Advertisement

Eusocial Evolution in Termites and Hymenoptera

  • Kenneth J. HowardEmail author
  • Barbara L. Thorne
Chapter

Abstract

The evolution of eusociality remains an intriguing mystery. Why do individuals forego their own reproduction to help others produce offspring? Complex colonies have evolved in ants, bees, and wasps (Hymenoptera) and in termites (Isoptera). We discuss theories applied to explain eusocial traits in the Isoptera and the Hymenoptera in order to learn more about how and why eusociality evolved from subsocial ancestors. Striking overlap occurs in the genes controlling caste and the shift of parental care to offspring via heterochrony, suggesting ecological pressures lead to co-option of similar developmental mechanisms. There is also overlap in factors that predispose groups to eusociality, including extended parental care, defense of and the inheritance of a valuable nest, and enhanced direct and indirect benefits from cooperative behavior. However, differences in developmental paths and ecological traits are also informative, such as the evolution of the soldier form and adult workers. Multiple selective processes may favor eusociality over alternatives, but the degree to which each process was involved in eusocial evolution may have varied in each taxon. Reduced emphasis on haplodiploidy to explain eusocial evolution in the Hymenoptera and the similarities in developmental control allow for greater overlap of theories explaining eusocial evolution in the Hymenoptera and Isoptera.

Keywords

Parental Care Inclusive Fitness Indirect Fitness Eusocial Species Caste Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Abe T (1991) Ecological factors associated with the evolution of worker and soldier castes in termites. Ann Entomol 9:101–107Google Scholar
  3. Alcock J, Sherman P (1994) The utility of the proximate-ultimate dichotomy in ethology. Ethology 96:58–62CrossRefGoogle Scholar
  4. Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383CrossRefGoogle Scholar
  5. Alexander RD, Noonan KM, Crespi BJ (1991) The evolution of eusociality. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the Naked Mole-rat. Princeton University Press, Princeton, NJ, pp 3–44Google Scholar
  6. Alonso WJ, Schuck-Paim C (2002) Sex-ratio conflicts, kin selection, and the evolution of altruism. Proc Natl Acad Sci U S A 99:6843–6847PubMedCrossRefGoogle Scholar
  7. Amdam GV, Csondes A, Fondrk MK, Page RE (2006) Complex social behaviour derived from maternal reproductive traits. Nature 439:76–78PubMedCrossRefGoogle Scholar
  8. Andersson M (1984) The evolution of eusociality. Annu Rev Ecol Syst 15:165–189Google Scholar
  9. Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131–1136CrossRefGoogle Scholar
  10. Atkinson L, Teschendorf G, Adams ES (2008) Lack of evidence for nepotism by workers tending queens of the polygynous termite Nasutitermes corniger. Behav Ecol Sociobiol 62:805–812CrossRefGoogle Scholar
  11. Bartz SH (1979) Evolution of eusociality in termites. Proc Natl Acad Sci U S A 76:5764–5768PubMedCrossRefGoogle Scholar
  12. Basalingappa S (1970) Environmental hazards to reproductives of Odontotermes assmuthi Holmgren. Indian Zool 1:45–50Google Scholar
  13. Bloch G, Hefetz A (1999) Regulation of reproduction by dominant workers in bumblebee (Bombus terrestris) queenright colonies. Behav Ecol Sociobiol 45:125–135CrossRefGoogle Scholar
  14. Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:673–683CrossRefGoogle Scholar
  15. Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Phil Trans R Soc Lond B 364:1–17CrossRefGoogle Scholar
  16. Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257CrossRefGoogle Scholar
  17. Bourke AFG (2005) Genetics, relatedness and social behaviour in insect societies. In: Fellowes MDE, Holloway GJ, Rolff J (eds) Insect evolutionary ecology. Proceedings of the Royal Entomological Society, 22nd Symposium. CABI Publishing, Cambridge, Massachusetts, pp 1–30CrossRefGoogle Scholar
  18. Bourke AFG (2007) Social evolution: community policing in insects. Curr Biol 17:519–520CrossRefGoogle Scholar
  19. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, NJGoogle Scholar
  20. Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci U S A 103:18172–18177PubMedCrossRefGoogle Scholar
  21. Breed MD, Guzm´an-Novoa E, Hunt GJ (2004) Defensive behavior of honey bees: organization, genetics, and comparisons with other social insects. Annu Rev Entomol 49:271–298PubMedCrossRefGoogle Scholar
  22. Brian MV (1973) Caste control through worker attack in the ant Myrmica. Insectes Soc 20:87–102CrossRefGoogle Scholar
