Social Organisation and the Status of Workers in Termites

  • Yves RoisinEmail author
  • Judith Korb


Whereas the soldier caste is clearly ancestral to all extant termite lineages and constitutes the hallmark of termite eusociality, the origin and evolution of workers is much more difficult to comprehend. Here, we first review the status of working individuals throughout the Isoptera, insisting on the need for a consistent terminology. Pseudergates sensu stricto are defined ontogenetically as individuals stepping aside the straight egg-to-alate pathway, through regressive or stationary moults. They reveal an ancestral developmental flexibility, since they are common in small-colony wood-dwelling termites, but may also occur in large-colony Rhinotermitidae or Termitidae. They may participate in social tasks but never constitute a functional category by themselves. Pseudergates sensu lato, or false workers, are defined as a functional category of individuals performing work, while remaining developmentally flexible. This latter property distinguishes them from true workers, which result from an early and irreversible developmental bifurcation, and have lost the possibility to resume alate development. We emphasize three major kinds of social organisation, with respect to the worker caste. In the drywood-dwelling Cryptotermes (Kalotermitidae), all immatures (pseudergates sensu lato) participate in colony work in a cooperative rather than altruistic manner, with very little if any direct fitness loss. In Prorhinotermes (Rhinotermitidae) and Glossotermes (Serritermitidae), wing bud development is postponed until the last pre-alate nymph instar and the preceding instars form a large functional caste of pseudergates (sensu lato), performing partially altruistic colony work. In the Termitidae, tasks are done by a specialized, altruistic true worker caste. After reviewing the proximate developmental and regulatory mechanisms determining the fate of termite immatures, we discuss the ultimate causes of worker evolution. The potential role of kin-selected benefits of helping versus direct benefits of inheritance is examined in detail. Both approaches still face some difficulties and it is probably a combination of both that explains the early social evolution of termites. We stress the need for new theoretical models as well as broader comparative data on life history and social behaviour.


Nymphal Instar Late Instar Larva Work Instar Alate Development True Worker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Abe T (1990) Evolution of worker caste in termites. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Proceedings 11th International Congress IUSSI 1990, Bangalore, India. Oxford & IBH, New Delhi, pp 29–30Google Scholar
  3. Bourguignon T, Šobotník J, Hanus R, Roisin Y (2009) Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross-roads of worker caste evolution in termites. Evol Dev 11:659–668PubMedGoogle Scholar
  4. Buchli HHR (1958) L’origine des castes et les potentialités ontogénétiques des termites européens du genre Reticulitermes Holmgren. Ann Sci Nat Zool 20:263–429Google Scholar
  5. Calleri DV, Reid DM, Rosengaus RB et al (2006) Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc Lond B 273:2633–2640Google Scholar
  6. Cancello EM, DeSouza O (2005) A new species of Glossotermes (Isoptera): reappraisal of the generic status with transfer from the Rhinotermitidae to the Serritermitidae. Sociobiology 45:31–51Google Scholar
  7. Cleveland LR, Hall SR, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus punctulatus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–342Google Scholar
  8. Clément G (1952) Recherches sur le polymorphisme de Psammotermes hybostoma Desneux. Ann Sci Nat Zool (11) 14:95–116Google Scholar
  9. Clément G (1953) Sur la différenciation d’ovocytes dans les testicules des “neutres” d’Anacanthotermes ochraceus. C R Acad Sci 236:1095–1096Google Scholar
  10. Cornette R, Farine J-P, Abed-Viellard D et al (2003) Molecular characterization of a male-specific glycosyl hydrolase, Lma-p72, secreted on to the abdominal surface of the Madeira cockroach Leucophaea maderae (Blaberidae, Oxyhaloinae). Biochem J 372:535–541PubMedGoogle Scholar
