Skip to main content

Reversing Age-Related DNA Damage Through Engineered DNA Repair

  • Chapter
  • First Online:
The Future of Aging
  • 1456 Accesses

Abstract

The last two decades have shown significant advances in our understanding of age- and disease-related alterations in the regulation of gene expression and the underlying endogenous gene repair pathways. As a result, there have been some important strides in the development of engineered technologies for repairing mutated or damaged DNA via the development, delivery, and integration of specific and selective modified DNA into precise locations. This chapter describes available strategies for engineered gene repair including homologous recombination, the use of ribozymes, antisense nucleotides and DNA ribonucleases, single strand replacement/ chimeraplasty, and triplex DNA. The evolution of these approaches together with RNA interference is discussed, and relevant mechanisms and pathways are described. Present demonstrations of the utility of each of these gene modification approaches for therapeutic use imply that these methods can be employed to correct inherited and aging-related mutations and their consequences in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexeev V, Igoucheva O, Domashenko A, Cotsarelis G, Yoon K (2000) Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide. Nature Biotechnol 18:43–47

    CAS  Google Scholar 

  • Alexeev V, Yoon K (1998) Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA/DNA oligonucleotide. Nature Biotechnol 16:1343–1346

    CAS  Google Scholar 

  • Andersen MS, Sorensen CB, Bolund L, and Jensen TG (2002) Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single-stranded DNA oligonucleotides. J Mol Med 80:770–781

    PubMed  CAS  Google Scholar 

  • Andrieu-Soler C, Halhal M, Boatright JH, Padove SA, Nickerson JM, Stodulkova E, Stewart RE, Ciavatta VT, Doat M, Jeanny JC, de Bizemont T, Sennlaub F, Courtois Y, Behar-Cohen F (2007) Single-stranded oligonucleotide-mediated in vivo gene repair in the rd1 retina. Mol Vision 13:692–706

    CAS  Google Scholar 

  • Aravind L, Walker DR, Koonin EV (1999) Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27:1223–1242

    PubMed  CAS  Google Scholar 

  • Arbuthnot P, Longshaw V, Naidoo T, Weinberg MS (2007) Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. J Viral Hepat 14:447–459

    PubMed  CAS  Google Scholar 

  • Arbuthnot P, Thompson LJ (2008) Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. World J Gastroenterol 14:1670–1681

    PubMed  CAS  Google Scholar 

  • Asahina Y, Ito Y, Wu CH, Wu GY (1998) DNA ribonucleases that are active against intracellular hepatitis B viral RNA targets. Hepatology 28:547–554

    PubMed  CAS  Google Scholar 

  • Bartlett RJ, Denis MM, Kornegay JN, et al. (1998) Can genetic surgery be used to revert muscular dystrophy mutations in live animals? In: Abstracts of the 1st Annual Meeting of the American Society of Gene Therapy. Seattle, WA, 153a

    Google Scholar 

  • Beetham PR, Kipp RB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8874–8778

    Google Scholar 

  • Beroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N, Moizard MP, Voelckel MA, Calemard LM, Boisseau P, Blayau M, Philippe C, Cossee M, Pages M, Rivier F, Danos O, Garcia L, Claustres M (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28:196–202

    PubMed  CAS  Google Scholar 

  • Bertoni C, Lau C, Rando TA (2003) Restoration of dystrophin expression in mdx muscle cells by chimeraplast-mediated exon skipping. Hum Mol Genet 12:1087–1099

    PubMed  CAS  Google Scholar 

  • Bertoni C, Rando TA (2002) Dystrophin gene repair in mdx muscle precursor cells in vitro and in vivo mediated by RNA-DNA chimeric oligonucleotides. Hum Gene Ther 13:707–718

    PubMed  CAS  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol 71:513–521

    PubMed  CAS  Google Scholar 

  • Broitman S, Amosova O, Dolinnaya NG, Fresco JR (1999) Repairing the sickle cell mutation. I. Specific covalent binding of a photoreactive third strand to the mutated base pair. J Biol Chem 274:21763–21768

    PubMed  CAS  Google Scholar 

  • Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269: 1996–2002

    PubMed  CAS  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    PubMed  CAS  Google Scholar 