  23. Broughton RE (1995) Mitochondrial DNA variation within and among species of termites in the genus Zootermopsis (Isoptera: Termopsidae). Ann Entomol Soc Am 88:120–128Google Scholar
  24. Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243CrossRefGoogle Scholar
  25. Buston PM, Zink AG (2009) Reproductive skew and the evolution of conflict resolution: a synthesis of transactional and tug-of-war models. Behav Ecol 20:672–684CrossRefGoogle Scholar
  26. Charnov EL (1978) Evolution of eusocial behavior: offspring choice or parental parasitism? J Theor Biol 75:451PubMedCrossRefGoogle Scholar
  27. Choe JC, Crespi BJ (1997) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  28. Clément JL (1986) Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): geographic and seasonal variations. Sociobiology 11:311–323Google Scholar
  29. Cleveland LR, Hall SR, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–342Google Scholar
  30. Collins NM (1983) The utilization of nitrogen resources by termites (Isoptera). In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell Scientific Publications, Oxford, pp 381–412Google Scholar
  31. Craig R (1979) Parental manipulation, kin selection, and the evolution of altruism. Evolution 33:319–334CrossRefGoogle Scholar
  32. Craig R (1982) Evolution of male workers in the Hymenoptera. J Theor Biol 94:95–105CrossRefGoogle Scholar
  33. Craig R (1983) Subfertility and the evolution of eusociality by kin selection. J Theor Biol 100:379–397CrossRefGoogle Scholar
  34. Crespi BJ (1994) Three conditions for the evolution of eusociality: are they sufficient? Insectes Soc 41:395–400CrossRefGoogle Scholar
  35. Crespi BJ (1996) Comparative analysis of the origins and losses of eusociality: causal mosaics and historical uniqueness. In: Martins E (ed) Phylogenies and the comparative method in animal behavior. Oxford University Press, New York, pp 253–287Google Scholar
  36. Crespi BJ, Ragsdale JE (2000) A skew model for the evolution of sociality via manipulation: why it is better to be feared than loved. Proc Biol Sci 267:821–828PubMedCrossRefGoogle Scholar
  37. Crosland MWJ, Crozier RH (1986) Myrmecia pilosula, an ant with only one pair of chromosomes. Science 231:1278PubMedCrossRefGoogle Scholar
  38. Crozier RH (2008) Advanced eusociality, kin selection and male haploidy. Aust J Entomol 47:2–8CrossRefGoogle Scholar
  39. Crozier RH, Jermiin LS, Chiotis M (1997) Molecular evidence for a Jurassic origin of ants. Naturwissenschaften 84:22–23CrossRefGoogle Scholar
  40. DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441PubMedCrossRefGoogle Scholar
  41. Duffy JE (1996) Eusociality in a coral-reef shrimp. Nature 381:512–514CrossRefGoogle Scholar
  42. Field J, Foster W (1999) Helping behaviour in facultatively eusocial hover wasps: an experimental test of the subfertility hypothesis. Anim Behav 57:633–636PubMedCrossRefGoogle Scholar
  43. Field J, Shreeves G, Sumner S, Casiraghi M (2000) Insurance-based advantage to helpers in a tropical hover wasp. Nature 404:869–871PubMedCrossRefGoogle Scholar
  44. Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400PubMedCrossRefGoogle Scholar
  45. Fletcher DJC, Ross KG (1985) Regulation of reproduction in eusocial Hymenoptera. Annu Rev Entomol 30:319–343CrossRefGoogle Scholar
  46. Foster KR, Wenseleers T, Ratnieks FLW (2006) Kin selection is the key to altruism. Trends Ecol Evol 21:57–60PubMedCrossRefGoogle Scholar
  47. Fraser VS, Kaufmann B, Oldroyd BP, Crozier RH (2000) Genetic influence on caste in the ant Camponotus consobrinus. Behav Ecol Sociobiol 47:188–194CrossRefGoogle Scholar
  48. Gadagkar R (1991a) On testing the role of genetic asymmetries created by haplodiploidy in the evolution of eusociality in the Hymenoptera. J Genet 70:1–31CrossRefGoogle Scholar
  49. Gadagkar R (1991b) Demographic predisposition to the evolution of eusociality: a hierarchy of models. Proc Natl Acad Sci U S A 88:10993–10997PubMedCrossRefGoogle Scholar
  50. Gadagkar R (2001) The social biology of Ropalidia marginata: toward understanding the evolution of eusociality. Harvard University Press, Cambridge, MAGoogle Scholar
  51. Gadagkar R, Vinutha C, Shanubhogue A, Gore AP (1988) Pre-imaginal biasing of caste in a primitively eusocial insect. Proc R Soc Lond B 233:175–189CrossRefGoogle Scholar
  52. Gardner A, Foster KR (2008) The evolution and ecology of cooperation – history and concepts. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 1–36CrossRefGoogle Scholar
