Morphology, Physiology, Biochemistry and Functional Design of the Termite Gut: An Evolutionary Wonderland

  • David E. BignellEmail author


The chapter reviews termite gut structure and associations with mutualists, now informed by a great increase of data on intestinal microbial diversity made possible in the last decade by molecular genomics, and in the light of contemporary theories on the origin, evolution and trophic diversification of the Isoptera. Detailed morphological descriptions are not given, but the more modern synoptic literature on anatomy, histology and in situ coiling is listed and discussed in relation to current concepts of the termite gut as a bioreactor system. Knowledge of intestinal microbiology, and of microbial physiology and metabolism, has outstripped progress in understanding secretory and absorptive processes by the gut wall and associated structures, such that the primary substrates fermented in the hindgut and the end products utilised by the termite host are still not precisely identified in many cases. Current perceptions of the specialised digestive processes of fungus-growing and soil-feeding termites are summarised, and an overarching evolutionary thesis is proposed, arguing that social organisation in termites has developed primarily to safeguard the fidelity of symbiont transmission between individuals and generations.


Malpighian Tubule Termite Species Fungus Comb High Termite Lower Termite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aanen DK, Eggleton P, Rouland-Lefèvre C et al (2002) The evolution of fungus-growing termites and their mutualistic symbionts. Proc Natl Acad Sci USA 99:14887–14892PubMedCrossRefGoogle Scholar
  2. Adams L, Boopathy R (2005) Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresource Technol 96:1592–1598CrossRefGoogle Scholar
  3. Anklin-Mühlemann R, Bignell DE, Veivers PC et al (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940CrossRefGoogle Scholar
  4. Badertscher S, Gerber C, Leuthold RH (1983) Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav Ecol Sociobiol 12:115–119CrossRefGoogle Scholar
  5. Berchtold M, Chatzinotas A, Schönhuber W et al (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Archiv Microbiol 172:407–416CrossRefGoogle Scholar
  6. Berlanga M, Paster BJ, Guerrero R (2007) Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol 10:133–139PubMedGoogle Scholar
  7. Bignell DE (1981) Nutrition and digestion. In: Bell WJ, Adiyodi KG (eds) The American cockroach. Chapman and Hall, London, pp 57–86CrossRefGoogle Scholar
  8. Bignell DE (1984) Direct potentiometric determination of redox potentials of the gut contents in the termite Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J Insect Physiol 30:169–174CrossRefGoogle Scholar
  9. Bignell DE (1989) Relative assimilations of 14C-labelled microbial tissues and 14C-plant fibre ingested with leaf litter by the millipede Glomeris marginata under experimental conditions. Soil Biol Biochem 21:819–827CrossRefGoogle Scholar
  10. Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 131–159Google Scholar
  11. Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208Google Scholar
  12. Bignell DE (2006) Termites as soil engineers and soil processors. In: König H and Varma, A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 183–220CrossRefGoogle Scholar
  13. Bignell DE, Anderson JM, Crosse R (1991) Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Microbiol Ecol 85:151–160Google Scholar
  14. Bignell DE, Constantino R, Czudi C et al (2008) Macrofauna. In: Moreira FMS, Huising J, Bignell DE (eds) A handbook of tropical soil biology: sampling and characterization of below-ground biodiversity. Earthscan, London, pp 43–75Google Scholar
  15. Bignell DE, Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insect Soc 42:57–69CrossRefGoogle Scholar
  16. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387Google Scholar
  17. Bignell DE, Oskarsson H, Anderson JM (1979) Association of actinomycete-like bacteria with soil-feeding termites. Appl Environ Microbiol 37:339–342PubMedGoogle Scholar
  18. Bignell DE, Oskarsson H, Anderson JM (1980) Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). J Gen Microbiol 117:393–403PubMedGoogle Scholar