  11. Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol 54:922–930PubMedGoogle Scholar
  12. Cribb BW, Stewart A, Huang H et al (2008) Unique zinc mass in mandibles separates drywood termites from other groups of termites. Naturwissenschaften 95:433–441PubMedGoogle Scholar
  13. Darwin C (1874) Recent researches on termites and stingless honey-bees. Am Nat 8:553–556Google Scholar
  14. DeHeer CJ, Vargo EL (2006) An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav Ecol Sociobiol 59:753–761Google Scholar
  15. Dean SR, Gold RE (2004) Sex ratios and development of the reproductive system in castes of Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:147–152Google Scholar
  16. Elliott KL, Stay B (2008) Changes in juvenile hormone synthesis in the termite Reticulitermes flavipes during development of soldiers and neotenic reproductives from groups of isolated workers. J Insect Physiol 54:492–500PubMedGoogle Scholar
  17. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27Google Scholar
  18. Evans TA, Lai JCS, Toledano E et al (2005) Termites assess wood size by using vibration signals. Proc Natl Acad Sci U S A 102:3732–3737PubMedGoogle Scholar
  19. Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70–83PubMedGoogle Scholar
  20. Grandcolas P, D’Haese C (2002) The origin of a ‘true’ worker caste in termites: phylogenetic evidence is not decisive. J Evol Biol 15:885–888Google Scholar
  21. Grandcolas P, D’Haese C (2004) The origin of a ‘true’ worker caste in termites: mapping the real world on the phylogenetic tree. J Evol Biol 17:461–463PubMedGoogle Scholar
  22. Grassé P-P, Noirot C (1947) Le polymorphisme social du termite à cou jaune (Calotermes flavicollis F.). Les faux-ouvriers ou pseudergates et les mues régressives. C R Acad Sci 224:219–221Google Scholar
  23. Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581Google Scholar
  24. Hanus R, Šobotník J, Cizek L (2005) Egg care by termite soldiers. Insectes Soc 52:357–359Google Scholar
  25. Haverty MI, Howard RW (1981) Production of soldiers and maintenance of soldier proportions by laboratory experimental groups of Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae). Insectes Soc 28:32–39Google Scholar
  26. Hayashi Y, Lo N, Miyata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987PubMedGoogle Scholar
  27. Heath H (1927) Caste formation in the termite genus Termopsis. J Morphol Physiol 43:387–425Google Scholar
  28. Higashi M, Yamamura N, Abe T, Burns TP (1991) Why don’t all termite species have a sterile worker caste? Proc R Soc Lond B 246:25–29Google Scholar
  29. Howse PE (1968) On the division of labour in the primitive termite Zootermopsis nevadensis (Hagen). Insectes Soc 15:45–50Google Scholar
  30. Hrdý I, Kuldová J, Hanus R, Wimmer Z (2006) Juvenile hormone III, hydroprene and a juvenogen as soldier caste differentiation regulators in three Reticulitermes species: potential of juvenile hormone analogues in termite control. Pest Manag Sci 62:848–854PubMedGoogle Scholar
  31. Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967PubMedGoogle Scholar
  32. Johns PM, Howard KJ, Breisch NL et al (2009) Nonrelatives inherit colony resources in a primitive termite. Proc Natl Acad Sci U S A 106:17452–17456PubMedGoogle Scholar
  33. Kaib M (1990) Intra- and interspecific chemical signals in the termite Schedorhinotermes. Production sites, chemistry, and behaviour. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhäuser Verlag, Basel, pp 26–32Google Scholar
  34. Kokko H, Ekman J (2002) Delayed dispersal as a route to breeding: territorial inheritance, safe havens, and ecological constraints. Am Nat 160:468–484PubMedGoogle Scholar
  35. Korb J (2005) Regulation of sexual development in the basal termite Cryptotermes secundus: mutilation, pheromonal manipulation or honest signal? Naturwissenschaften 92:45–49PubMedGoogle Scholar
  36. Korb J (2007a) Termites. Curr Biol 17:R995–R999PubMedGoogle Scholar
  37. Korb J (2007b) Workers of a drywood termite do not work. Front Zool 4:7PubMedGoogle Scholar