  53. Gay FJ, Calaby JH (1970) Termites of the Australian region. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, pp 393–448Google Scholar
  54. Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70–83PubMedGoogle Scholar
  55. Grassé PP (1986) Termitologia, vol 3. Masson, ParisGoogle Scholar
  56. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, CambridgeGoogle Scholar
  57. Hamilton WD (1964) The genetical evolution of social behavior I, II. J Theor Biol 7:1–52PubMedCrossRefGoogle Scholar
  58. Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Annu Rev Ecol Syst 3:193–232CrossRefGoogle Scholar
  59. Hamilton WD (1978) Evolution and diversity under bark. In: Mound LA, Waloff N (eds) Diversity of insect faunas. Symposium of the Royal Entomological Society of London, vol 9. Halsted, New York, NY, pp 154–175Google Scholar
  60. Hansell MH (1987) Nest building as a facilitating and limiting factor in the evolution of eusociality in the Hymenoptera. In: Harvey PH, Partridge L (eds) Oxford surveys in evolutionary biology, vol 4. Oxford University Press, Oxford, pp 155–181Google Scholar
  61. Hansell MH (1996) Wasps make nests: nests make conditions. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper-wasps. Oxford University Press, Oxford, pp 272–289Google Scholar
  62. Hare L (1937) Termite phylogeny as evidenced by soldier mandible development. Ann Entomol Soc Am 30:459–486Google Scholar
  63. Hartfelder K, Emlen DJ (2005) Endocrine control of insect polyphenism. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 3. Elsevier, Oxford, pp 651–703CrossRefGoogle Scholar
  64. Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2:199–216Google Scholar
  65. Hayashi Y, Lo N, Miyata H et al (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987PubMedCrossRefGoogle Scholar
  66. Heath H (1928) Fertile termite soldiers. Biol Bull 54:324–326CrossRefGoogle Scholar
  67. Heinze J (2008a) Social plasticity: ecology, genetics, and the structure of ant societies. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 129–150CrossRefGoogle Scholar
  68. Heinze J (2008b) The demise of the standard ant. Myrmecol News 11:9–20Google Scholar
  69. Helanterä H, Bargum K (2007) Pedigree relatedness, not greenbeard genes, explains eusociality. Oikos 116:217CrossRefGoogle Scholar
  70. Higashi M, Yamamura N, Abe T, Burns TP (1991) Why don’t all termite species have a sterile worker caste? Proc R Soc Lond B 246:25–29CrossRefGoogle Scholar
  71. Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 169–188Google Scholar
  72. Hölldobler B, Wilson EO (1990) The Ants. Belknap Press, Cambridge, MAGoogle Scholar
  73. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216PubMedCrossRefGoogle Scholar
  74. Hunt JH (1991) Nourishment and the evolution of the social Vespidae. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, NY, pp 426–450Google Scholar
  75. Hunt JH (1994) Nourishment and social evolution in wasps sensu lato. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 211–244Google Scholar
  76. Hunt JH (1999) Trait mapping and salience in the evolution of eusocial vespid wasps. Evolution 53:225–237CrossRefGoogle Scholar
  77. Hunt JH (2007) The evolution of social wasps. Oxford University Press, OxfordCrossRefGoogle Scholar
  78. Hunt JH, Amdam GV (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308:264–267PubMedCrossRefGoogle Scholar
  79. Husseneder C, Brandl R, Epplen C et al (1999) Within-colony relatedness in a termite species: genetic roads to eusociality? Behaviour 136:1045–1063CrossRefGoogle Scholar
  80. Imms AD (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal protozoa, and general observations on the Isoptera. Phil Trans R Soc Lond 209:75–180Google Scholar
  81. Inward DJG, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331PubMedCrossRefGoogle Scholar
  82. Inward DJG, Vogler AP, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967PubMedCrossRefGoogle Scholar
  83. Jeanne RL (2009) Vibrational signals in social wasps: a role in caste determination? In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, MA, 243–265Google Scholar
  84. Johns PM, Howard KJ, Breisch NL et al (2009) Nonrelatives inherit colony resources in a primitive termite. Proc Natl Acad Sci U S A 106:17452–17456PubMedCrossRefGoogle Scholar
  85. Julian GE, Fewell JH, Gadau J et al (2002) Genetic determination of the queen caste in an ant hybrid zone. Proc Natl Acad Sci U S A 99:8157–8160PubMedCrossRefGoogle Scholar
  86. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794CrossRefGoogle Scholar