  19. Bignell DE, Oskarsson H, Anderson JM (1982) Formation of membrane-bounded secretory granules in the midgut epithelium of a termite, Cubitermes severus, and a possible intercellular route of discharge. Cell Tissue Res 222:187–200PubMedCrossRefGoogle Scholar
  20. Bignell DE, Oskarsson H, Anderson JM et al (1983) Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil-feeding termites Procubitermes aburiensis Sjöstedt and Cubitermes severus Silvestri (Termitidae, Termitinae). J Zool 201:445–480CrossRefGoogle Scholar
  21. Bitsch C, Noirot C (2002) Gut characters and phylogeny of the higher termites (Isoptera: Termitidae). A cladistic analysis. Ann Soc Entomol Fr 38:201–210Google Scholar
  22. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformation in the soil feeding termite: a review. Eur J Soil Biol 36:117–125CrossRefGoogle Scholar
  23. Brauman A, Bignell DE, Tayasu I (2000) Soil-feeding termites: biology, microbial associations and digestive mechanisms. In Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 233–259Google Scholar
  24. Brauman A, Doré J, Bignell DE et al (2001) Molecular phylogenetic profiling of microbial communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36PubMedCrossRefGoogle Scholar
  25. Brauman A, Kane MD, Labat M et al (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387PubMedCrossRefGoogle Scholar
  26. Brauman A, Labat M, Garcia JL (1990) Preliminary studies on the gut microbiota of the soil feeding termite Cubitermes speciosus. In: Lesel R (ed) Microbiology of poikilotherms. Elsevier Science, Amsterdam, pp 73–77Google Scholar
  27. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231Google Scholar
  28. Breznak JA (2002) Phylogenetic diversity and physiology of termite gut spirochetes. Integr Comp Biol 42:313–318PubMedCrossRefGoogle Scholar
  29. Breznak JA (2006) Termite gut spirochetes. In: Radolph JD, Lukehart SA (eds) Pathogenic Treponema: molecular and cellular biology. Horizon Scientific Press, Norwich, pp 421–444Google Scholar
  30. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  31. Breznak JA, Leadbetter J (2006) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, NY, pp 318–329CrossRefGoogle Scholar
  32. Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of soil invertebrates. Springer, Berlin, pp 243–269CrossRefGoogle Scholar
  33. Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21CrossRefGoogle Scholar
  34. Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, NY, pp 439–474CrossRefGoogle Scholar
  35. Brune A (2007) Woodworker’s digest. Nature 450:487–488PubMedCrossRefGoogle Scholar
  36. Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687PubMedGoogle Scholar
  37. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269PubMedCrossRefGoogle Scholar
  38. Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127CrossRefGoogle Scholar
  39. Butler JHA, Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11:507–513CrossRefGoogle Scholar
  40. Buxton RD (1981) Changes in the composition and activities of termite communities in relation to changing rainfall. Oecologia 51:371–378CrossRefGoogle Scholar
  41. Capinera JL (ed) (2008) Encyclopedia of entomology. Springer, LondonGoogle Scholar
  42. Cookson LJ (1987) 14C-lignin degradation by three Australian termite species. Wood Sci Technol 21:11–25Google Scholar
  43. Cookson LJ (1988) The site and mechanisms of 14C-lignin degradation by Nasutitermes exitiosus. J Insect Physiol 34:409–414CrossRefGoogle Scholar
  44. Costa-Leonardo AM (1995) Morphology of the digestive tube in the termite Serritermes serrifer (Isoptera, Serritermitidae). Naturalia 20:31–44Google Scholar
  45. Costa-Leonardo AM, Landim CC (1997) Microorganisms of the digestive tract of Brazilian termites (Isoptera, Termitidae). Ciencia Cult J Braz Assoc Adv Sci 49:266–268Google Scholar
  46. Czolij R, Slaytor M, Veivers PC, O’Brien R (1984) Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Int J Insect Morphol Embryol 13:337–355CrossRefGoogle Scholar
  47. Davies RG, Eggleton P, Dubbin WE et al (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877CrossRefGoogle Scholar
  48. De Souza OFF, Brown VK (1994) Effect of habitat fragmentation on Amazonian termite communities. J Trop Ecol 10:197–206CrossRefGoogle Scholar
