Skip to main content

Crop Location by Oilseed Rape Pests and Host Location by Their Parasitoids

  • Chapter
  • First Online:
Biocontrol-Based Integrated Management of Oilseed Rape Pests

Abstract

The behavioural ecology associated with location of the oilseed rape crop by its major coleopteran and dipteran pests and by their key hymenopterous parasitoids is reviewed. Results of studies investigating their responses to odour and colour cues from the crop, using olfactometers, wind tunnels, baited and/or coloured traps, and different plant lines, are presented. Host plant volatiles, particularly the isothiocyanates, carried downwind from the crop, and the colours yellow and green are important cues for orientation; odour cues can induce responses to colour cues. Species differ in the subset of cues they use and responses can vary with sex, age, generation, nutritional status, previous experience and time since last oviposition. Evidence suggests that odour-mediated upwind anemotaxis is used by the pests to locate the crop and their host plant, as well as by their parasitoids to locate the crop, the habitat of their host larvae, from a distance, while visual cues are important for orientation at closer range. Once the crop is located, pests use taste and tactile cues from the oilseed rape plant to accept or reject it while parasitoids use host-derived cues to locate their hosts. The implications for integrated pest management and conservation biocontrol are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford DV, Nilsson C, Ulber B (2003) Insect pests of oilseed rape crops. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Baggen LR, Gurr GM, Meats A (1999) Flowers in tri-trophic systems: Mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomol Exp Appl 91: 155–161.

    Google Scholar 

  • Barari H, Cook SM, Clark SJ, Williams IH (2005) Effect of turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus). BioControl 50: 69–86.

    Google Scholar 

  • Bartlet E (1995) Semiochemicals and behaviour of the two oilseed rape pests Ceutorhynchus assimilis and Psylliodes chrysocephala. PhD thesis, University of London, UK.

    Google Scholar 

  • Bartlet E (1996) Chemical cues to host-plant selection by insect pests of oilseed rape. Agr Zool Rev 7: 89–116.

    Google Scholar 

  • Bartlet E, Blight MM, Hick AJ, Williams IH (1993) The responses of the cabbage seed weevil (Ceutorhynchus assimilis) to the odour of oilseed rape (Brassica napus) and to some volatile isothiocyanates. Entomol Exp Appl 68: 295–302.

    CAS  Google Scholar 

  • Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85: 257–262.

    Google Scholar 

  • Bartlet E, Williams IH, Blight MM, Hick AJ (1992) Response of the oilseed rape pests, Ceutorhynchus assimilis and Psylliodes chrysocephala, to a mixture of isothiocyanates. In: Menken SBJ, Visser JH, Harrewijn P (eds.) Proc 8th Int Symp Insect-Plant Relationships. Kluwer Academic Publishers, Dordrecht, pp 103–104.

    Google Scholar 

  • Bartlet E, Williams IH, Pickett JA (1999b) The ideal glucosinolate profile for pest resistance in oilseed rape. IOBC/wprs Bull 22(10): 13–17.

    Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by Phytophagous insects. Chapman and Hall, London, UK.

    Google Scholar 

  • Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1995) Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). J Chem Ecol 21: 1649–1664.

    CAS  Google Scholar 

  • Blight MM, Smart LE (1999) Influence of visual cues and isothiocyanate lures on capture of the pollen beetle, Meligethes aeneus in field traps. J Chem Ecol 25: 1501–1516.

    CAS  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46: 471–510.

    PubMed  CAS  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: A volatile situation. Trends Plant Sci 10: 269–274.

    PubMed  CAS  Google Scholar 

  • Buechi P (1990) Investigations on the use of turnip rape as trap plant to control oilseed rape pests. IOBC/wprs Bull 13(4): 32–39.

    Google Scholar 

  • Büchi R (1995) Combination of trap plants (Brassica rapa var. silvestris) and insecticide use to control rape pests. IOBC/wprs Bull 18(4): 102–121.

    Google Scholar 

  • Büchi R (2002) Mortality of pollen beetle (Meligethes spp.) larvae due to parasitoids and predators in rape fields and the effect of conservation strips. Agr Ecosyst Environ 90: 255–263.