  87. Kennedy JS (1947) Child labor of the termite society versus adult labor of the ant society. Sci Mon 65:309–324Google Scholar
  88. Kerr WE (1950) Evolution of the mechanism of caste determination in the genus Melipona. Evolution 4:7–13CrossRefGoogle Scholar
  89. Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc R Soc Lond B 266:571–578CrossRefGoogle Scholar
  90. Korb J (2007) Workers of a drywood termite do not work. Front Zool 4:7PubMedCrossRefGoogle Scholar
  91. Korb J (2008) The ecology of social evolution in termites. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 151–174CrossRefGoogle Scholar
  92. Korb J, Heinze J (2008) The ecology of social life: a synthesis. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 245–260CrossRefGoogle Scholar
  93. Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behav Ecol Sociobiol 56:89–95CrossRefGoogle Scholar
  94. Korb J, Schneider K (2007) Does kin structure explain the occurrence of workers in a lower termite? Evol Ecol 21:817–828CrossRefGoogle Scholar
  95. Kukuk PF, Eickwort GC, Raveret-Richter M et al (1989) Importance of the sting in the evolution of sociality in the Hymenoptera. Ann Entomol Soc Am 82:1–5Google Scholar
  96. Kumano N, Kasuya E (2001) Why do workers of the primitively eusocial wasp Polistes chinensis antennalis remain at their natal nest? Anim Behav 61:655–660CrossRefGoogle Scholar
  97. LaFage JP, Nutting WL (1978) Nutrient dynamics of termites. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 165–244Google Scholar
  98. Lacy RC (1980) The evolution of eusociality in termites: a haplodiploid analogy? Am Nat 116:449–451CrossRefGoogle Scholar
  99. Lacy RC (1984) The evolution of termite sociality: reply to Leinaas. Am Nat 123:876–879CrossRefGoogle Scholar
  100. Legendre F, Whiting MF, Bordereau C et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627PubMedCrossRefGoogle Scholar
  101. Lehmann L, Keller L (2006) The evolution of cooperation and altruism-a general framework and a classification of models. J Evol Biol 19:1365–1376PubMedCrossRefGoogle Scholar
  102. Lehmann L, Keller L, West S, Roze D (2007) Group selection and kin selection: two concepts but one process. Proc Natl Acad Sci U S A 104:6736–6739PubMedCrossRefGoogle Scholar
  103. Lenz M (1994) Food resources, colony growth and caste development in wood-feeding termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 159–209Google Scholar
  104. Lenz M, Barrett RA, Williams ER (1985) Reproductive strategies in Cryptotermes: neotenic production in indigenous and ‘tramp’species in Australia (Isoptera: Kalotermitidae). In: Watson J, Okot-Kotber B, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, Oxford, pp 147–163Google Scholar
  105. Light SF (1943) The determination of caste of social insects. Q Rev Biol 18:46–63CrossRefGoogle Scholar
  106. Light SF, Weesner FM (1951) Further studies on the production of supplementary reproductives in Zootermopsis (Isoptera). J Exp Zool 117:397–414CrossRefGoogle Scholar
  107. Lin N, Michener CD (1972) Evolution of sociality in insects. Q Rev Biol 47:131CrossRefGoogle Scholar
  108. Linksvayer TA, Wade MJ (2005) The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. Q Rev Biol 80:317–336PubMedCrossRefGoogle Scholar
  109. Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804PubMedCrossRefGoogle Scholar
  110. Lüscher M (1952) Die Produktion und Elimination von Ersatzgeschlechtstieren bei der Termite Kalotermes flavicollis (Fabr.). Z Vgl Physiol 34:123–141Google Scholar
  111. Lüscher M (1964) Die spezifische Wirkung männlicher und weiblicher Ersatzgeschlechtstiere auf die Entstehung von Ersatzgeschlechtstieren bei der Termite Kalotermes flavicollis (Fabr.). Insectes Soc 11:79–90CrossRefGoogle Scholar
  112. Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694–739Google Scholar
  113. Matthews RW (1991) Evolution of social behavior in sphecid wasps. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, NY, pp 570–602Google Scholar
  114. Michener CD (1974) The social behavior of the bees. Belknap Press, Cambridge, MAGoogle Scholar
  115. Michener CD (1975) A taxonomic study of African allodapine bees. Bull Am Mus Nat Hist 155:67–240Google Scholar
  116. Michener CD (1985) From solitary to eusocial: need there be a series of intervening species? In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Gustav Fischer, Stuttgart, pp 293–305Google Scholar
  117. Michener CD (1990) Reproduction and castes in social halictine bees. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Heidelberg, pp 77–121Google Scholar
  118. Michener CD, Brothers DJ (1974) Were workers of eusocial Hymenoptera initially altruistic or oppressed? Proc Natl Acad Sci U S A 71:671–674PubMedCrossRefGoogle Scholar
  119. Michod RE (1982) The theory of kin selection. Annu Rev Ecol Syst 13:23–55CrossRefGoogle Scholar
  120. Mill AE (1984) Exploding termites – an unusual defensive behaviour. Entomol Mon Mag 120:179–183Google Scholar
  121. Miyata H, Furuichi H, Kitade O (2004) Patterns of neotenic differentiation in a subterranean termite, Reticulitermes speratus (Isoptera: Rhinotermitidae). Entomol Sci 7:309–314CrossRefGoogle Scholar
  122. Morgan FD (1959) The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae). Trans R Soc N Z 86:155–195Google Scholar
  123. Myles TG (1986) Reproductive soldiers in the Termopsidae (Isoptera). Pan-Pac Entomol 62:293–299Google Scholar
  124. Myles TG (1988) Resource inheritance in social evolution from termites to man. In: Slobodchikoff CN (ed) The ecology of social behavior. Academic Press. New York, NY, pp 379–423Google Scholar
  125. Nagin R (1972) Caste determination in Neotermes jouteli (Banks). Insectes Soc 19:39–61CrossRefGoogle Scholar
  126. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 57–104Google Scholar
  127. Nalepa CA, Bandi C (2000) Characterizing the ancestors: paedomorphosis and termite evolution. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 53–75Google Scholar
  128. Noirot C (1969) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites (vol 1). Academic Press, New York, NY, pp 311–350Google Scholar
  129. Noirot C (1985a) Differentiation of reproductives in higher termites. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste differentiation in social insects. Oxford Pergamon, Oxford, pp 177–186Google Scholar
  130. Noirot C (1985b) Pathways of caste development in the lower termites. In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste Differentiation in Social Insects. Oxford Pergamon, Oxford, 41–58Google Scholar
  131. Noirot C (1989) Social structure in termite societies. Ethol Ecol Evol 1:1–17CrossRefGoogle Scholar
  132. Noirot C (1990) Sexual castes and reproductive strategies in termites. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin, pp 5–35Google Scholar
  133. Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 121–140Google Scholar
  134. Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Cell Mol Life Sci 43:851–860CrossRefGoogle Scholar
  135. Noirot C, Pasteels JM (1988) The worker caste is polyphyletic in termites. Sociobiology 14:15–20Google Scholar
  136. Noirot C, Thorne BL (1988) Ergatoid reproductives in Nasutitermes columbicus (Isoptera, Termitidae). J Morphol 195:83–93CrossRefGoogle Scholar
  137. Nonacs P, Liebert AE, Starks PT (2006) Transactional skew and assured fitness return models fail to predict patterns of cooperation in wasps. Am Nat 167:467–480PubMedCrossRefGoogle Scholar
  138. Nonacs P, Reeve HK (1995) The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76:953–967CrossRefGoogle Scholar
  139. O‘Donnell S (1998) Reproductive caste determination in eusocial wasps (Hymenoptera: Vespidae). Annu Rev Entomol 43:323–346PubMedCrossRefGoogle Scholar
  140. Okasha S (2006) Evolution and the levels of selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  141. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton, NJGoogle Scholar
  142. Pamilo P (1991) Evolution of the sterile caste. J Theor Biol 149:75–95PubMedCrossRefGoogle Scholar
  143. Pardi L (1948) Dominance order in Polistes wasps. Physiol Zool 21:1–13PubMedGoogle Scholar
  144. Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu Rev Entomol 46:601–630PubMedCrossRefGoogle Scholar
  145. Pellens R, D’Haese CA, Bellés X et al (2007) The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: phylogenetic evidence for modification of the “shift-in-dependent-care” hypothesis with a new subsocial cockroach. Mol Phylogenet Evol 43:616–626PubMedCrossRefGoogle Scholar
  146. Pen I, Weissing FJ (2000) Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc R Soc Lond B 267:2411–2418CrossRefGoogle Scholar
  147. Pereboom JJM, Velthuis HHW, Duchateau MJ (2003) The organisation of larval feeding in bumblebees (Hymenoptera, Apidae) and its significance to caste differentiation. Insectes Soc 50:127–133CrossRefGoogle Scholar
  148. Poinar GO, Danforth BN (2006) A fossil bee from Early Cretaceous Burmese amber. Science 314:614PubMedCrossRefGoogle Scholar
  149. Queller DC (1989) The evolution of eusociality: reproductive head starts of workers. Proc Natl Acad Sci U S A 86:3224–3226PubMedCrossRefGoogle Scholar
  150. Queller DC (1994) Extended parental care and the origin of eusociality. Proc Roy Soc Lond B 256:105–111CrossRefGoogle Scholar
  151. Queller DC (1996) The origin and maintenance of eusociality: the advantage of extended parental care. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasps (vol 12). Oxford University Press, Oxford, pp 218–234Google Scholar
  152. Queller DC, Strassmann JE (1998) Kin selection and social insects. BioScience 48:165–175CrossRefGoogle Scholar
  153. Queller DC, Zacchi F, Cervo R et al (2000) Unrelated helpers in a social insect. Nature 405:784–787PubMedCrossRefGoogle Scholar
  154. Ragsdale JE (1999) Reproductive skew theory extended: the effect of resource inheritance on social organization. Evol Ecol Res 1:859–874Google Scholar
  155. Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217–236CrossRefGoogle Scholar
  156. Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Ann Rev Entomol 51:581–608CrossRefGoogle Scholar
  157. Ratnieks FLW, Reeve HK (1991) The evolution of queen-rearing nepotism in social Hymenoptera: effects of discrimination costs in swarming species. J Evol Biol 4:93–115CrossRefGoogle Scholar
  158. Ratnieks FLW, Wenseleers T (2008) Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol Evol 23:45–52PubMedCrossRefGoogle Scholar
  159. Reeve HK (1991) Polistes. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, NY, pp 99–148Google Scholar
  160. Reeve HK, Hölldobler B (2007) The emergence of a superorganism through intergroup competition. Proc Natl Acad Sci U S A 104:9736PubMedCrossRefGoogle Scholar
  161. Reeve HK, Keller L (2001) Tests of reproductive-skew models in social insects. Annu Rev Entomol 46:347–385PubMedCrossRefGoogle Scholar
  162. Reeve HK, Peters JM, Nonacs P, Starks PT (1998) Dispersal of first workers in social wasps: causes and implications of an alternative reproductive strategy. Proc Natl Acad Sci U S A 95:13737–13742PubMedCrossRefGoogle Scholar
  163. Reeve HK, Ratnieks F (1993) Queen-queen conflict in polygynous societies: mutual tolerance and reproductive skew. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, pp 45–85Google Scholar
  164. Reeve HK, Starks PT, Peters JM, Nonacs P (2000) Genetic support for the evolutionary theory of reproductive transactions in social wasps. Proc R Soc Lond B 267:75–79CrossRefGoogle Scholar
  165. Reuter M, Keller L (2001) Sex ratio conflict and worker production in eusocial Hymenoptera. Am Nat 158:166–177PubMedCrossRefGoogle Scholar
  166. Richards MH, French D, Paxton RJ (2005) It’s good to be queen: classically eusocial colony structure and low worker fitness in an obligately social sweat bee. Mol Ecol 14:4123–4133PubMedCrossRefGoogle Scholar
  167. Roisin Y (1988) Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphology 107:339–347CrossRefGoogle Scholar
  168. Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143:751–765CrossRefGoogle Scholar
  169. Roisin Y (1999) Philopatric reproduction, a prime mover in the evolution of termite sociality? Insectes Soc 46:297–305CrossRefGoogle Scholar
  170. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119Google Scholar
  171. Roisin Y, Pasteels JM (1991) Polymorphism in the giant cocoa termite, Neotermes papua (Desneux). Insectes Soc 38:263–272CrossRefGoogle Scholar
  172. Röseler PF (1985) Endocrine basis of dominance and reproduction in polistine paper wasps. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer, Sunderland, MA, pp 259–272Google Scholar
  173. Röseler PF (1991) Reproductive competition during colony establishment. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, NY, pp 309–335Google Scholar
  174. Rosengaus RB, Lefebvre ML, Carlock DM, Traniello JFA (2000) Socially transmitted disease in adult reproductive pairs of the dampwood termite Zootermopsis angusticollis. Ethol Ecol Evol 12:419–433CrossRefGoogle Scholar
  175. Roubaud E (1916) Recherches biologiques sur les guëpes solitaires et sociales d‘Afrique. La genèse de la vie sociale et l’évolution de l’instinct maternel chez les vespides. Ann Sc Nat Zool 1:1–160Google Scholar
  176. Sanetra M, Crozier RH (2002) Daughters inherit colonies from mothers in the ‘living-fossil’ ant Nothomyrmecia macrops. Naturwissenschaften 89:71–74PubMedCrossRefGoogle Scholar
  177. Scharf ME, Ratliff CR, Wu-Scharf D et al (2005) Effects of juvenile hormone III on Reticulitermes flavipes: changes in hemolymph protein composition and gene expression. Insect Biochem Mol Biol 35:207–215PubMedCrossRefGoogle Scholar