  49. Desmukh I (1989) How important are termites in the production ecology of African savannas? Sociobiology 15:155–168Google Scholar
  50. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92PubMedCrossRefGoogle Scholar
  51. Donovan SE (2002) A morphological study of the enteric valves of the Afrotropical Apicotermitinae (Isoptera: Termitidae). J Nat Hist 36:1823–1840CrossRefGoogle Scholar
  52. Donovan SE, Eggleton P, Bignell DE (2001a) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366CrossRefGoogle Scholar
  53. Donovan SE, Eggleton P, Dubbin WE et al (2001b) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabital heterogeneity in tropical forests. Pedobiologia 45:1–11CrossRefGoogle Scholar
  54. Donovan SE, Jones DT, Sands WA, Eggleton P (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513CrossRefGoogle Scholar
  55. Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedCrossRefGoogle Scholar
  56. Dow JAT (1987) Insect midgut function. Advs Insect Physiol 19:187–328CrossRefGoogle Scholar
  57. Droge S, Limper U, Emtiazi F et al (2004) In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J Gen Appl Microbiol 51:57–64CrossRefGoogle Scholar
  58. Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046PubMedGoogle Scholar
  59. Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25–51Google Scholar
  60. Eggleton P (2006) The termite gut habitat: its evolution and co-evolution. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 373–404CrossRefGoogle Scholar
  61. Eggleton P, Bignell DE, Sands WA et al (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Phil Trans R Soc Lond B 351:51–68CrossRefGoogle Scholar
  62. Eggleton P, Davies RG, Bignell DE (1998) Body size and energy use in termites (Isoptera): the responses of soil-feeders and wood-feeders differ in a tropical forest assemblage. Oikos 81:525–530CrossRefGoogle Scholar
  63. Eggleton P, Homathevi R, Jeeva D et al (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ecotropica 3:119–128Google Scholar
  64. Eggleton P, Tayasu I (2001) Feeding groups, lifetypes, and the global ecology of termites. Ecol Res 16:941–960CrossRefGoogle Scholar
  65. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification and rise to ecological dominance. Am Mus Novit 3650:1–27CrossRefGoogle Scholar
  66. Fall S, Brauman A, Chotte JL (2001) Comparative distribution of organic matter in particle and aggregate size fraction in the mounds of termites with different feeding habits in Senegal: Cubitermes nikoloensis and Macrotermes bellicosus. Appl Soil Ecol 17:131–140CrossRefGoogle Scholar
  67. Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes nikoloensis) and its mound. Appl Environ Microbiol 73:5199–5208PubMedCrossRefGoogle Scholar
  68. Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 28:191–199CrossRefGoogle Scholar
  69. Fontes LR (1987) Morphology of the worker digestive tube of the soil-feeding nasute termites (Isoptera, Termitidae, Nasutitermitinae) from the Neotropical region. Rev Bras Zool 3(475-):501Google Scholar
  70. Friedrich MW, Schmitt-Wagner D, Leuders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890PubMedCrossRefGoogle Scholar
  71. Fujita A, Abe T (2002) Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites. Physiol Entomol 27:76–78CrossRefGoogle Scholar
  72. Fujita A, Minamoto T, Shimizu I, Abe T (2002) Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite, Reticulitermes speratus. Insect Biochem Mol 32:1615–1624CrossRefGoogle Scholar
  73. Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123CrossRefGoogle Scholar
  74. Garnier-Sillam E, Harry M (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structural stability. Insect Soc 42:167–185CrossRefGoogle Scholar
  75. Garnier-Sillam E, Toutain F (1995) Distribution of polysaccharides within the humic compounds of soil subjected to a humivorous termite Thoracotermes macrothorax Sjöstedt. Pedobiologia 39:462–469Google Scholar
  76. Geib SM, Filley TR, Hatcher PG et al (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937PubMedCrossRefGoogle Scholar
  77. Godoy MC (2004) Gut structure of two species of the Neotropical genus Tauritermes Krishna (Isoptera: Kalotermitidae). Neotrop Entomol 33:163–167CrossRefGoogle Scholar