    Google Scholar 

  • Cárcamo HA, Dunn R, Dosdall LM, Olfert O (2007) Managing cabbage seedpod weevil in canola using a trap crop – A commercial field scale study in western Canada. Crop Prot 26: 1325–1334.

    Google Scholar 

  • Cardé RT (1996) Odour plumes and odour-mediated flight in insects. Olfaction in Mosquito-Host Interactions, Ciba Foundation Symp 200, Wiley, UK, pp 54–70.

    Google Scholar 

  • Charpentier R (1985) Host plant selection by the pollen beetle Meligethes aeneus. Entomol Exp Appl 38: 277–285.

    Google Scholar 

  • Clossais-Besnard N, Larher F (1991) Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J Agr Food Chem 56: 25–38.

    CAS  Google Scholar 

  • Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean species that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30: 945–964.

    PubMed  CAS  Google Scholar 

  • Cook S (2000) The use of pollen cues in resource location by a pollinator and a pest PhD thesis, The University of Nottingham, UK.

    Google Scholar 

  • Cook SM, Bartlet E, Murray DA, Williams IH (2002) The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol Exp Appl 104: 43–50.

    CAS  Google Scholar 

  • Cook SM, Jönsson M, Skellern P, Murray DA, Anderson P, Powell W (2007a) Responses of Phradis parasitoids to volatiles of lavender, Lavendula angustifolia – a possible repellent for their host, Meligethes aeneus. BioControl 52: 591–598.

    CAS  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007b) The use of ‘push-pull’ strategies in integrated pest management. Annu Rev Entomol 52: 357–400.

    Google Scholar 

  • Cook SM, Murray DA, Williams IH (2004a) Do pollen beetles need pollen? The effect of pollen on oviposition, survival, and development of a flower-feeding herbivore. Ecol Entomol 29: 164–173.

    Google Scholar 

  • Cook SM, Rasmussen HB, Birkett MA, Murray DA, Pye BJ, Watts NP, Williams IH (2007c) Behavioural and chemical ecology underlying the success of turnip rape (Brassica rapa) trap crops in protecting oilseed rape (Brassica napus) from the pollen beetle (Meligethes aeneus). Arthropod-Plant Interactions 1: 57–67.

    Google Scholar 

  • Cook SM, Skellern MP, Smith M, Williams IH (2006a) Responses of pollen beetles (Meligethes aeneus) to petal colour. IOBC/wprs Bull 29(7): 151–160.

    Google Scholar 

  • Cook SM, Smart LE, Martin JL, Murray DA, Watts WP, Williams IH (2006b) Exploitation of host plant preferences in crop protection strategies for oilseed rape (Brassica napus). Entomol Exp Appl 119: 221–229.

    Google Scholar 

  • Cook SM, Watts NP, Hunter F, Smart LE, Williams IH (2004b) Effects of a turnip rape trap crop on the spatial distribution of Meligethes aeneus and Ceutorhynchus assimilis in oilseed rape. IOBC/wprs Bull 27(10): 199–206.

    Google Scholar 

  • Couty A, van Emden H, Perry JN, Hardie J, Pickett JA, Wadhams LJ (2006) The roles of olfaction and vision in host-plant finding by the diamondback moth, Plutella xylostella. Physiol Entomol 31: 134–145.

    Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology:based on a cost benefit analysis rather than origin of compounds? Funct Ecol 2: 131–139.

    Google Scholar 

  • Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97: 237–249.

    CAS  Google Scholar 

  • Dlabola J, Taimr L (1965) Some results obtained with the application of the tracer method in insect migration and dispersion studies. Acta Entomol Bohemos 62: 413–420.

    Google Scholar 

  • Dmoch J (1998) Kairomones and searching behaviour of Trichomalus perfectus Walker. IOBC/wprs Bull 21(5): 171–176.

    Google Scholar 

  • Dmoch J, Rutkowska-Ostrowska Z (1978) Host-finding and host-acceptance mechanism in Trichomalus perfectus Walker (Hymenoptera, Pteromalidae). B Acad Pol Sci 26: 317–323.