  38. Korb J (2008a) The ecology of social evolution in termites. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer-Verlag, Berlin, Germany, pp 151–174Google Scholar
  39. Korb J (2008b) Termites, hemimetabolous diploid white ants? Front Zool 5:e15Google Scholar
  40. Korb J (2009) Termites: An alternative road to eusociality and the importance of group benefits in social insects. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to socio-complexity. Harvard University Press, Cambridge, MA, pp 128–147Google Scholar
  41. Korb J, Hartfelder K (2008) Life history and development – a framework for understanding developmental plasticity in lower termites. Biol Rev 83:295–313PubMedGoogle Scholar
  42. Korb J, Hoffmann K, Hartfelder K (2009a) Endocrine signatures underlying plasticity in postembryonic development of a lower termite, Cryptotermes secundus (Kalotermitidae). Evol Dev 11:269–277PubMedGoogle Scholar
  43. Korb J, Katrantzis S (2004) Influence of environmental conditions on the expression of the sexual dispersal phenotype in a lower termite: implications for the evolution of workers in termites. Evol Dev 6:342–352PubMedGoogle Scholar
  44. Korb J, Lenz M (2004) Reproductive decision-making in the termite, Cryptotermes secundus (Kalotermitidae), under variable food conditions. Behav Ecol 15:390–395Google Scholar
  45. Korb J, Linsenmair KE (1999) Reproductive success of Macrotermes bellicosus (Isoptera, Macrotermitinae) in two neighbouring habitats. Oecologia 118:183–191Google Scholar
  46. Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behav Ecol Sociobiol 56:89–95Google Scholar
  47. Korb J, Schneider K (2007) Does kin structure explain the occurrence of workers in a lower termite? Evol Ecol 21:817–828Google Scholar
  48. Korb J, Weil T, Hoffmann K et al (2009b) A gene necessary for reproductive suppression in termites. Science 324:758PubMedGoogle Scholar
  49. Koshikawa S, Cornette R, Hojo M et al (2005) Screening of genes expressed in developing mandibles during soldier differentiation in the termite Hodotermopsis sjostedti. FEBS Lett 579:1365–1370PubMedGoogle Scholar
  50. LaFage JP, Nutting WL (1978) Nutrient dynamics of termites. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, UK, pp 165–232Google Scholar
  51. Legendre F, Whiting MF, Bordereau C et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627PubMedGoogle Scholar
  52. Lenz M (1976) The dependence of hormone effects in termite caste determination on external factors. In: Lüscher M (ed) Phase and caste determination in insects. Pergamon Press, Oxford, UK, pp 73–90Google Scholar
  53. Lenz M (1987) Brood production by imaginal and neotenic pairs of Cryptotermes brevis (Walker): the significance of helpers (Isoptera: Kalotermitidae). Sociobiology 13:59–66Google Scholar
  54. Lenz M (1994) Food resources, colony growth and caste development in wood-feeding termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 159–209Google Scholar
  55. Lenz M, Barrett RA (1982) Neotenic formation in field colonies of Coptotermes lacteus (Froggatt) in Australia, with comments on the roles of neotenics in the genus Coptotermes (Isoptera: Rhinotermitidae). Sociobiology 7:47–59Google Scholar
  56. Lenz M, Runko S (1993) Long-term impact of orphaning on field colonies of Coptotermes lacteus (Froggatt) (Isoptera: Rhinotermitidae). Insectes Soc 40:439–456Google Scholar
  57. Light SF (1944) Experimental studies on ectohormonal control of the development of supplementary reproductives in the termite genus Zootermopsis (formerly Termopsis). Univ Calif Publ Zool 43:413–454Google Scholar
  58. Light SF, Illg PI (1945) Rate and extent of development of neotenic reproductives in the termite genus Zootermopsis. Univ Calif Publ Zool 53:1–40Google Scholar
  59. Lo N, Hayashi Y, Kitade O (2009) Should environmental caste determination be assumed for termites? Am Nat 173:848–853PubMedGoogle Scholar
  60. Lo N, Kitade O, Miura T et al (2004) Molecular phylogeny of the Rhinotermitidae. Insectes Soc 51:365–371Google Scholar
  61. Luamba JLN (1980) Recherches sur le polymorphisme et aperçu sur l’influence de l’analogue de l’hormone juvénile sur le développement d’un termite, Hodotermes mossambicus (Isoptera, Hodotermitidae). Biol Ecol Médit 7:169–171Google Scholar