  78. Harazano K, Yamashita M, Shinzato N et al (2007) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci Biotechnol Biochem 67:889–892CrossRefGoogle Scholar
  79. Herlemann DPR, Geissinger O, Brune A (2007) The termite group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol 73:6682–6685PubMedCrossRefGoogle Scholar
  80. Hethener P, Brauman A, Garcia J-L (1992) Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut a wood-feeding termite, Nasutitermes lujae. Syst Appl Micobiol 15:52–58CrossRefGoogle Scholar
  81. Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 169–187Google Scholar
  82. Holdaway FG (1933) The composition of different regions of mounds of Eutermes exitiosus Hill. Aust J Council Sci Indust Res 6:160–165Google Scholar
  83. Hölldobler B, Wilson EO (2009) The superorganism. W.W. Norton and Company, New York, NYGoogle Scholar
  84. Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 389–407Google Scholar
  85. Hongoh Y, Deevong P, Hattori S et al (2006a) Phylogenetic diversity, localization and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups in termite guts. Appl Environ Microbiol 72:6780–6788PubMedCrossRefGoogle Scholar
  86. Hongoh Y, Deevong P, Inoue T et al (2005) Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599PubMedCrossRefGoogle Scholar
  87. Hongoh Y, Ekpornprasit L, Inoue T et al (2006b) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516PubMedCrossRefGoogle Scholar
  88. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). FEMS Microbiol Ecol 44:231–242PubMedCrossRefGoogle Scholar
  89. Hopkins DW, Chudek JA, Bignell DE et al (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil- and litter-dwelling insects. Biodegradation 9:423–431PubMedCrossRefGoogle Scholar
  90. Hungate RE (1946) The symbiotic utilization of cellulose. J Elisha Mitch Sci S 62:9–24Google Scholar
  91. Hyodo F, Azuma J-I, Abe T (1999) Estimation of effect of passage through the gut of a lower termite Coptotermes formosanus Shiraki, on lignin by solid-state CP/MAS 13C NMR. Holzforschung 53:244–246CrossRefGoogle Scholar
  92. Hyodo F, Inoue T, Azuma J-J, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658CrossRefGoogle Scholar
  93. Hyodo F, Tayasu I, Inoue T et al (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193CrossRefGoogle Scholar
  94. Inoue T, Kitade O, Yoshimura T, Yamaoka I (2000) Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 235–242Google Scholar
  95. Inoue T, Murashima K, Azuma J-I et al (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242PubMedCrossRefGoogle Scholar
  96. Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967PubMedCrossRefGoogle Scholar
  97. Ji R, Brune A (2001) Tansformation and mineralization of 14C-labelled bacterial cells, protein, peptidoglycan, and cellulose by soil-feeding termites. Biol Fert Soils 33:166–174CrossRefGoogle Scholar
  98. Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37:1648–1655CrossRefGoogle Scholar
  99. Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283CrossRefGoogle Scholar
  100. Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labelled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291CrossRefGoogle Scholar
  101. Johnson RA (1979) Configuration of the digestive tube as an aid to identification of worker Termitidae (Isoptera). Syst Entomol 4:31–38CrossRefGoogle Scholar
  102. Jones DT, Susilo F-X, Bignell DE et al (2003) Termite assemblage collapses along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391CrossRefGoogle Scholar
  103. Kambhampati S, Eggelton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1–23Google Scholar
  104. Kappler A, Brune A (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229CrossRefGoogle Scholar
  105. Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227CrossRefGoogle Scholar
  106. Katsumata KS, Jin Z, Hori K, Iiyama K (2007) Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J Wood Sci 53:419–426CrossRefGoogle Scholar
  107. Köhler T, Stingl U, Meuser K, Brune A (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ Microbiol 10:1260–1270PubMedCrossRefGoogle Scholar
  108. Konate S, Le Roux X, Verdier B, Lepage M (2003) Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Funct Ecol 17:305–314CrossRefGoogle Scholar
  109. König H (2006) Bacillus species in the intestine of termites and other soil invertebrates. J Appl Microbiol 101:620–627PubMedCrossRefGoogle Scholar