    Google Scholar 

  • Drost YC, Cardé RT (1992) Use of learned visual cues during habitat location by Brachymeria intermedia. Entomol Exp Appl 64: 217–224.

    Google Scholar 

  • Döring T, Chittka L (2007) Visual ecology of aphids – a critical review on the role of colours in host finding. Arthropod Plant Interactions 1: 3–16.

    Google Scholar 

  • Ekbom B, Borg A (1993) Predators, Meligethes and Phyllotreta in unsprayed spring oilseed rape. IOBC/wprs Bull 16(9): 175–184.

    Google Scholar 

  • Erichsen E, Daebeler F (1987) Zur Überwachung der Kohlschoten mücke (Dasyneura brassicae Winn.) im winterraps. Nachr für den pflanzenschutzdienst der DDR 41: 33–34.

    Google Scholar 

  • Evans KA (1991) The role of secondary plant metabolites in host-plant location by insect pests of oilseed rape. Ph.D. thesis, Hatfield Polytechnic, UK.

    Google Scholar 

  • Evans KA, Allen-Williams LJ (1989a) The response of the cabbage seed weevil (Ceutorhynchus assimilis Payk.) and the brassica pod midge (Dasineura brassicae Winn.) to flower colour and volatiles of oilseed rape. Aspects of Applied Biol 23: 347–353.

    Google Scholar 

  • Evans KA, Allen-Williams LJ (1989b) Location and infestation of winter oilseed rape by the brassica pod midge, Dasineura brassicae Winn. (Diptera, Cecidomyiidae). Mededelingen van de Faculteit Landbouwwetenschappen Rijkuniversiteit Gent 54(3a): 717–725.

    Google Scholar 

  • Evans KA, Allen-Williams LJ (1992) Electroantennogram responses of the cabbage seed weevil, Ceutorhynchus assimilis, to oilseed rape, Brassica napus spp. oleifera, volatiles. J Chem Ecol 18: 1641–1659.

    Google Scholar 

  • Evans KA, Allen-Williams LJ (1993) Distant olfactory response of the cabbage seed weevil, Ceutorhynchus assimilis, to oilseed rape odour in the field. Physiol Entomol 18: 251–256.

    Google Scholar 

  • Evans KA, Allen-Williams LJ (1994) Laboratory and field response of the pollen beetle, Meligethes aeneus, to the odour of oilseed rape. Physiol Entomol 19: 285–290.

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5–51.

    PubMed  CAS  Google Scholar 

  • Ferguson AW, Barari H, Warner DH, Campbell JM, Smith ET, Williams IH (2006) Distributions and interactions of the stem miners, Psylliodes chrysocephala and Ceutorhynchus pallidactylus, and their parasitoids in a crop of winter oilseed rape (Brassica napus). Entomol Exp Appl 119: 81–92.

    Google Scholar 

  • Ferguson AW, Klukowski Z, Walczak B, Clark SJ, Mugglestone MA, Perry JN, Williams IH (2003) Spatial distribution of pest insects in oilseed rape: Implications for integrated pest management. Agr Ecosyst Environ 95: 509–521.

    Google Scholar 

  • Finch S, Collier RH (2000) Host-plant selection by insects – a theory based on ‘appropriate/inappropriate landings’ by pest insects on cruciferous plants. Entomol Exp Appl 96: 91–102.

    Google Scholar 

  • Frearson DJT (2006) The movement and host-selection of three inflorescence insect pests of oilseed rape and their parasitoids in relation to host-plant characteristics and environmental conditions. PhD thesis, University of Reading, UK.

    Google Scholar 

  • Frearson DJT, Ferguson AW, Campbell JM, Williams IH (2005) The spatial dynamics of pollen beetles in relation to inflorescence growth stage of oilseed rape: Implications for trap crop strategies. Entomol Exp Appl 116: 21–29.

    Google Scholar 

  • Frearson DJT, Ferguson AW, Laugier N, Williams IH (2006) The influence of petals on numbers of pests and their parasitoids in oilseed rape. Proc Symp Integrated Pest Management in Oilseed Rape, 3–5 April 2006, Göttingen, Germany.