  62. Lüscher M (1952) Untersuchungen über das individuelle Wachstum bei der Termite Kalotermes flavicollis Fabr. (Ein Beitrag zum Kastenbildungsproblem). Biol Zentralbl 71:529–543Google Scholar
  63. Lüscher M (1953) Kann die Determination durch eine monomolekulare Reaktion ausgelöst werden? Rev Suisse Zool 60:524–528Google Scholar
  64. Lüscher M (1969) Die Bedeutung des Juvenilhormons für die Differenzierung der Soldaten bei der Termite Kalotermes flavicollis. Proceedings VI Congress IUSSI, Bern, pp 165–170Google Scholar
  65. Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphismus by Insekten. Probleme der Kastenbildung im Tierreich. Wissenschaftliche Verlagsgesellschaft MBH, Stuttgart, pp 694–739Google Scholar
  66. Machida M, Kitade O, Miura T, Matsumoto T (2001) Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Soc 48:52–56Google Scholar
  67. Matsuura K (2006) A novel hypothesis for the origin of the sexual division of labor in termites: which sex should be soldiers? Evol Ecol 20:565–574Google Scholar
  68. Matsuura K, Yashiro T, Shimizu K et al (2009) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme beta-glucosidase. Curr Biol 19:30–36PubMedGoogle Scholar
  69. Mednikova TK (1977) Caste differentiation in the termite Anacanthotermes ahngerianus Jacobson (Isoptera, Hodotermitidae). In: Velthuis HHW, Wiebes JT (eds) Proc VIII Congress IUSSI Centre for Agricultural Publishing and Documentation. Wageningen Academic Publishers, Wageningen, pp 118–120Google Scholar
  70. Miller EM (1942) The problem of castes and caste differentiation in Prorhinotermes simplex (Hagen). Bull Univ Miami 15:1–27Google Scholar
  71. Miura T (2001) Morphogenesis and gene expression in the soldier-caste differentiation of termites. Insectes Soc 48:216–223Google Scholar
  72. Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7:122–129PubMedGoogle Scholar
  73. Miura T, Kamikouchi A, Sawata M et al (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci U S A 96:13874–13879PubMedGoogle Scholar
  74. Miura T, Koshikawa S, Machida M, Matsumoto T (2004) Comparative studies on alate wing formation in two related species of rotten-wood termites: Hodotermopsis sjostedti and Zootermopsis nevadensis (Isoptera, Termopsidae). Insectes Soc 51:247–252Google Scholar
  75. Muller H, Korb J (2008) Male or female soldiers? An evaluation of several factors which may influence soldier sex ratio in lower termites. Insectes Soc 55:213–219Google Scholar
  76. Myles TG (1986) Reproductive soldiers in the Termopsidae (Isoptera). Pan-Pac Entomol 62:293–299Google Scholar
  77. Myles TG (1988) Resource inheritance in social evolution from termites to man. In: Slobodchikoff C (ed) The ecology of social behavior. Academic Press, San Diego, CA, pp 379–423Google Scholar
  78. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91Google Scholar
  79. Myles TG, Chang F (1984) The caste system and caste mechanisms of Neotermes connexus (Isoptera: Kalotermitidae). Sociobiology 9:163–319Google Scholar
  80. Nalepa CA (1988) Cost of parental care in the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav Ecol Sociobiol 23:135–140Google Scholar
  81. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment & Evolution in Insect Societies. Westview Press, Boulder, CO, pp 57–104Google Scholar
  82. Nijhout HF (1994) Insect Hormones. Princeton University Press, Princeton, NJGoogle Scholar
  83. Nijhout HF (1999) Hormonal control in larval development and evolution – insects. In: Hall BK, Wake MH (eds) The origin and evolution of larval forms. Academic Press, San Diego, CA, pp 217–254Google Scholar
  84. Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polyphenisms. Q Rev Biol 57:109–133Google Scholar
  85. Noirot C (1955) Recherches sur le polymorphisme des termites supérieurs (Termitidae). Ann Sci Nat Zool (11) 17:399–595Google Scholar
  86. Noirot C (1956) Les sexués de remplacement chez les termites supérieurs (Termitidae). Insectes Soc 3:145–158Google Scholar
  87. Noirot C (1969) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 311–350Google Scholar