  • Chan PP, Glazer PM (1997) Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med 75:267–282

    PubMed  CAS  Google Scholar 

  • Chan PP, Lin M, Faruqi AF, Powell J, Seidman MM, Glazer PM (1999) Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 274:11541–11548

    PubMed  CAS  Google Scholar 

  • Chen Y, Cheng G, Mahato RI (2008) RNAi for treating hepatitis B viral infection. Pharm Res 25:72–86

    PubMed  CAS  Google Scholar 

  • Chen Z, Felsheim R, Wong P, Augustin LB, Metz R, Kren BT, Steer CJ (2001) Mitochondria isolated from liver contain the essential factors required for RNA/DNA oligonucleotide-targeted gene repair. Biochem Biophys Res Commun 285:188–194

    PubMed  CAS  Google Scholar 

  • Cheng K, Mahato RI (2007) Gene modulation for treating liver fibrosis. Crit Rev Ther Drug Carrier Syst 24:93–146

    PubMed  CAS  Google Scholar 

  • Cheng K, Ye Z, Guntaka RV, Mahato RI (2005) Biodistribution and hepatic uptake of triplex-forming oligonucleotides against type α1(I) collagen gene promoter in normal and fibrotic rats. Mol Pharm 2:206–217

    PubMed  CAS  Google Scholar 

  • Chin JY, Glazer PM (2009) Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol Carcinog 48:389–399

    PubMed  CAS  Google Scholar 

  • Chin JY, Kuan JY, Lonkar PS, Krause DS, Seidman MM, Peterson KR, Nielsen PE, Kole R, Glazer PM (2008) Correction of a splice-site mutation in the β-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci USA 105:13514–13519

    PubMed  CAS  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    PubMed  Google Scholar 

  • Ciavatta VT, Padove SA, Boatright JH, Nickerson JM (2005) Mouse retina has oligonucleotide-induced gene repair activity. Invest Ophthalmol Vis Sci 46:2291–2299

    PubMed  Google Scholar 

  • Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229

    PubMed  CAS  Google Scholar 

  • Cohen-Tannoudji M, Babinet C (1998) Beyond ‘knock-out’ mice: new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod 4:929–938

    PubMed  CAS  Google Scholar 

  • Cole-Strauss A, Gamper H, Holloman WK, Munoz M, Cheng N, Kmiec EB (1999) Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res 27:1323–1330

    PubMed  CAS  Google Scholar 

  • Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB (1996) Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273:1386–1389

    PubMed  CAS  Google Scholar 

  • Culver KW, Hsieh W-T, Huyen Y, Chen V, Liu J, Khripine Y, Khorlin A (1999) Correction of chromosomal point mutations in human cells with bifunctional oligonucleotides. Nature Biotechnol 17:989–993

    CAS  Google Scholar 

  • Dekker M, Brouwers C, Aarts M, van der Torre J, de Vries S, van de Vrugt H, te Riele H (2006) Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3. Gene Ther 13:686–694

    PubMed  CAS  Google Scholar 

  • Dunckley MG, Villiet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7: 1083–1090

    PubMed  CAS  Google Scholar 

  • Eisen JA (1998) A phylogenetic study of the MutS family of proteins. Nucleic Acids Res 26: 4291–4300

    PubMed  CAS  Google Scholar 

  • Engstrom JU, Kmiec KB (2008) DNA replication, cell cycle progression, and the targeted gene repair reaction. Cell Cycle 7:1402–1414

    PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    PubMed  CAS  Google Scholar 

  • Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High KA (1989) Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci USA 86:10095–10099

    PubMed  CAS  Google Scholar 

  • Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962

    PubMed  CAS  Google Scholar 

  • Fan W, Yoon K (2003) In vivo alteration of the keratin 17 gene in hair follicles by oligonucleotide-directed gene targeting. Exp Dermatol 12:832–842

    PubMed  CAS  Google Scholar 

  • Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 20:990–1000

    PubMed  CAS  Google Scholar 

  • Faruqi AF, Krawczyk SH, Matteucci MD, Glazer PM (1997) Potassium-resistant triple helix formation and improved intracellular gene targeting by oligodeoxyribonucleotides containing 7-deazaxanthine. Nucleic Acids Res 25:633–640