    Google Scholar 

  • Free JB, Williams IH (1978) The responses of the pollen beetle, Meligethes aeneus and the seed weevil, Ceuthorynchus assimilis to oilseed rape, Brassica napus, and other plants. J Appl Ecol 15: 761–774.

    Google Scholar 

  • Giamoustaris A, Mithen R (1996) The effect of flower colour and glucosinolates on the interaction between oilseed rape and pollen beetles. Entomol Exp Appl 80: 206–208.

    CAS  Google Scholar 

  • Giurfa M, Menzel R (1997) Insect visual perception: Complex abilities of simple nervous systems. Current Opinion in Neurobiology 7: 505–513.

    PubMed  CAS  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: Minimum visual angles and receptor specific contrasts. J Comp Physiol A 178: 699–709.

    Google Scholar 

  • Goos M, Deptuch S, Raligowska K (1976) Introductory studies on collecting insects using colour traps in field experiments. Polskie Pismo Entomol 46: 829–834.

    Google Scholar 

  • Görnitz K (1953) Untersuchungen über in cruciferen enthaltene insekten-attractivstoffe. Nachr für den Deutschen Pflanzenschutsdienst N.F. 7: 81–95.

    Google Scholar 

  • Hilker M, Meiners T (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: A comparison. Entomol Exp Appl 104: 181–192.

    CAS  Google Scholar 

  • Hilker M, Rohfritsch O, Meiners T (2002) The plant’s response towards insect egg deposition. In: Hilker M, Meiners T (eds.) Chemoecology of insect egg and egg deposition. Blackwell, Berlin, Germany.

    Google Scholar 

  • Hokkanen HMT (1989) Biological and agrotechnical control of the rape blossom beetle Meligethes aeneus (Coleoptera, Nitidulidae). Acta Entomol Fenn 53: 25–29.

    Google Scholar 

  • Hokkanen HMT (1991) Trap cropping in pest management. Annu Rev Entomol 36: 119–138.

    Google Scholar 

  • Hokkanen HH, Granlund H, Husberg G-B, Markkula M (1986) Trap crops used successfully to control Meligethes aeneus (Col., Nitidulidae), the rape blossom beetle. Ann Entomol Fenn 52: 115–120.

    Google Scholar 

  • Horovitz A, Cohen Y (1972) Ultraviolet reflectance characteristics in flowers of crucifers. Am J Bot 59: 706–713.

    Google Scholar 

  • Jakobsen HB, Friis P, Nielsen JK, Olsen CE (1994) Emission of volatiles from flowers and leaves of Brassica napus in situ. Phytochemistry 37: 695–699.

    CAS  Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenopterous parasitoids. J Nat Hist 27: 67–105.

    Google Scholar 

  • Johnen A, Williams IH, Ferguson AW, Büchs W, Klukowski Z, Luik A, Nilsson C, Ulber B (2006) MASTER: Construction of phenological models of key parasitoids in Europe and prospects for spray windows compatible with their conservation in winter oilseed rape. Proc Symp Integrated Pest Management in Oilseed Rape, 3–5 April 2006, Göttingen, Germany.

    Google Scholar 

  • Jönsson M (2005) Responses to oilseed rape and cotton volatiles in insect herbivores and parasitoids. PhD thesis, University of Agricultural Sciences, Sweden.

    Google Scholar 

  • Jönsson M, Anderson P (2007) Emission of oilseed rape volatiles after pollen beetle infestation; behavioural and electrophysiological responses in the parasitoid Phradis morionellus. Chemoecology 17: 201–207.

    Google Scholar 

  • Jönsson M, Lindkvist A, Anderson P (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape. Entomol Exp Appl 11: 363–369.

    Google Scholar 

  • Jönsson M, Rosdahl K, Anderson P (2007) Responses to olfactory and visual cues by over-wintered and summer generations of the pollen beetle, Meligethes aeneus. Physiol Entomol 32: 188–193.

    Google Scholar 

  • Kennedy JS (1977) Olfactory responses to distant plants and other odour sources. In: Shorey HH, McKelvey JJ (eds.) Chemical control of insect behaviour. Wiley, New York.