  110. König H, Fröhlich A, Berchtold M, Wenzel M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Devel Microbiol 6:125–156Google Scholar
  111. König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 271–301CrossRefGoogle Scholar
  112. Korb J (2007) Termites. Curr Biol 17:R995–R999PubMedCrossRefGoogle Scholar
  113. Korb J (2008) Termites, hemimetabolous diploid white ants? Front Zool 5:15PubMedCrossRefGoogle Scholar
  114. Kovoor J (1968) L’intestin d’un termite supérieur (Microcerotermes edentatus Wasman, Amitermitinae). Histophysiologie, et flore bacterienne symbiotique. Bull Biol Fr Belg 102:45–58Google Scholar
  115. Kuhnigk T, Borst E-M, Ritter A et al (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst Appl Microbiol 17:76–85CrossRefGoogle Scholar
  116. Kuhnigk T, Branks J, Krekeler D et al (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149CrossRefGoogle Scholar
  117. Landim CC, Costa-Leonardo AM (1990) Functional adaptations of the epithelium from different gut segments of Grigiotermes bequaerti (Isoptera, Termitidae, Apicotermitinae). Rev Bras Entomol 34:669–678Google Scholar
  118. Lavelle P, Bignell DE, Lepage M et al (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:59–193Google Scholar
  119. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter filiformis sp. nov. and Methanobrevibacter curvatus sp. nov. isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  120. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689PubMedCrossRefGoogle Scholar
  121. Lefebvre T, Miambi E, Pando A et al (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276CrossRefGoogle Scholar
  122. Lilburn TG, Kim KS, Ostrom NE et al (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498PubMedCrossRefGoogle Scholar
  123. Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804PubMedCrossRefGoogle Scholar
  124. Mackenzie LM, Muigai AT, Osir EO et al (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjöstedt). Afr J Biotechnol 6:658–667Google Scholar
  125. Margulis L, Jorgensen JZ, Dolan S et al (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241PubMedCrossRefGoogle Scholar
  126. Miyata R, Noda N, Tamaki H et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251PubMedCrossRefGoogle Scholar
  127. Mora P, Lattaud C, Rouland C (1998) Enzymes involved in lignin degradation among termites with various feeding habits. Actes des Colloques Insectes Soc 11:77–80Google Scholar
  128. Nalepa C, Bignell DE, Bandi C (2001) Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201CrossRefGoogle Scholar
  129. Ngugi DK, Tsanuo MK, Boga HI (2007) Benzoic acid-degrading bacteria from the intestinal tract of Macrotermes michaelseni Sjöstedt. J Basic Microbiol 47:87–92CrossRefGoogle Scholar
  130. Noirot C (1992) From wood-feeding to soil-feeding: an important trend in termite evolution. In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 107–119Google Scholar
  131. Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol Fr 31:197–226Google Scholar
  132. Noirot C (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. higher termites (Termitidae). Ann Soc Entomol Fr 37:431–471Google Scholar
  133. Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 121–139Google Scholar
  134. Noirot C, Noirot-Timothée C (1977) Fine structure of the rectum in termites (Isoptera): a comparative study. Tissue Cell 9:693–710PubMedCrossRefGoogle Scholar
  135. Nunes L, Bignell DE, Lo N, Eggleton P (1997) On the respiratory quotient (RQ) of termites (Insecta: Isoptera). J Insect Physiol 43:749–758PubMedCrossRefGoogle Scholar
  136. O’Brien RW, Slaytor M (1982) Role of microorganisms in the metabolism of termites. Aust J Biol Sci 35:239–262Google Scholar
  137. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613PubMedGoogle Scholar
  138. Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microb Biot 61:1–9Google Scholar
  139. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352PubMedCrossRefGoogle Scholar
  140. Ohkuma M, Iida T, Ohtoko K et al (2005) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol 35:646–655PubMedCrossRefGoogle Scholar
  141. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468PubMedGoogle Scholar