  88. Noirot C (1982) La caste des ouvriers, élément majeur du succès évolutif des termites. Riv Biol 75:157–195Google Scholar
  89. Noirot C, Pasteels JM (1987) Ontogenetic development and the evolution of the worker caste in termites. Experientia 43:851–860Google Scholar
  90. Noirot C, Pasteels JM (1988) The worker caste is polyphyletic in termites. Sociobiology 14:15–20Google Scholar
  91. Noirot C, Thorne BL (1988) Ergatoid reproductives in Nasutitermes columbicus (Isoptera, Termitidae). J Morphol 195:83–93Google Scholar
  92. Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 233–282Google Scholar
  93. Ohkuma M, Yuzawa H, Amornsak W et al (2004) Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol Phylogenet Evol 31:701–710PubMedGoogle Scholar
  94. Parmentier D (2006) Developmental flexibility and evolution of the worker caste in termites. PhD dissertation, Université Libre de BruxellesGoogle Scholar
  95. Parmentier D, Roisin Y (2003) Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae). J Morphol 255:69–79PubMedGoogle Scholar
  96. Raina A, Osbrink WLA, Park YI (2004) Nymphs of the Formosan subterranean termite (Isoptera: Rhinotermitidae): aspects of formation and transformation. Ann Entomol Soc Am 97:757–764Google Scholar
  97. Renoux J (1976) Le polymorphisme de Schedorhinotermes lamanianus (Sjöstedt) (Isoptera-Rhinotermitidae). Essai d’interprétation. Insectes Soc 23:279–494Google Scholar
  98. Roisin Y (1988a) The caste system of Parrhinotermes browni (Isoptera: Rhinotermitidae). Sociobiology 14:21–28Google Scholar
  99. Roisin Y (1988b) Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphology 107:339–347Google Scholar
  100. Roisin Y (1990a) Queen replacement in the termite Microcerotermes papuanus. Entomol Exp Appl 56:83–90Google Scholar
  101. Roisin Y (1990b) Reversibility of regressive molts in the termite Neotermes papua. Naturwissenschaften 77:246–247Google Scholar
  102. Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143:751–765Google Scholar
  103. Roisin Y (1996) Castes in humivorous and litter-dwelling neotropical nasute termites (Isoptera, Termitidae). Insectes Soc 43:375–389Google Scholar
  104. Roisin Y (1999) Philopatric reproduction, a prime mover in the evolution of insect sociality? Insectes Soc 46:297–305Google Scholar
  105. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119Google Scholar
  106. Roisin Y (2006) Life history, life types and caste evolution in termites. In: Kipyatkov VE (ed) Life Cycles in Social Insects: Behaviour, Ecology and Evolution. St. Petersburg University Press, Saint Petersburg, pp 85–95Google Scholar
  107. Roisin Y, Lenz M (1999) Caste developmental pathways in colonies of Coptotermes lacteus (Froggatt) headed by primary reproductives (Isoptera, Rhinotermitidae). Insectes Soc 46:273–280Google Scholar
  108. Roisin Y, Lenz M (2002) Origin of male-biased sex allocation in orphaned colonies of the termite, Coptotermes lacteus. Behav Ecol Sociobiol 51:472–479Google Scholar
  109. Roisin Y, Pasteels JM (1987) Caste developmental potentialities in the termite Nasutitermes novarumhebridarum. Entomol Exp Appl 44:277–287Google Scholar
  110. Roisin Y, Pasteels JM (1991) Polymorphism in the giant cocoa termite, Neotermes papua (Desneux). Insectes Soc 38:263–272Google Scholar
  111. Rosengaus RB, Moustakas JE, Calleri DV, Traniello JFA (2003) Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J Insect Sci 3:31PubMedGoogle Scholar
  112. Rosengaus RB, Traniello JFA (1993) Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: a single multiage caste. J Insect Behav 6:237–252Google Scholar
  113. Roux EA, Korb J (2004) Evolution of eusociality and the soldier caste in termites: a validation of the intrinsic benefit hypothesis. J Evol Biol 17:869–875PubMedGoogle Scholar
  114. Roux EA, Roux M, Korb J (2009) Selection on defensive traits in a sterile caste–caste evolution: a mechanism to overcome life-history trade-offs? Evol Dev 11:80–87PubMedGoogle Scholar
  115. Rupf T, Roisin Y (2008) Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften 95:811–819PubMedGoogle Scholar