    Google Scholar 

  • Kennedy JS (1983) Zigzagging and casting as a response to wind-borne odour: A review. Physiol Entomol 8: 109–120.

    Google Scholar 

  • Kjaer A (1976) Glucosinolates in the cruciferae. In: Vaughan JG, Macleod AJ, Jones BMG (eds.) The biology and chemistry of the cruciferae. Academic Press, UK.

    Google Scholar 

  • Kjaer-Pedersen C (1992) Flight behaviour of the cabbage seedpod weevil. Entomol Exp Appl 62: 61–66.

    Google Scholar 

  • Koritsas VM, Lewis JA, Fenwick GR (1991) Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle. Ann Appl Biol 118: 209–221.

    Google Scholar 

  • Larsen PO (1981) Glucosinolates. In: Stump PK, Conn EE (eds.) The biochemistry of plants. Academic Press, USA.

    Google Scholar 

  • Lavandero B, Wratten SD, Didham RK, Gurr G (2006) Increasing floral diversity for selective enhancement of biological control agents: A double-edged sward? Basic Appl Ecol 7: 236–243.

    Google Scholar 

  • Lerin J (1984) Effect de deux isothiocyanates sur les niveaux de capture en cuvettes jaunes d’insectes ravageurs du colza. Acta Oecol-Oec Appl 5: 61–70.

    CAS  Google Scholar 

  • Lunau K (1996) Signalling functions of floral colour patterns for insect flower visitors. Zool Anz 235: 11–30.

    Google Scholar 

  • Lāska P, Zelenkovā I, Bičik V (1986) Colour attraction in species of the genera: Delia (Diptera, Anthomyidae), Ceutorhynchus, Meligethes, and Phyllotreta (Coleoptera: Curculionidae, Nitidulidae, Chrysomelidae). Acta Entomol Bohemos 83: 418–424.

    Google Scholar 

  • Mauchline AL, Osborne JL, Martin AP, Poppy GM, Powell W (2005) The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus. Entomol Exp Appl 114: 181–188.

    CAS  Google Scholar 

  • Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112: 87–93.

    Google Scholar 

  • Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45: 967–971.

    PubMed  Google Scholar 

  • Miller JR, Strickler KL (1984) Finding and accepting host plants. In: Bell WJ, Cardé RT (eds.) The chemical ecology of insects. Chapman & Hall, London, UK.

    Google Scholar 

  • Murchie AK, Smart LE, Williams IH (1997) Responses of Dasineura brassicae Winn. (Diptera:Cecidomyiidae) and its parasitoids Platygaster subuliformis Kieffer (Hymenoptera: Platygastridae) and Omphale clypealis Thomson (Hymenoptera:Eulophidae) to traps, baited with organic isothiocyanates, in the field. J Chem Ecol 23: 917–926.

    Google Scholar 

  • Murlis J, Elkinton JS, Cardé RT (1992) Odour plumes and how insects use them. Annu Rev Entomol 37: 505–532.

    Google Scholar 

  • Murlis J, Jones CD (1981) Fine scale structure of odour plumes in relation to insect orientation to distant pheromone and other sources. Physiol Entomol 6: 71–86.

    Google Scholar 

  • Nilsson C (1988a) The pollen beetle (Meligethes aeneus F.) in winter and spring rape at Alnarp 1976–1978. II Oviposition. Växtskyddsnotiser 52: 139–144.

    Google Scholar 

  • Nilsson C (1988b) The pollen beetle (Meligethes aeneus F.) in winter and spring rape at Alnarp 1976–1978. III Mortality factors. Växtskyddsnotiser 52: 139–144.

    Google Scholar 

  • Nilsson C (2003) Parasitoids of pollen beetles. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Nilsson C (2004) Trap plants to avoid insecticide application against pollen beetles in oilseed rape. IOBC/wprs Bull 27(10): 215–221.

    Google Scholar 

  • Nolte HW (1959) Untersuchungen zum Farbsehen des Rapsglanzkäfers auf Farben und die ökologische Bedeurung des Farbsehens. Biol Zbl 78: 63–107.

    Google Scholar 

  • Omura H, Honda K, Hayashi N (1999) Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J Chem Ecol 25: 1895–1906.