  178. Schwarz MP, Richards MH, Danforth BN (2006) Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Annu Rev Entomol 52:127–150CrossRefGoogle Scholar
  179. Seeley TD (1995) The wisdom of the hive: the social physiology of Honey Bee colonies. Harvard University Press, Cambridge, MAGoogle Scholar
  180. Seger J (1983) Conditional relatedness, recombination, and the chromosome number of insects. In: Rhodin AGJ, Miyata K (eds) Advances in herpetology and evolutionary biology. Essays in honor of Ernst E. Mayr. Harvard University Press, Cambridge, MA, pp 596–612Google Scholar
  181. Seger J (1991) Cooperation and conflict in social insects. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford, pp 338–373Google Scholar
  182. Sen R, Gadagkar R (2005) Males of the social wasp Ropalidia marginata can feed larvae, given an opportunity. Anim Behav 71:345–350CrossRefGoogle Scholar
  183. Sewell JJ, Watson JAL (1981) Developmental pathwavs in Australian species of Kalotermes Hagen (Isoptera). Sociobiology 6:243–324Google Scholar
  184. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe J, Crespi B (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, UK, pp 52–93Google Scholar
  185. Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869–876CrossRefGoogle Scholar
  186. Sherman PW (1979) Insect chromosome numbers and eusociality. Am Nat 113:925–935CrossRefGoogle Scholar
  187. Sherman PW, Jarvis JUM, Alexander RD (1991) Biology of the Naked Mole-Rat. Princeton University Press, Princeton, NJGoogle Scholar
  188. Sledge MF, Boscaro F, Turillazzi S (2001) Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav Ecol Sociobiol 49:401–409CrossRefGoogle Scholar
  189. Smith AR, Wcislo WT, O’Donnell S (2003) Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae). Behav Ecol Sociobiol 54:22–29CrossRefGoogle Scholar
  190. Smith AR, Wcislo WT, O’Donnell S (2007) Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav Ecol Sociobiol 61:1111–1120CrossRefGoogle Scholar
  191. Springhetti A (1969) II controllo sociale della differenziazione degli alati In Kalotermes flavicollis (Isoptera). Ann Univ Ferrara (Sez 3) 3:73–96Google Scholar
  192. Starr CK (1985) Enabling mechanisms in the origin of sociality in the Hymenoptera – the sting’s the thing. Ann Entomol Soc Am 78:836–840Google Scholar
  193. Starr CK (1989) In reply, is the sting the thing? Ann Entomol Soc Am 82:6–8Google Scholar
  194. Starr CK (1990) Holding the fort: colony defense in some primitively social wasps. In: Evans DL, Schmidt JO (eds) Insect defenses: adaptive mechanisms and strategies of prey and predators. State University of New York Press, Albany, NY, pp 421–463Google Scholar
  195. Starr CK (1991) The nest as the locus of social life. In: Ross KG, Matthews RW (eds) The social biology of wasps. Comstock Publishing Associates. Ithaca, New York, NY, pp 520–539Google Scholar
  196. Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes Soc 48:1–13CrossRefGoogle Scholar
  197. Strohm E, Liebig J (2008) Why are so many bees but so few digger wasps social? The effect of provisioning mode and helper efficiency on the distribution of sociality among the Apoidea. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 109–128CrossRefGoogle Scholar
  198. Templeton AR (1979) Chromosome number, quantitative genetics and eusociality. Am Nat 113:937–941CrossRefGoogle Scholar
  199. Thompson GJ, Hebert PDN (1998) Population genetic structure of the neotropical termite Nasutitermes nigriceps (Isoptera: Termitidae). Heredity 80:48–55CrossRefGoogle Scholar
  200. Thompson GJ, Kitade O, Lo N et al (2000) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13:869–881CrossRefGoogle Scholar
  201. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54CrossRefGoogle Scholar
  202. Thorne BL, Breisch NL, Haverty MI (2002) Longevity of kings and queens and first time of production of fertile progeny in dampwood termite (Isoptera; Termopsidae; Zootermopsis) colonies with different reproductive structures. J Anim Ecol 71:1030–1041CrossRefGoogle Scholar
  203. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci U S A 100:12808–12813PubMedCrossRefGoogle Scholar
  204. Thorne BL, Carpenter JM (1992) Phylogeny of the Dictyoptera. Syst Entomol 17:253–268CrossRefGoogle Scholar
  205. Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77–93Google Scholar
  206. Thorne BL, Lenz M (2001) Population and colony structure of Stolotermes inopinus and S. ruficeps (Isoptera: Stolotermitinae) in New Zealand. N Z Entomol 24:63–70CrossRefGoogle Scholar
