predicts fitness in two bird species. Mol Ecol 15(6):1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Pearson KJ, Baur JA et al. (2008). Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168

    Article  PubMed  CAS  Google Scholar 

  • Promislow DE (1991) Senescence in natural populations of mammals: a comparative study. Evolution 45:1869–1887

    Article  Google Scholar 

  • Promislow DE, Tatar M, Khazaeli AA, Curtsinger JW (1996) Age-specific patterns of genetic variance in Drosophila melanogaster. I. Mortality. Genetics 143:839–848

    PubMed  CAS  Google Scholar 

  • Reiss AB, Glass AD (2006) Atherosclerosis: immune and inflammatory aspects. J Investig Med 54:123–131

    Article  PubMed  CAS  Google Scholar 

  • Reznick D, Ghalambor C, Nunney L (2002) The evolution of senescence in fish. Mech Ageing Dev 123:773–789

    Article  PubMed  Google Scholar 

  • Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15:421–425

    Article  PubMed  Google Scholar 

  • Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs R (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am Nat 152:24–44

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs RE (2008) The evolution of senescence from a comparative perspective. Funct Ecol 22(3):379–392

    Article  Google Scholar 

  • Ricklefs RE, Cadena CD (2007) Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity. Ecol Lett 10(10):867–872

    Article  PubMed  Google Scholar 

  • Roe FJ, Palmer AK, Worden AN, Van Abbe NJ (1979) Safety evaluation of toothpaste containing chloroform. I. Long-term studies in mice. J Environ Pathol Toxicol 2:799–819

    PubMed  CAS  Google Scholar 

  • Rose M (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1010

    Article  Google Scholar 

  • Ross MH, Bras G (1975) Food preference and length of life. Science 190:165–167

    Article  PubMed  CAS  Google Scholar 

  • Roth GS, Lane MA, Ingram DK (2005) Caloric restriction mimetics: the next phase. Ann N Y Acad Sci 1057:365–371

    Article  PubMed  CAS  Google Scholar 

  • Roth GS et al. (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811

    Article  PubMed  CAS  Google Scholar 

  • Roux AE, Leroux A et al. (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5(3):e1000408

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KL, Chang S et al. (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712

    Article  PubMed  CAS  Google Scholar 

  • Sacher GA (1963) The effects of X-rays on the survival of Drosophila imagoes. Physiol Zool 36:295–311

    Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8:582–599

    Article  PubMed  CAS  Google Scholar 

  • Shanley DP, Kirkwood TB (2000) Calorie restriction and aging: a life-history analysis. Evolution Int J Org Evolution 54:740–750

    CAS  Google Scholar 

  • Shay JWW (2005) Telomerase and human cancer. In: De Lange T, Lundblad V, blackburn EH (eds) Telomeres, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 80–108

    Google Scholar 

  • Shock NW et al. (1984) Normal human aging: the Baltimore longitudinal Study of Aging. In: Services USDoHaH (ed) NIH, Baltimore

    Google Scholar 

  • Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, Danner DB, Tice RR, Brant L, Schneider EL (1990) DNA damage and repair with age in individual human lymphocytes. Mutat Res 237:123–130

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (2002) Programmed death phenomena: from organelle to organism. Ann N Y Acad Sci 959:214–237

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP, Longo VD (2005) Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann N Y Acad Sci 1057:145–164

    Article  PubMed  CAS  Google Scholar 

  • Sober EaW, D.S. (1998) Unto Others: The Evolution and Psychology of Unselfish Behavior. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Spitze K (1991) Chaoborus predation and life history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution 45:82–92

    Article  Google Scholar 

  • Spyridopoulos I, Dimmeler S (2007) Can telomere length predict cardiovascular risk? Lancet 369(9556):81–82

    Article  PubMed  Google Scholar 

  • Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, Oxford, New York

    Google Scholar 

  • Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5:2529–2533

    Article  PubMed  CAS  Google Scholar 

  • Sven EN et al. (2003) Does aspirin protect against Alzheimer’s dementia? A study in a Swedish population-based sample aged =80Â years. Eur J Clin Pharmacol V59:313–319

    Google Scholar 

  • Tatar M, Promislow DE, Khazaeli AA, Curtsinger JW (1996) Age-specific patterns of genetic variance in Drosophila melanogaster. II. Fecundity and its genetic covariance with age-specific mortality. Genetics 143:849–858

    PubMed  CAS  Google Scholar 

  • Tatone C et al. (2006) Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod 12:655–660

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Loba AF, Flores I, Fernández-Marcos PJ, Cayuela M et al. (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622

    Article  PubMed  CAS  Google Scholar 

  • Travis JM (2004) The evolution of programmed death in a spatially structured population. J Gerontol A Biol Sci Med Sci 59:301–305

    Article  PubMed  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  PubMed  CAS  Google Scholar 

  • van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • van Valen L (1973) A new evolutionary law. Evol Theor 1:1–30

    Google Scholar 

  • Vaupel JW, Baudisch A et al. (2004) The case for negative senescence. Theor Popul Biol 65(4):339–351

    Article  PubMed  Google Scholar 

  • Vina J et al. (2007) Mitochondrial oxidant signalling in Alzheimer’s disease. J Alzheimers Dis 11:175–181

    PubMed  CAS  Google Scholar 

  • Volterra V (1931) Variations and fluctuations of the number of individuals in animal species living together. In: Chapman RN (ed) Animal Ecology. McGraw-Hill

    Google Scholar 

  • Weindruch R et al. (2001) Caloric restriction mimetics: metabolic interventions. J Gerontol A Biol Sci Med Sci 56 Spec No 1:20–33

    Article  Google Scholar 

  • Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    PubMed  CAS  Google Scholar 

  • Weismann A, Poulton EB, Schönland S, Shipley AE (1891) Essays Upon Heredity and Kindred Biological Problems, 2d edn. Clarendon press, Oxford

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • Westendorp RG, Kirkwood TB (1998) Human longevity at the cost of reproductive success. Nature 396(6713):743–746

    Article  PubMed  CAS  Google Scholar 

  • Williams G (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Williams G (1966) Adaptation and Natural Selection. Princeton University Press, Princeton

    Google Scholar 

  • Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci USA 72:143–146

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS (2004) What is wrong with absolute individual fitness? Trends Ecol Evol 19:245–248

    Article  PubMed  Google Scholar 

  • Wodinsky J (1977) Hormonal inhibition of feeding and death in octopus: control by optic gland secretion. Science 198:948–995

    Article  PubMed  CAS  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science 290:147–150

    Article  PubMed  CAS  Google Scholar 

  • Wood JG et al. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  PubMed  CAS  Google Scholar 

  • Zvaifler NJ (1973) The immunopathology of joint inflammation in rheumatoid arthritis. Adv Immunol 16:265–336

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Mitteldorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mitteldorf, J. (2010). Evolutionary Origins of Aging. In: Fahy, G.M., West, M.D., Coles, L.S., Harris, S.B. (eds) The Future of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3999-6_5

Download citation

Publish with us

Policies and ethics