    CAS  Google Scholar 

  • Osborne P (1960) Observations on the natural enemies of Meligethes aeneus (F.) and M. viridescens (F.) [Coleoptera: Nitidulidae]. Parasitology 50: 91–110.

    PubMed  CAS  Google Scholar 

  • Pettersson J (1976) Ethology of Dasyneura brassicae Winn. (Dipt., Cecidomyidae). 1. Laboratory studies of olfactory reactions to the host plant. Symp BiolHungarica 16: 203–208.

    Google Scholar 

  • Prokopy RJ (1986) Visual and olfactory stimulus interaction in resource finding by insects. In: Payne TL, Birch MC, Kennedy CE (eds.) Mechanisms in insect olfaction. Oxford University Press, New York, USA.

    Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28: 337–364.

    Google Scholar 

  • Robertson GW, Griffiths DW, MacFarlane Smith W, Butcher RD (1993) The application of thermal-dissorption-gas chromatography-mass spectrometry to the analysis of five varieties of oilseed rape (Brassica napus spp. oleifera). Phytochem Analysis 4: 152–157.

    CAS  Google Scholar 

  • Ruther J, Thiemann K (1997) Response of the pollen beetle Meligethes aeneus to volatiles emitted by the intact plants and conspecifics. Entomol Exp Appl 84: 183–188.

    CAS  Google Scholar 

  • Smart LE, Blight MM (1997) Field discrimination of oilseed rape, Brassica napus volatiles by cabbage seed weevil, Ceuthohynchus assimilis. J Chem Ecol 23: 2555–2566.

    CAS  Google Scholar 

  • Smart LE, Blight MM (2000) Response of the pollen beetle, Meligethes aeneus, to traps baited with volatiles from oilseed rape, Brassica napus. J Chem Ecol 26: 1051–1064.

    CAS  Google Scholar 

  • Smart LE, Blight MM, Hick AJ (1993) Development of a monitoring system for the cabbage seed weevil and the pollen beetle. IOBC/wprs Bull 16(10): 351–354.

    Google Scholar 

  • Smart LE, Blight MM, Hick AJ (1997) Effect of visual cues and a mixture of isothiocyanates on trap capture of cabbage seed weevil, Ceuthorhynchus assimilis. J Chem Ecol 23: 889–902.

    CAS  Google Scholar 

  • Smart LE, Blight MM, Ryan J (1995) Response of pollen beetles, Meligethes spp., to volatiles from Brassica napus. Proc 9th Int Rapeseed Congress, Cambridge, UK, 4–7 July 1995, pp 1040–1042.

    Google Scholar 

  • Sylvén E (1970) Field movement of radioactively labeled adults of Dasyneura brassicae Winn. (Dipt., Cecidomyiidae). Entomol Scand 1: 161–187.

    Google Scholar 

  • Taimr L, Sedivy J, Bergmannova E, Hanker I (1967) Further experience obtained in studies on dispersal flights of Meligethes aeneus F., marked with P32 (Coleoptera). Acta Entomol Bohemos 64: 325–332.

    Google Scholar 

  • Thies C, Tscarntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893–895.

    PubMed  CAS  Google Scholar 

  • Tollsten L, Bergström G (1988) Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27: 2073–2077.

    CAS  Google Scholar 

  • Turlings TCJ, Ton J (2006) Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9: 421–427.

    PubMed  Google Scholar 

  • Turlings TCJ, Wäckers FL, Vet LEM, Lewis WJ, Tumlinson JH (1993) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj DR, Lewis AC (ed.) Insect learning. Chapman & Hall, New York, USA.

    Google Scholar 

  • Ulber B (2003) Parasitoids of ceutorhynchid stem weevils. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Ulber B, Fischer K (2006) Effect of plant density and host plant architecture on the abundance and within-plant distribution of stem-mining pests and the level of parasitism. Proc Int Symp Integrated Pest Management in Oilseed Rape, 3–5 April 2006, Göttingen, Germany.