  207. Thorne BL, Noirot C (1982) Ergatoid reproductives in Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae). Int J Insect Morphol Embryol 11:213–226CrossRefGoogle Scholar
  208. Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48:283–306PubMedCrossRefGoogle Scholar
  209. Toth AL, Varala K, Newman TC et al (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318:441PubMedCrossRefGoogle Scholar
  210. Trivers RL, Hare H (1976) Haploidploidy and the evolution of the social insect. Science 191:249–263PubMedCrossRefGoogle Scholar
  211. Tschinkel WR (1988) Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 22:103–115CrossRefGoogle Scholar
  212. Vargo EL, Passera L (1991) Pheromonal and behavioral queen control over the production of gynes in the Argentine ant Iridomyrmex humilis (Mayr). Behav Ecol Sociobiol 28:161–169CrossRefGoogle Scholar
  213. Vehrencamp SL (1983) A model for the evolution of despotic versus egalitarian societies. Anim Behav 31:667–682CrossRefGoogle Scholar
  214. Wade MJ (2001) Maternal effect genes and the evolution of sociality in haplo-diploid organisms. Evolution 55:453–458PubMedCrossRefGoogle Scholar
  215. Waller DA, LaFage JP (1987) Nutritional ecology of termites. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York, NY, pp 487–532Google Scholar
  216. Waloff N (1957) The effect of the number of queens of the ant Lasius flavus (Fab.) (Hym., Formicidae) on their survival and on the rate of development of the first brood. Insectes Soc 4:391–408CrossRefGoogle Scholar
  217. Ward PS (1983) Genetic relatedness and colony organization in a species complex of ponerine ants. Behav Ecol Sociobiol 12:285–299CrossRefGoogle Scholar
  218. Wenseleers T, Helanterä H, Hart A, Ratnieks FLW (2004) Worker reproduction and policing in insect societies: an ESS analysis. J Evol Biol 17:1035–1047PubMedCrossRefGoogle Scholar
  219. West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Q Rev Biol 50:1–33CrossRefGoogle Scholar
  220. West-Eberhard MJ (1978) Polygyny and the evolution of social behavior in wasps. J Kansas Entomol Soc 51:832–856Google Scholar
  221. West-Eberhard MJ (1987) The epigenetical origins of insect sociality. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. Verlag J Peperny, München, pp 369–372Google Scholar
  222. West-Eberhard MJ (1996) Wasp societies as microcosms for the study of development and evolution. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper-wasps. Oxford University Press, New York, NY, pp 290–317Google Scholar
  223. Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34CrossRefGoogle Scholar
  224. Wheeler DE (1991) The developmental basis of worker caste polymorphism in ants. Am Nat 138:1218–1238CrossRefGoogle Scholar
  225. Wilfert L, Gadau J, Schmid-Hempel P (2007) Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98:189–197PubMedCrossRefGoogle Scholar
  226. Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MAGoogle Scholar
  227. Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge, MAGoogle Scholar
  228. Wilson EO (1985) The sociogenesis of insect colonies. Science 228:1489–1495PubMedCrossRefGoogle Scholar
  229. Wilson EO (1987) The earliest known ants: an analysis of the Cretaceous species and an inference concerning their social organization. Paleobiology 13:44–53Google Scholar
  230. Wilson EO (2005) Kin selection as the key to altruism: its rise and fall. Soc Res 72:1–8CrossRefGoogle Scholar
  231. Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. BioScience 58:17–25CrossRefGoogle Scholar
  232. Wilson EO, Hölldobler B (2005a) Eusociality: origin and consequences. Proc Natl Acad Sci U S A 102:13367–13371PubMedCrossRefGoogle Scholar
  233. Wilson EO, Hölldobler B (2005b) The rise of the ants: a phylogenetic and ecological explanation. Proc Natl Acad Sci U S A 102:7411–7414PubMedCrossRefGoogle Scholar
  234. Wilson DS, Wilson EO (2007) Rethinking the theoretical foundation of sociobiology. Q Rev Biol 82:327–348PubMedCrossRefGoogle Scholar
  235. Wynne-Edwards VC (1962) Animal dispersion in relation to social behaviour. Oliver and Boyd, EdinburghGoogle Scholar
  236. Yanega D (1988) Social plasticity and early-diapausing females in a primitively social bee. Proc Natl Acad Sci U S A 85:4374–4377PubMedCrossRefGoogle Scholar
  237. Zhou X, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci U S A 103:4499–4504PubMedCrossRefGoogle Scholar
  238. Zimmerman RB (1983) Sibling manipulation and indirect fitness in termites. Behav Ecol Sociobiol 12:143–145CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of MarylandCollege ParkUSA

Personalised recommendations