    PubMed  CAS  Google Scholar 

  • Gamper HB, Jr., Cole-Strauss A, Metz R, Parekh H, Kumar R, Kmiec EB (2000a) A plausible mechanism for gene correction by chimeric oligonucleotides. Biochemistry 39:5808–5816

    PubMed  CAS  Google Scholar 

  • Gamper HB, Parekh H, Rice MC, Bruner M, Youkey H, Kmiec EB (2000b) The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 28:4332–4339

    PubMed  CAS  Google Scholar 

  • Goncz KK, Kunzelmann K, Xu Z, Gruenert DC (1998) Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Hum Mol Genet 7:1913–1919

    PubMed  CAS  Google Scholar 

  • Higgins GM, Anderson RM (1931) Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  • Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5:e73

    PubMed  Google Scholar 

  • Huen MS, Lu LY, Liu DP, Huang JD (2007) Active transcription promotes single-stranded oligonucleotide mediated gene repair. Biochem Biophys Res Commun 353:33–39

    PubMed  CAS  Google Scholar 

  • Igoucheva O, Alexeev V, Anni H, Rubin E (2008) Oligonucleotide-mediated gene targeting in human hepatocytes: implications of mismatch repair. Oligonucleotides 18:111–122

    PubMed  CAS  Google Scholar 

  • Igoucheva O, Alexeev V, Yoon K (2006) Differential cellular responses to exogenous DNA in mammalian cells and its effect on oligonucleotide-directed gene modification. Gene Ther 13:266–275

    PubMed  CAS  Google Scholar 

  • Igoucheva O, Peritz AE, Levy D, Yoon K (1999) A sequence-specific gene correction by an RNA-DNA oligonucleotide in a mammalian cells characterized by transfection and nuclear extract using a lacZ shuttle system. Gene Ther 6:1960–1971

    PubMed  CAS  Google Scholar 

  • Karympalis V, Kalopita K, Zarros A, Carageorgiou H (2004) Regulation of gene expression via triple helical formations. Biochemistry (Mosc) 69:855–860

    CAS  Google Scholar 

  • Khoo B, Roca X, Chew SL, Krainer AR (2007) Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 8:3

    PubMed  Google Scholar 

  • Kmiec EB, Kren BT, Steer CJ (1999) Targeted gene repair in mammalian cells using chimeric RNA/DNA oligonucleotides. In: Friedman T (ed) Development of human gene therapy. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York, pp. 643–670

    Google Scholar 

  • Kotani H, Kmiec EB (1994a) Transcription activates RecA-promoted homologous pairing of nucleosomal DNA. Mol Cell Biol 14:1949–1955

    PubMed  CAS  Google Scholar 

  • Kotani H, Kmiec EB (1994b) A role for RNA synthesis in homologous pairing events. Mol Cell Biol 14:6097–6106

    PubMed  CAS  Google Scholar 

  • Kren BT, Bandyopadhyay P, Steer CJ (1998) In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nature Med 4:285–290

    PubMed  CAS  Google Scholar 

  • Kren BT, Cole-Strauss A, Kmiec EB, Steer CJ (1997) Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotide. Hepatology 25:1462–1468

    PubMed  CAS  Google Scholar 

  • Kren BT, Metz R, Kumar R, Steer CJ (1999a) Gene repair using RNA/DNA oligonucleotides. Sem Liver Dis 19:93–104

    CAS  Google Scholar 

  • Kren BT, Parashar B, Bandyopadhyay P, Chowdhury NR, Chowdhury JR, Steer CJ (1999b) Correction of the UDP-glucuronosyl-transferase gene defect in the Gunn rat model of Crigler-Najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci USA 96:10349–10354

    PubMed  CAS  Google Scholar 

  • Kren BT, Wong PY-P, Steer CJ (2008) Correction of the orntithine transcarbamylase point mutation in neonatal spf ash mice using single-stranded oligonucleotides. Mol Ther 16:s323

    Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Gottschling DE, Cech TR (1982) Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    PubMed  CAS  Google Scholar 

  • Lai L-W, Chau B, Lien Y-H (1999) In vivo gene targeting in carbonic anhydrase II deficient mice by chimeric RNA/DNA oligonucleotides. In: Abstracts of the 2nd Annual Meeting of the American Society of Gene Therapy. Washington DC, 236a

    Google Scholar 

  • Lai L-W, O’Connor HM, Lien Y-HH (1999) Correction of carbonic anhydrase II mutation in renal tubular cells by chimeric RNA/DNA oligonucleotide. In: Abstracts of the 1st Annual Meeting of the American Society of Gene Therapy. Seattle, WA, 183a

    Google Scholar 

  • Lewis DL, Wolff JA (2007) Systemic siRNA delivery via hydrodynamic intravascular injection. Adv Drug Deliv Rev 59:115–123

    PubMed  CAS  Google Scholar 

  • Lieber A, He CY, Polyak SJ, Gretch DR, Barr D, Kay MA (1996) Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J Virol 70:8782–8791

    PubMed  CAS  Google Scholar 

  • Liu L, Rice MC, Drury M, Cheng S, Gamper H, Kmiec EB (2002) Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 22:3852–3863

    PubMed  CAS  Google Scholar 

  • Lonkar P, Kim KH, Kuan JY, Chin JY, Rogers FA, Knauert MP, Kole R, Nielsen PE, Glazer PM (2009) Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids. Nucleic Acids Res 37: 3635–3644

    Google Scholar 

  • Lu IL, Lin CY, Lin SB, Chen ST, Yeh LY, Yang FY, Au LC (2003) Correction/mutation of acid α-D-glucosidase gene by modified single-stranded oligonucleotides: in vitro and in vivo studies. Gene Ther 10:1910–1916

    PubMed  CAS  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yanker, B A (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    PubMed  CAS  Google Scholar 

  • Majumdar A, Khorlin A, Dyatkina N, Lin FL, Powell J, Liu J, Fei Z, Khripine Y, Watanabe KA, George J, Glazer PM, Seidman MM (1998) Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature Genet 20:212–214

    PubMed  CAS  Google Scholar 

  • Marra G, Schar P (1999) Recognition of DNA alterations by the mismatch repair system. Biochem J 338:1–13

    PubMed  CAS  Google Scholar 

  • Martin SE, Caplen NJ (2007) Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 8:81–108

    PubMed  CAS  Google Scholar 

  • Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW (2006) Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol 24:1022–1026

    PubMed  CAS  Google Scholar 

  • Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36:3926–3938

    PubMed  CAS  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055–3060

    PubMed  CAS  Google Scholar 

  • Morozov V, Wawrousek EF (2008) Single-strand DNA-mediated targeted mutagenesis of genomic DNA in early mouse embryos is stimulated by Rad51/54 and by Ku70/86 inhibition. Gene Ther 15:468–472

    PubMed  CAS  Google Scholar 

  • Moulton V (2005) Tracking down noncoding RNAs. Proc Natl Acad Sci USA 102:2269–2270

    PubMed  CAS  Google Scholar 

  • Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21

    PubMed  Google Scholar 

  • Nakamura M, Ando Y, Nagahara S, Sano A, Ochiya T, Maeda S, Kawaji T, Ogawa M, Hirata A, Terazaki H, Haraoka K, Tanihara H, Ueda M, Uchino M, Yamamura K (2004) Targeted conversion of the transthyretin gene in vitro and in vivo. Gene Ther 11:838–846

    PubMed  CAS  Google Scholar 

  • Nakazono K, Ito Y, Wu CH, Wu GY (1996) Inhibition of hepatitis B virus replication by targeted pretreatment of complexed antisense DNA in vitro. Hepatology 23:1297–1303

    PubMed  CAS  Google Scholar 

  • Niedernhofer LJ et al. (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038–1043

    PubMed  CAS  Google Scholar 

  • Oketani M, Asahina Y, Wu CH, Wu GY (1999) Inhibition of hepatitis C virus-directed gene expression by a DNA ribonuclease. J Hepatol 31:628–634

