Skip to main content

Biological Rape Pest Control in Spatio-Temporally Changing Landscapes

  • Chapter
  • First Online:

Abstract

Community structure and trophic interactions depend on landscape context. We analysed trophic interactions of the pollen beetle (Meligethes aeneus) and its parasitoids on oilseed rape (Brassica napus) in 15 agricultural landscapes differing in structural complexity (∼50–100% arable land) and interannual changes of rape crop area (with ∼7% maximum expansion of rape crop area and ∼8% maximum contraction of rape crop area from year to year). A patch of potted rape plants was placed in the centre of each landscape for standardized measurement. Parasitism decreased and herbivory increased as the percentage of arable land in the surrounding landscape increased. Thus, semi-natural habitats appeared to support parasitoid populations contributing to the reduction of populations of the pollen beetle. In addition, parasitism decreased following rape crop expansion, and increased following rape crop contraction, indicating interannual dilution and concentration effects of the higher trophic level populations. When semi-natural habitat area dropped below a value of ∼20% of the landscape, or when the expansion of rape crop area between years exceeded ∼5% of the landscape, respectively, parasitism dropped below a threshold value of about 32–36%, below which success in classical biological control has never been reported. In a geographic scale analysis using five spatial scales ranging from 0.5 to 3 km diameter, parasitism and herbivory showed the best correlations with both the percentage of arable land and the percentage of interannually changing rape crops at the same spatial scales, i.e., landscape sectors of 1–2 km diameter, thereby suggesting that this ‘functional spatial scale’ indicates their dispersal abilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alford DV, Nilsson C, Ulber B (2003) Insect pests of oilseed rape crops. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK.

    Chapter  Google Scholar 

  • Altieri MA, Cure JR, Garcia MA (1993) The role and enhancement of parasitic hymenoptera biodiversity in agroecosystems. In: LaSalle J, Gauld ID (eds.) Hymenoptera and biodiversity. CAB International, London.

    Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. P Roy Soc Lond B Bio 273: 1715–1727.

    Article  CAS  Google Scholar 

  • Burel F, Baudry J (1995) Farming landscapes and insects. In: Glen DM, Greaves MP, Anderson HP (eds.) Ecology and integrated farming systems. Wiley, New York, USA.

    Google Scholar 

  • Cronin JT, Reeves JD (2005) Host-parasitoid spatial ecology: A plea for a landscape-level synthesis. P Roy Soc Lond B Bio 272: 2225–2235.

    Article  Google Scholar 

  • Frenzel M, Brandl R (1998) Diversity and composition of phytophagous insect guilds on Brassicaceae. Oecologia 113: 391–399.

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: What is the state of art? Ecosystems 1: 143–156.

    Article  Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: How much do they trickle? Am Nat 157: 262–281.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BA, Cornell HV (1994) Maximum parasitism rate and successful biological control. Science 262: 1886.

    Article  Google Scholar 

  • Hoffmann GM, Schmutterer H (1999) Krankheiten und Schädlinge an landwirtschaftlichen Kulturpflanzen, 2nd edn. Ulmer Verlag, Stuttgart, Germany.

    Google Scholar 

  • Holt RD (1996) Food webs in space: An island biogeographic perspective. In: Polis GA, Winemiller KO (eds.) Food webs – Integration of patterns and dynamics. Chapman & Hall, New York, USA.

    Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and species-area relationship. Ecology 80: 1495–1504.

    Google Scholar 

  • Horstmann K (1981) Revision der Europäischen Tersilochinen II (Hymenoptera: Ichneumonidae). Spixiana Suppl 4: 1–76.

    Google Scholar 

  • Jourdheuil P (1960) Influence de quelques facteurs écologiques sur les fluctuations de population d’une biocénose parasitaire. Etude à quelques Hymenoptère parasites de divers Coléoptères inféodès aux Crucifères. Ann Epiphyties 11: 445–539.

    Google Scholar 

  • Kareiva P (1990) Population dynamics in spatial complex environments: Theory and data. Philos T Roy Soc B 330: 175–190.

    Article  Google Scholar 

  • Kareiva P, Wennergren U (1995) Connecting landscape pattern to ecosystem and population processes. Nature 373: 299–302.