    Google Scholar 

  • Ulber B, Wedemeyer R (2006) Responses of Trichomalus microgaster and Trichomalus obscurator (Hymenoptera: Ichneumonidae) to volatile 2-phenyl-isothiocyanate. Proc Symp Integrated Pest Management in Oilseed Rape, 3–5 April 2006, Göttingen, Germany.

    Google Scholar 

  • Ulber B, Williams IH (2003) Parasitoids of flea beetles. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Vet LEM, Lewis WJ, Cardé RT (1995) Parasitoids foraging and learning. In: Cardé RT, Bell WJ (eds.) Chemical ecology of insects. Chapman & Hall, London, UK.

    Google Scholar 

  • Vet LEM, van Alphen JJM (1985) A comparative functional approach to the host detection behaviour of parasitic wasps. I. A quantitative study of ‘Eucoilidae and Alysiinae’. Oikos 44: 478–486.

    Google Scholar 

  • Vinson SB (1985) The behaviour of parasitoids. In: Kerkut GA, Gilbert LI (eds.) Comprehensive insect physiology, biochemistry and pharmacology vol. 8. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Vinson SB (1998) The general host selection behaviour of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11: 79–96.

    Google Scholar 

  • Wäckers FL (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40: 641–649.

    Google Scholar 

  • Walczak B, Kelm M, Klukowski Z, Smart LE, Ferguson AW, Williams IH (1998) The effect of trap design and 2-phenylethyl isothiocyanate on catches of stem weevils (Ceuthorynchus pallidactylus Marsh. and C. napi Gyll.) in winter oilseed rape. IOBC/wprs Bull 21(5): 141–146.

    Google Scholar 

  • Wasmann E (1926) Versuche über den Farbensinn des Rapskäfers (Meligethes aeneus L.). Zeit den Wissenschaftlichen Insektenbiologie 21: 147.

    Google Scholar 

  • Williams IH (2003a) Parasitoids of cabbage seed weevil. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Williams IH (2003b) Parasitoids of brassica pod midge. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Williams IH, Büchs W, Hokkanen H, Menzler-Hokkanen I, Johnen A, Klukowski Z, Luik A, Nilsson C, Ulber B (2005) MASTER – Integrating biological control within IPM for winter oilseed rape across Europe. Proc BCPC Int Cong, Crop Science & Technology, Glasgow, 31 October–2 November 2005, 1: 301–308.

    Google Scholar 

  • Williams IH, Buechi R, Ulber B (2003) Sampling, trapping and rearing oilseed rape pests and their parasitoids. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford.

    Google Scholar 

  • Williams IH, Frearson DJT, Barari H, McCartney A (2007a) First field evidence that parasitoids use upwind anemotaxis for host habitat location. Entomol Exp Appl 123: 299–307.

    Google Scholar 

  • Williams IH, Frearson D, Barari H, McCartney A (2007b) Migration to and dispersal from oilseed rape by the pollen beetle, Meligethes aeneus, in relation to wind direction. Agri Forest Entomol 9: 279–286.

    Google Scholar 

  • Williams IH, Free JB (1978) The feeding and mating behaviour of pollen beetles (Meligethes aeneus Fab.) and seed weevils (Ceutorhynchus assimilis Payk.) on oil-seed rape (Brassica napus L.). J Agr Sci 91: 453–459.

    Google Scholar 

  • Williams IH, Martin AP (1986) Evidence for a female sex pheromone in the brassica pod midge, Dasineura brassicae. Physiol Entomol 11: 353–356.

    Google Scholar 

  • Winfield AL (1963) A study on the effects of insecticides on parasites of larvae of blossom beetles (Meligethes aeneus F. Coleoptera: Nitidulidae). Entomol Exp Appl 6: 309–318.

    CAS  Google Scholar 

Download references

Acknowledgements

Writing of this reveiw was supported by the Estonian Targeting Financing Project SF0172655S04 and by the UK Department for Food and Rural Affairs. Rothamsted Research is an institute of the Biotechnology and Biological Sciences Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid H. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Williams, I.H., Cook, S.M. (2010). Crop Location by Oilseed Rape Pests and Host Location by Their Parasitoids. In: Williams, I. (eds) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3983-5_7

Download citation

Publish with us

Policies and ethics