    PubMed  CAS  Google Scholar 

  • Olsen PA, Randol M, Krauss S (2005) Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Ther 12:546–551

    PubMed  CAS  Google Scholar 

  • Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    PubMed  CAS  Google Scholar 

  • Paulk N, Wursthorn K, Finegold M, Kay M, Grompe M (2008) AAV8-Mediated correction of a metabolic renal disease via gene repair in vivo. Mol Ther 16:s368

    Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    PubMed  CAS  Google Scholar 

  • Porteus M (2008) Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol 435:47–61

    PubMed  CAS  Google Scholar 

  • Radecke S, Radecke F, Peter I, Schwarz K (2006) Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus. J Gene Med 8:217–228

    PubMed  CAS  Google Scholar 

  • Richardson PD, Kren BT, Steer CJ (2002) Gene repair in the new age of gene therapy. Hepatology 35:512–518

    PubMed  CAS  Google Scholar 

  • Roth DB, Wilson JH (1985) Relative rates of homologous and nonhomologous recombination in transfected DNA. Proc Natl Acad Sci USA 82:3355–3359

    PubMed  CAS  Google Scholar 

  • Roy-Chowdhury J, Huang TJ, Kesari K, Lederstein M, Arias IM, Roy-Chowdhury N (1999) Molecular basis for the lack of bilirubin-specific and 3-methylcholanthrene-inducible UDP-glucuronosyltransferase activities in Gunn rats. The two isoforms are encoded by distinct mRNA species that share an identical single base deletion. J Biol Chem 266:18294–18298

    Google Scholar 

  • Rubnitz J, Subramani S (1984) The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol 4:2253–2258

    PubMed  CAS  Google Scholar 

  • Sakamoto N, Wu CH, Wu GY (1996) Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J Clin Invest 98:2720–2728

    PubMed  CAS  Google Scholar 

  • Schwartz TR, Kmiec EB (2007) Reduction of gene repair by selenomethionine with the use of single-stranded oligonucleotides. BMC Mol Biol 8:7

    PubMed  Google Scholar 

  • Sheth U, Parker R (2006) Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125:1095–1109

    PubMed  CAS  Google Scholar 

  • Skogen M, Roth J, Yerkes S, Parekh-Olmedo H, Kmiec E (2006) Short G-rich oligonucleotides as a potential therapeutic for Huntington’s Disease. BMC Neurosci 7:65

    PubMed  Google Scholar 

  • Stewart JB, Freyer C, Elson JL, Larsson NG (2008a) Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet, 9:657–662

    Google Scholar 

  • Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG (2008b) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 6:e10

    PubMed  Google Scholar 

  • Symons RH (1992) Small catalytic RNAs. Ann Rev Biochem 61:641–671

    PubMed  CAS  Google Scholar 

  • Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428

    PubMed  CAS  Google Scholar 

  • Thyagarajan B, Cruise JL, Campbell C (1996) Elevated levels of homologous recombination activity in the regenerating rat liver. Somatic Cell Mol Genet 22:31–39

    CAS  Google Scholar 

  • Tuschl T (2003) Functional genomics: RNA sets the standard. Nature 421:220–221

    PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    PubMed  CAS  Google Scholar 

  • van de Vosse E, Verhard EM, de Paus RA, Platenburg GJ, van Deutekom JC, Aartsma-Rus A, van Dissel JT (2009) Antisense-mediated exon skipping to correct IL-12Rβ1 deficiency in T cells. Blood, 113:4548–4555

    Google Scholar 

  • van Ommen GJ, van Deutekom J, Aartsma-Rus A (2008) The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 10:140–149

    PubMed  Google Scholar 

  • Vasquez KM, Wang G, Havre PA, Glazer PM (1999) Chromosomal mutations induced by triple helix-forming oligonucleotides in mammalian cells. Nucleic Acids Res 27:1176–1181

    PubMed  CAS  Google Scholar 

  • Vetrini F, Tammaro R, Bondanza S, Surace EM, Auricchio A, De Luca M, Ballabio A, Marigo V (2006) Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 27:420–426