  142. Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395CrossRefGoogle Scholar
  143. Ohkuma M, Noda S, Hongoh Y, Kudo T (2002) Diverse bacteria related to the Bacteroides subgroup of the CFB phylum within the gut communities of various termites. Biosci Biotechnol Biochem 66:87–84Google Scholar
  144. Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50PubMedCrossRefGoogle Scholar
  145. Ohkuma M, Noda S, Usami R et al (1996) Diversity of nitrogen fixing genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Appl Environ Microbiol 62:2747–2752PubMedGoogle Scholar
  146. Ohkuma M, Sato T, Noda S et al (2007) The candidate phylum ‘termite group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476PubMedCrossRefGoogle Scholar
  147. Ohkuma M, Shimizu H, Thongaram T et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151CrossRefGoogle Scholar
  148. Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) guts. FEMS Microbiol Lett 26:107–112CrossRefGoogle Scholar
  149. Paul J, Saxena S, Varma A (1993) Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties. World J Microbiol Biotechnol 9:108–112CrossRefGoogle Scholar
  150. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4605PubMedCrossRefGoogle Scholar
  151. Potts RC, Hewitt PH (1973) The distribution of intestinal bacteria and cellulose activity in the harvester termite Trinervitermes trinervoides (Nasutitermitinae). Insect Soc 20:215–220CrossRefGoogle Scholar
  152. Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80PubMedCrossRefGoogle Scholar
  153. Roose-Amsaleg C, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6:462–469PubMedCrossRefGoogle Scholar
  154. Rouland C, Chararas C, Renoux J (1986) Etudes comparées des osidases de trois espèces de termites Africain à regime alimentaire différent. CR Acad Sci III Vie 302:341–345Google Scholar
  155. Rouland C, Chararas C, Renoux J (1989) Les osidases digestives présente dans l’intestin moyen, l’intestin postérieur et les glandes salivaires du termite humivore Crenetermes albotarsalis. CR Acad Sci III Vie 308:281–285Google Scholar
  156. Rouland C, Lenoir-Labé F (1998) Microflore intestinale symbiotique des insectes xylophages: mythe ou réalité? Cah Agric 7:37–47Google Scholar
  157. Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 731–756Google Scholar
  158. Rouland-Lefèvre C, Inoue T, Johima T (2006) Termitomyces/termite interactions. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 335–350CrossRefGoogle Scholar
  159. Sands WA (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bull Br Mus Nat Hist (Ent) Suppl 18:3–244Google Scholar
  160. Sands WA (1992) The termite genus Amitermes in Africa and the Middle East. Nat Res Inst Bull 51:1–140Google Scholar
  161. Sands WA (1995) New species and genera of soil-feeding termites (Isoptera: Termitidae) from African savannas. J Nat Hist 29:1483–1515CrossRefGoogle Scholar
  162. Sands WA (1998) The identification of worker castes of termite genera from soils of Africa and the Middle East. CAB International, WallingfordGoogle Scholar
  163. Schafer A, Konrad R, Kuhnigk T et al (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478PubMedCrossRefGoogle Scholar
  164. Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496PubMedGoogle Scholar
  165. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003a) Phylogenetic diversity, abundance and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017PubMedCrossRefGoogle Scholar
  166. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003b) Axial dynamics, and interspecies similarlity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024PubMedCrossRefGoogle Scholar
  167. Shinzato N, Matsumoto T, Yamaoka I et al (2007) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analysed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840Google Scholar
  168. Shulz MW, Slaytor M, Hogan ME, O’Brien RW (1986) Components of cellulose from the higher termite, Nasutitermes walkeri (Hill). Insect Biochem 16:929–932CrossRefGoogle Scholar
  169. Slaytor M (2000) Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 307–332Google Scholar
  170. Slaytor M, Veivers PC, Lo N (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochem Mol Biol 27:291–303CrossRefGoogle Scholar