    Article  CAS  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45: 175–201.

    Article  PubMed  CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277: 504–509.

    Article  PubMed  CAS  Google Scholar 

  • McCauley E, Wilson WG, de Roos AM (1993) Dynamics of age-structured and spatially structured predator-prey interactions: Individual-based models and population-level formulations. Am Nat 142: 412–442.

    Article  PubMed  CAS  Google Scholar 

  • Menalled FD, Marino PC, Gage SH, Landis DA (1999) Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol Appl 9: 634–641.

    Article  Google Scholar 

  • Nilsson C (1985) Impact of ploughing on emergence of pollen beetle parasitoids after hibernation. Z Angew Entomol 100: 302–308.

    Article  Google Scholar 

  • Nilsson C (2003) Parasitoids of pollen beetles. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK.

    Google Scholar 

  • Osborne P (1960) Observations on the natural enemies of Meligethes aeneus (F.) and Meligethes viridescens (F.) (Coleoptera Nitidulidae). Parasitology 50: 91–110.

    Article  PubMed  CAS  Google Scholar 

  • Östman Ö, Ekbom B, Bengtson J (2001) Farming practice and landscape heterogeneity influence biological control. Basic Appl Ecol 2: 365–371.

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML (1995) Landscape ecology: Spatial heterogeneity in ecological systems. Science 269: 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL (1991) The balance of nature. The University of Chicago Press, Chicago.

    Google Scholar 

  • Powell W (1986) Enhancing parasitoid activity in crops. In: Waage J, Greathead W (eds.) Insect parasitoids. Academic Press, London, UK.

    Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: The dispersal of agriculturally subsidized insect predators into adjacent natural habitats. Ecol Lett 9: 603–614.

    Article  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. Am Nat 158: 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Roschewitz I, Thies C, Tscharntke T (2005) Are landscape complexity and farm specialisation related to land-use intensity of annual crop fields? Agr Ecosyst Environ 105: 87–99.

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in time and space. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape structure on three pollinator guilds. Ecology 83: 1421–1432.

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Hennein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68: 571–573.

    Article  Google Scholar 

  • Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid-parasitoid interactions. P Roy Soc Lond B Bio 272: 203–210.

    Article  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101: 18–25.

    Article  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2008) Interannual landscape changes influence plant-herbivore-parasitoid interactions. Agr Ecosyst Environ 125: 266–268.

    Article  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893–895.

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand T, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43: 294–309.

    Article  Google Scholar 

  • Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annu Rev Entomol 49: 405–430.

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Klein A-M, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett 8: 857–874.

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12: 354–363.

    Google Scholar 

  • Van Driesche RG, Bellows TS (1996) Biological control. Chapman & Hall, New York, USA.

    Book  Google Scholar 

  • Vollhardt IMG, Tscharntke T, Wäckers FL, Bianchi FJJA, Thies C (2008) Diversity of cereal aphid parasitoids in simple and complex landscapes. Agr Ecosyst Environ 126: 289–292.

    Article  Google Scholar 

  • Wiens JA, Schooley RL, Weeks RD (1997) Patchy landscapes and animal movements: Do beetles percolate? Oikos 78: 257–264.

    Article  Google Scholar 

  • Wiens JA, Stenseth NC, van Horne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66: 369–380.

    Article  Google Scholar 

  • With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80: 1340–1353.

    Article  Google Scholar 

  • With KA, Crist TO (1995) Critical thresholds in species’ response to landscape structure. Ecology 76: 2446–2459.

    Article  Google Scholar 

  • Wratten SD, Van Emden HF (1995) Habitat management for enhanced activity of natural enemies of insect pests. In: Glen DM, Greaves MP, Anderson HM (eds.) Ecology and integrated farming systems. Wiley, New York, USA.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) and the German Ministry for Research and Education (Bundes-ministerium für Bildung und Forschung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thies, C., Tscharntke, T. (2010). Biological Rape Pest Control in Spatio-Temporally Changing Landscapes. In: Williams, I. (eds) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3983-5_9

Download citation

Publish with us

Policies and ethics