  116. Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW (2003) Caste- and development-associated gene expression in a lower termite. Genome Biol 4:R62PubMedGoogle Scholar
  117. Scharf ME, Wu-Scharf D, Zhou X et al (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44PubMedGoogle Scholar
  118. Sehnal F, Švácha P, Zrzavý J (1996) Evolution of insect metamorphosis. In: Gilbert LI, Tata JR, Atkinson BG (eds) Metamorphosis. Postembryonic reprogramming of gene expression in amphibian and insect cells. Academic Press, San Diego, CA, pp 3–58Google Scholar
  119. Sewell JJ, Watson JAL (1981) Developmental pathways in Australian species of Kalotermes Hagen (Isoptera). Sociobiology 6:243–323Google Scholar
  120. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, UK, pp 52–93Google Scholar
  121. Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869–876Google Scholar
  122. Smeathman H (1781) Some account of the termites which are found in Africa and other hot climates. Phil Trans R Soc Lond 71:139–192Google Scholar
  123. Soki K, Josens G, Loreau M (1996) Growth and demography of Cubitermes speciosus mounds (Isoptera: Termitidae). Insectes Soc 43:189–200Google Scholar
  124. Springhetti A (1969) Influenza dei reali sulla differenziazione dei soldati di Kalotermes flavicollis Fabr. (Isoptera). Proceedings VI Congress IUSSI, Bern, pp 267–273Google Scholar
  125. Stuart AM (1979) The determination and regulation of the neotenic reproductive caste in the lower termites (Isoptera): with special reference to the genus Zootermopsis (Hagen). Sociobiology 4:233–237Google Scholar
  126. Thompson GJ, Kitade O, Lo N, Crozier RH (2000a) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13:869–881Google Scholar
  127. Thompson G, Kitade O, Lo N, Crozier R (2004) On the origin of termite workers: weighing up the phylogenetic evidence. J Evol Biol 17:217–220PubMedGoogle Scholar
  128. Thompson GJ, Miller LR, Lenz M, Crozier RH (2000b) Phylogenetic analysis and trait evolution in Australian lineages of drywood termites (Isoptera, Kalotermitidae). Mol Phylogenet Evol 17:419–429PubMedGoogle Scholar
  129. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54Google Scholar
  130. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci U S A 100:12808–12813PubMedGoogle Scholar
  131. Thorne BL, Haverty MI (1991) A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology 19:115–145Google Scholar
  132. Tokuda G, Saito H, Watanabe H (2002) A digestive beta-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochem Mol Biol 32:1681–1689PubMedGoogle Scholar
  133. Traniello JFA (1981) Enemy deterrence in the recruitment strategy of a termite: soldier-organized foraging in Nasutitermes costalis. Proc Natl Acad Sci U S A 78:1976–1979PubMedGoogle Scholar
  134. Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403PubMedGoogle Scholar
  135. Watson JAL, Abbey HM (1985) Development of neotenics in Mastotermes darwiniensis Froggatt: an alternative strategy. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford, pp 107–124Google Scholar
  136. Watson JAL, Metcalf EC, Sewell JJ (1977) A re-examination of the development of castes in Mastotermes darwiniensis Froggatt (Isoptera). Aust J Zool 25:25–42Google Scholar
  137. Watson JAL, Sewell JJ (1981) The origin and evolution of caste systems in termites. Sociobiology 6:101–118Google Scholar
  138. Weil T, Korb J, Rehli M (2009) Comparison of queen-specific gene expression in related lower termite species. Mol Biol Evol 26:1841–1850PubMedGoogle Scholar
  139. Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genomics 8:28Google Scholar
  140. Zhou X, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci U S A 103:4499–4504PubMedGoogle Scholar
  141. Zhou X, Tarver MR, Scharf ME (2007) Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 134:601–610PubMedGoogle Scholar
  142. Zimet M, Stuart AM (1982) Sexual dimorphism in the immature stages of the termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 7:1–7Google Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Evolutionary Biology and Ecology, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Behavioural Biology, University of OsnabrueckOsnabrueckGermany

Personalised recommendations