    PubMed  CAS  Google Scholar 

  • Volarevic M, Smolic R, Wu CH, Wu GY (2007) Potential role of RNAi in the treatment of HCV infection. Expert Rev Anti Infect Ther 5:823–831

    PubMed  CAS  Google Scholar 

  • Wang G, Levy DD, Seidman MM, Glazer PM (1995) Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol Cell Biol 15:1759–1768

    PubMed  CAS  Google Scholar 

  • Wang Z, Zhou ZJ, Liu DP, Huang JD (2006) Single-stranded oligonucleotide-mediated gene repair in mammalian cells has a mechanism distinct from homologous recombination repair. Biochem Biophys Res Commun 350:568–573

    PubMed  CAS  Google Scholar 

  • Welch PJ, Barber JR, Wong-Staal F (1998) Expression of ribozymes in gene transfer systems to modulate target RNA levels. Curr Opin Biotechnol 9:486–496

    PubMed  CAS  Google Scholar 

  • Welch PJ, Tritz R, Yei S, Barber J, Yu M (1997) Intracellular application of hairpin ribozyme genes against hepatitis B virus. Gene Ther 4:736–743

    PubMed  CAS  Google Scholar 

  • Welch PJ, Tritz R, Yei S, Leavitt M, Yu M, Barber J (1996) A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Ther 3:994–1001

    PubMed  CAS  Google Scholar 

  • Wong EA, Capecchi MR (1987) Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol Cell Biol 7:2294–2295

    PubMed  CAS  Google Scholar 

  • Wu CH, Wu GY (1998) Targeted inhibition of hepatitis C virus-directed gene expression in human hepatoma cell lines. Gastroenterology 114:1304–1312

    PubMed  CAS  Google Scholar 

  • Wu XS, Xin L, Yin WX, Shang XY, Lu L, Watt RM, Cheah KS, Huang JD, Liu DP, Liang CC (2005) Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression. Proc Natl Acad Sci USA 102:2508–2513

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Taki T, Yagi H, Habu T, Yoshida K, Yoshimura Y, Yamamoto K, Matsushiro A, Nishimune Y, Morita T (1996) Cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells. Mol Gen Genet 251:1–12

    PubMed  CAS  Google Scholar 

  • Yañez RJ, Porter ACG (1998) Therapeutic gene targeting. Gene Ther 5:149–159

    PubMed  Google Scholar 

  • Ye Z, Houssein HS, Mahato RI (2007) Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 17:349–404

    PubMed  CAS  Google Scholar 

  • Yin W, Kren BT, Steer CJ (2004) Targeted gene repair: From RNA/DNA to single-stranded oligonucleotides In: Blum HE, Manns MP (eds) State-of-the-art of hepatology: molecular and cell biology, Falk Symposium 138, Kluwer Academic, pp. 172–195

    Google Scholar 

  • Yin W, Kren BT, Steer CJ (2005) Site-specific base changes in the coding or promoter region of the human β- and γ-globin genes by single-stranded oligonucleotides. Biochem J 390:253–261

    PubMed  CAS  Google Scholar 

  • Yokota T, Takeda S, Lu QL, Partridge TA, Nakamura A, Hoffman EP (2009) A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 66:32–38

    PubMed  Google Scholar 

  • Yoon K (1999) Single-base conversion of mammalian genes by an RNA-DNA oligonucleotide. Biogenic Amines 15:137–167

    CAS  Google Scholar 

  • Yoon K, Cole-Strauss A, Kmiec EB (1996) Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA·DNA oligonucleotide. Proc Natl Acad Sci USA 93:2071–2076

    PubMed  CAS  Google Scholar 

  • Zeng Y (2006) Principles of micro-RNA production and maturation. Oncogene 25:6156–6162

    PubMed  CAS  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nature Biotechnol 18:555–558

    CAS  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J. Steer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Steer, C.J., Kren, B.T. (2010). Reversing Age-Related DNA Damage Through Engineered DNA Repair. In: Fahy, G.M., West, M.D., Coles, L.S., Harris, S.B. (eds) The Future of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3999-6_21

Download citation

Publish with us

Policies and ethics