  171. Sleaford F, Bignell DE, Eggleton P (1996) A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecol Entomol 21:279–288CrossRefGoogle Scholar
  172. Taguchi F, Chang JD, Mizukami N et al (1993) Isolation of a hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B, from termites. Can J Microbiol 39:726–730CrossRefGoogle Scholar
  173. Tanaka H, Aoyagi H, Shina S et al (2006) Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71:907–917PubMedCrossRefGoogle Scholar
  174. Taprab Y, Johjima T, Maeda Y et al (2006) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl Environ Microbiol 71:7696–7704CrossRefGoogle Scholar
  175. Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites (Isoptera): an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Entomol 22:343–351CrossRefGoogle Scholar
  176. Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505PubMedGoogle Scholar
  177. Tholen A, Brune A (2000) Impact of oxygen on the metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449PubMedCrossRefGoogle Scholar
  178. Thongaram T, Hongoh Y, Kosono S et al (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238PubMedCrossRefGoogle Scholar
  179. Thongaram T, Kosono S, Ohkuma M et al (2003) Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18:152–159CrossRefGoogle Scholar
  180. Thorne BT, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77–93Google Scholar
  181. Tokuda G, Lo N, Watanabe H et al (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228PubMedCrossRefGoogle Scholar
  182. Tokuda G, Nakamura T, Murakami R, Yamaoka I (2001) Morphology of the digestive system in the wood-feeding termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae]. Zool Sci 18:869–877CrossRefGoogle Scholar
  183. Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339PubMedCrossRefGoogle Scholar
  184. Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of Endo-ß-1, 4-glucanase. Zool Sci 14:83–93PubMedCrossRefGoogle Scholar
  185. Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199–2207PubMedCrossRefGoogle Scholar
  186. Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240PubMedCrossRefGoogle Scholar
  187. Traniello JFA, Leuthold RH (2000) Behaviour and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141–168Google Scholar
  188. Trinkerl M, Breunig A, Schauder R, König H (1990) Desulphovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Syst Appl Microbiol 13:372–377CrossRefGoogle Scholar
  189. Vu AT, Nguyen NC, Leadbetter JR (2004) Iron reduction in the metal-rich guts of wood-feeding termites. Geobiology 2:239–247CrossRefGoogle Scholar
  190. Ward N, Staley JT, Fuerst JA et al (2006) The order Planctomycetales, including the genera Planctomyces, Pirellula, Gemmata and Isosphaera and the Candidatus genera Bracadia, Kuenenia and Scalindua. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, NY, pp 757–793CrossRefGoogle Scholar
  191. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  192. Watanabe Y, Shinzate N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801PubMedCrossRefGoogle Scholar
  193. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178PubMedCrossRefGoogle Scholar
  194. Wenzel M, Schönig I, Berchtold M et al (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40PubMedCrossRefGoogle Scholar
  195. Wolfersberger MG (2000) Amino acid transport in insects. Annu Rev Entomol 45:111–120PubMedCrossRefGoogle Scholar
  196. Wood TG (1996) The agricultural importance of termites in the tropics. Agr Zool Rev 7:117–155Google Scholar
  197. Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termite. Cambridge University Press, Cambridge, pp 245–292Google Scholar
  198. Yamada A, Inoue T, Wjwatwitaya D, Ohkuma M (2007) A new concept of the feeding group composition of termites (Isoptera) in tropical ecosystems: carbon source competitions among fungus-growing termites, soil-feeding termites, litter-layer microbes, and fire. Sociobiology 50:135–153Google Scholar
  199. Yara K, Jahana K, Hayashi H (1989) In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitinae). Sociobiology 15:2247–2260Google Scholar
  200. Zhou XG, Smith JA, Koehler PG et al (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUK
  2. 2.Institute for Tropical Biology and Conservation, Universiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations