Termite Mound Architecture, from Function to Construction

  • Judith KorbEmail author


Termite mounds function as nests for their inhabitants, which are colonies of small potentially vulnerable insects that are also susceptible to environmental fluctuations. Thus, the mound protects against enemies and hostile environmental condition. Mounds vary in shape, between and even within species. Yet, different species might also build similar mounds. Using current knowledge on fungus-growing termites and magnetic termites, I will show evidence that mound architecture is an adaptation to local environmental conditions. There is no single explanation for mound shape. The significance of different factors (e.g. thermoregulation, gas exchange) varies between species and between environments, and different mechanisms exist to achieve homeostatic nest conditions. In the second part of this review, I summarize what is known about the mechanisms involved in building such complex mounds. The construction of mounds that are adapted to local conditions does not imply a purposeful design. Rather, our current understanding suggests that it is the result of self-organisation, in interaction with stigmergy and templates. There remain many open questions in understanding termite mound architecture. To resolve them requires detailed studies and a closer cooperation among disciplines.


Termite Mound Central Shaft Building Behaviour Fungus Comb Soil Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Joanna Darlington made very helpful comments on the manuscript.


  1. Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855PubMedCrossRefGoogle Scholar
  2. Bagine RKN, Darlington JPEC, Kat P, Ritchie JM (1989) Nest structure, population structure and genetic differentiation of some morphologically similar species of Macrotermes in Kenya. Sociobiology 15:125–132Google Scholar
  3. Batra LR, Batra SWT (1966) Fungus-growing termites of tropical India and associated fungi. J Kans Entomol Soc 39:725–738Google Scholar
  4. Bollazzi M, Kronenbitter J, Roces F (2008) Soil temperature, digging behaviour, and the adaptive value of nest depth in South American species of Acromyrmex leaf-cutting ants. Oecologia 158:165–175PubMedCrossRefGoogle Scholar
  5. Bonabeau E, Theraulaz G, Deneubourg JL (1998a) Latency, time and absence of group effect. Insect Soc 45:191–195CrossRefGoogle Scholar
  6. Bonabeau E, Theraulaz G, Deneubourg JL et al (1998b) A model of emergence of pillars, walls and royal chambers in termite nests. Phil Trans R Soc Lond B 353:1561–1576CrossRefGoogle Scholar
  7. Bonabeau E, Theraulaz G, Deneubourg JL et al (1997) Self-organization in social insects. Trends Ecol Evol 12:188–193PubMedCrossRefGoogle Scholar
  8. Brandl R, Hyodo F, vonKorff-Schmising M (2007) Divergence times in the termite Macrotermes (Isoptera: Termitidae). Mol Phylog Evol 45:239–250CrossRefGoogle Scholar
  9. Bruinsma OH (1979) An analysis of building behaviour of the termite Macrotermes subhyalinus. PhD thesis. Wageningen Agricultural UniversityGoogle Scholar
  10. Camazine S, Deneubourg JL, Franks N et al (2001) Self-organization in biological systems. Princeton University Press, Princeton, NJGoogle Scholar
  11. Coaton WGH (1961) Association of termites and fungi. Afr Wildlife 15:39–54Google Scholar
  12. Collins NM (1977) The population ecology and energetics of Macrotermes bellicosus (Smeathman) Isoptera. PhD thesis. University of LondonGoogle Scholar
  13. Collins NM (1981a) Consumption of wood by artificially isolated colonies of the fungus-growing termite Macrotermes bellicosus. Entomol Exp Appl 29:313–320CrossRefGoogle Scholar
  14. Collins NM (1981b) Populations, age structure and survivorship of colonies of Macrotermes bellicosus (Isoptera: Macrotermitinae). J Anim Ecol 50:293–311CrossRefGoogle Scholar
  15. Darlington JPEC (1984) Two types of mound built by the termite Macrotermes subhyalinus in Kenya. Insect Sci Appl 5:481–492Google Scholar
  16. Darlington JPEC (1985a) Attacks by doryline ants and termite nest defences (Hymenoptera; Formicidae; Isoptera; Termitidae). Sociobiology 11:189–200Google Scholar
  17. Darlington JPEC (1985b) The structure of mature mounds of the termite Macrotermes michaelseni in Kenya. Insect Sci Appl 6:149–156Google Scholar
  18. Darlington JPEC (1989) Ventilation systems in termite nests in Kenya. Sociobiology 15:263–264Google Scholar
  19. Darlington JPEC (1994) Nutrition and evolution in fungus-growing ants. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 105–130Google Scholar
  20. Darlington JPEC (1997) Comparison of nest structure and caste parameters of sympatric species of Odontotermes (Termitidae, Macrotermitinae) in Kenya. Insect Soc 44:393–408CrossRefGoogle Scholar
  21. Darlington JPEC, Zimmerman PR, Greenberg J et al (1997) Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecology 13:491–510CrossRefGoogle Scholar
  22. Darlington JPEC, Zimmerman PR, Wandiga SO (1992) Populations in nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecol 8:73–85CrossRefGoogle Scholar
  23. Deneubourg JL (1977) Application de l’ordre par fluctuations a la description de certaines etapes de la construction du nid chez les termites. Insect Soc 24:117–130CrossRefGoogle Scholar
  24. Duelli P, Duelli-Klein R (1978) Die magnetische Nestausrichtung der australischen Kompasstermite Amitermes meridionalis Mitteilungen der Schweizerischen Entomologischen Gesellschaft. Bull Soc Entomol Suisse 51:337–342Google Scholar
  25. Gay FJ, Calaby JH (1970) Termites of the Australian region. In: Krishna K, Weesner FM (eds) Biology of termites II. Academic Press, New York, NY, pp 393–448Google Scholar
  26. Geiger R (1965) The climate near the ground. Harvard University Press, CambridgeGoogle Scholar
  27. Glover R (1967) Further notes on some termites of Northern Somalia. East Afr Wildlife J 5:121–132Google Scholar
  28. Grassé P-P (1937a) Ecologies animale et microclimat. C R Trav Bull Admin Assoc Fr Avan Sci 383:383–390Google Scholar
  29. Grassé P-P (1937b) Le Bellicositermes jeanneli n.sp. constructeur de grandes termitières a cheminée. Bull Soc Entomol Fr 42:71–73Google Scholar
  30. Grassé P-P (1939) La reconstruction du nid et le travail collectif chez les termites supérieurs. J Psych Norm Pathol 30:370–396Google Scholar
  31. Grassé P-P (1945) Recherches sur la biologie des termites champignonnistes (Macrotermitinae). Ann Sci Nat Zool Biol Anim 11:97–171Google Scholar
  32. Grassé P-P (1959) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insect Soc 6:41–81CrossRefGoogle Scholar
  33. Grassé P-P (1967) Nouvelles expériences sur le termite de Müller (Macrotermes mulleri) et considération sur la théorie de la stigmergie. Insect Soc 14:73–102CrossRefGoogle Scholar
  34. Grassé P-P (1984) Termitologia Tome II. Fondation des societes-construction. Masson, ParisGoogle Scholar
  35. Grigg GC (1973) Some consequences of the shape and orientation of “magnetic” termite mounds. Aust J Zool 21:231–237CrossRefGoogle Scholar
  36. Grigg G, Jacklyn P, Taplin L (1988) The effects of buried magnets on colonies of Amitermes spp building magnetic mounds in Northern Australia. Physiol Entomol 13:285–289CrossRefGoogle Scholar
  37. Grigg GC, Underwood AJ (1977) An analysis of orientation of magnetic termite mounds. Aust J Zool 25:87–94CrossRefGoogle Scholar
  38. Hansell MH (2005) Animal architecture. Oxford University Press, OxfordCrossRefGoogle Scholar
  39. Harris WV (1956) Termite mound-building. Insect Soc 3:261–268CrossRefGoogle Scholar
  40. Heinrich B (1993) The hot-blooded insects. Strategies and mechanisms of thermoregulation. Harvard University Press, CambridgeCrossRefGoogle Scholar
  41. Hill GF (1942) Termites (Isoptera) from the Australian region. CSIRO, MelbourneGoogle Scholar
  42. Holdaway FG, Gay FJ (1948) Temperature studies of the habitat of Eutermes exitiosus with special reference to the temperature within the mound. Aust J Sci Res 1:464–493Google Scholar
  43. Jack RL (1896) Note on the “meridional anthills” of the Cape York Peninsula. Proc R Soc Queensland 12:99–100Google Scholar
  44. Jacklyn PM (1991) Evidence for adaptive variation in the orientation of Amitermes (Isoptera, Termitinae) mounds from northern Australia. Aust J Zool 39:569–578CrossRefGoogle Scholar
  45. Jacklyn PM (1992) “Magnetic” termite mound surfaces are oriented to suit wind and shade conditions. Oecologia 91:385–395CrossRefGoogle Scholar
  46. Jacklyn PM, Munro U (2002) Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera: Termitinae). Aust J Zool 50:357–368CrossRefGoogle Scholar
  47. Johnson RA, Thomas RJ, Wood TG, Swift MJ (1981) The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J Nat Hist 15:751–756CrossRefGoogle Scholar
  48. Jones RJ (1979) Expansion of the nest of Nasutitermes costalis. Insect Soc 26:322–342CrossRefGoogle Scholar
  49. Jones RJ (1980) Gallery construction by Nasutitermes costalis: polyethism and the behaviour of individuals. Insect Soc 27:5–28CrossRefGoogle Scholar
  50. Kleineidam C, Ernst R, Roces F (2001) Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88:301–305PubMedCrossRefGoogle Scholar
  51. Kleineidam C, Roces F (2000) Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insect Soc 47:241–248CrossRefGoogle Scholar
  52. Korb J (1997) Lokale und regionale Verbreitung von Macrotermes bellicosus (Isoptera; Macrotermitinae): Stochastik oder Deterministik. Wissenschaft und Technik, BerlinGoogle Scholar
  53. Korb J (2003a) The shape of compass termite mounds and its biological significance. Insect Soc 50:218–221CrossRefGoogle Scholar
  54. Korb J (2003b) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212–219PubMedGoogle Scholar
  55. Korb J, Linsenmair K (1998) The effects of temperature on the architecture and distribution of Macrotermes bellicosus (Isoptera: Macrotermitinae) mounds in different habitats of a West African Guinea savanna. Insect Soc 45:51–65CrossRefGoogle Scholar
  56. Korb J, Linsenmair KE (1999a) The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav Ecol 10:312–316CrossRefGoogle Scholar
  57. Korb J, Linsenmair KE (1999b) Reproductive success of Macrotermes bellicosus (Isoptera, Macrotermitinae) in two neighbouring habitats. Oecologia 118:183–191CrossRefGoogle Scholar
  58. Korb J, Linsenmair KE (2000a) Thermoregulation of termite mounds: what role does ambient temperature and metabolism of the colony play? Insect Soc 47:357–363CrossRefGoogle Scholar
  59. Korb J, Linsenmair KE (2000b) Ventilation of termite mounds: new results require a new model. Behav Ecol 11:486–494CrossRefGoogle Scholar
  60. Korb J, Linsenmair KE (2001) Resource availability and distribution patterns, indicators of competition between Macrotermes bellicosus and other macro-detritivores in the Comoé National Park, Côte d’Ivoire. Afr J Ecol 39:257–265CrossRefGoogle Scholar
  61. Lepage M (1984) Distribution, density and evolution of Macrotermes bellicosus nests (Isoptera: Macrotermitinae) in the north-east of Ivory Coast. J Anim Ecol 53:107–117CrossRefGoogle Scholar
  62. Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht, pp 333–361Google Scholar
  63. Leuthold RH, Barella L, Deneubourg JL, Goss S (1990) The formation of polyethic structures in the termite Macrotermes bellicosus. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Oxford & IBH, New Delhi, pp 389–390Google Scholar
  64. Loos R (1964) A sensitive anemometer and its use for the measurement of air currents in nests of Macrotermes natalensis (Haviland). In: Bouillon A (ed) Etudes sur les termites Africains. Masson, Paris, pp 364–372Google Scholar
  65. Lys JA, Leuthold RH (1991) Task-specific distribution of the worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): observations of behaviour during food acquisition. Insect Soc 38:161–170CrossRefGoogle Scholar
  66. Lüscher M (1955) Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (Haviland). Acta Trop 12:289–307PubMedGoogle Scholar
  67. Lüscher M (1956) Die Lufterneuerung im Nest der Termite Macrotermes natalensis (Haviland). Insect Soc 3:273–276CrossRefGoogle Scholar
  68. Lüscher M (1961) Air-conditioned termite nests. Sci Am 205:138–145CrossRefGoogle Scholar
  69. Noirot C (1970) The nests of termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, NY, pp 311–350Google Scholar
  70. Noirot C, Darlington J (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Press, Dordrecht, pp 121–140Google Scholar
  71. Ozeki M, Isagi Y, Tsubota H et al (2007) Phylogeography of an Australian termite, Amitermes laurensis (Isoptera, Termitidae), with special reference to the variety of mound shapes. Mol Phylogenet Evol 42:236–247PubMedCrossRefGoogle Scholar
  72. O’Toole DV, Robinson PA, Myerscough MR (1999) Self-organized criticality in termite architecture: a role for crowding in ensuring ordered nest expansion. J Theor Biol 198:305–327PubMedCrossRefGoogle Scholar
  73. Pomeroy DE (1977) The distribution and abundance of large termite mounds in Uganda. J Appl Ecol 14:465–475CrossRefGoogle Scholar
  74. Pomeroy DE (1978) The abundance of large termite mounds in Uganda in relation to their environment. J Appl Ecol 15:51–63CrossRefGoogle Scholar
  75. Rohrig A, Kirchner WH, Leuthold RH (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect Soc 46:71–77CrossRefGoogle Scholar
  76. Ruelle JE (1962) Etudes de quelques variables du microclimat du nid de Macrotermes natalensis (Hav.) (Isoptera, Termitidae) en rapport avec le declenchement de l’essaimage. PhD Thesis, Lovanium University, LeopoldvilleGoogle Scholar
  77. Ruelle JE (1964) L’architecture du nid de Macrotermes natalensis et sons fonctionnel. In: Bouillon A (ed) Etudes sur les termites Africains. Masson, Paris, pp 327–362Google Scholar
  78. Ruelle JE (1970) A revision of the termites of the genus Macrotermes from the Ethiopian Region (Isoptera: Termitidae). Bull Br Mus Nat Hist (Ent) 24:365–444Google Scholar
  79. Ruelle JE (1975) Macrotermes michaelseni (Sjöstedt): a new name for Macrotermes mossambicus (Hagen) (Isoptera: Termitidae). J Entomol Soc S Afr 40:119Google Scholar
  80. Ruelle JE (1985) Order Isoptera. In: Scholtz CH, Holm E (eds) Insects of southern Africa. Butterworth, Durban, p 502Google Scholar
  81. Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, NY, pp 495–524Google Scholar
  82. Schuurman G, Dangerfield JM (1996) Mound dimensions, internal structure and potential colony size in the fungus growing termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Sociobiology 27:29–38Google Scholar
  83. Seeley T, Heinrich B (1981) Regulation of temperature in the nests of social insects. In: Heinrich B (ed) Insect thermoregulation. Wiley, New York, NY, pp 160–234Google Scholar
  84. Smeathman H (1781) Some account of the termites which are found in Africa and other hot climates. Phil Trans R Soc Lond 71:139–192Google Scholar
  85. Spain AV, Okello-Oloya T, John RD (1983) Orientation of the termitaria of two species of Amitermes (Isoptera: Termitinae) from Northern Queensland. Aust J Zool 31:167–177CrossRefGoogle Scholar
  86. Stuart AM (1967) Alarm, defense and construction behavior relationships in termites (Isoptera). Science 156:1123–1125PubMedCrossRefGoogle Scholar
  87. Theraulaz G, Bonabeau E, Deneubourg JL (1999) The mechanisms and rules of coordinated building in social insects. In: Detrain C, Deneubourg JL, Pasteels J (eds) Information processing in social insects. Birkhauser, Basel, pp 309–330CrossRefGoogle Scholar
  88. Traniello J, Leuthold R (2000) Behavior and ecology of foraging termites. In: Abe T Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141–168Google Scholar
  89. Turner JS (1994) Ventilation and thermal constancy of a colony of a southern African termite (Odontotermes transvaalensis, Macrotermitinae). J Arid Environ 28:231–248CrossRefGoogle Scholar
  90. Turner JS (2000a) Architecture and morphogenesis in the mound of Macrotermes michaelseni (Sjöstedt) (Isoptera: Termitidae, Macrotermitinae) in northern Namibia. Cimbebasia 16:143–175Google Scholar
  91. Turner JS (2000b) The extended organism: the physiology of animal-built structures. Harvard University Press, CambridgeGoogle Scholar
  92. Turner JS (2001) On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Physiol Biochem Zool 74:798–822PubMedCrossRefGoogle Scholar
  93. Veivers PC, Mühlemann R, Slaytor M et al (1991) Digestion, diet and polyethism in two fungus-growing termites Macrotermes subhyalinus Rambur and M. michaelseni Sjöstedt. J Insect Physiol 37:675–682CrossRefGoogle Scholar
  94. Vogel S (1978) Organisms that capture currents. Sci Am 239:108–117CrossRefGoogle Scholar
  95. Vogel S, Bretz WL (1972) Interfacial organisms; passive ventilation in the velocity gradients near surface. Science 175:210–211PubMedCrossRefGoogle Scholar
  96. Weir JS (1972) Air flow, evaporation and mineral accumulation in mounds of Macrotermes subhyalinus (Rambur). J Anim Ecol 42:509–520CrossRefGoogle Scholar
  97. Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect–fungus interactions. Academic Press, New York, NY, pp 69–92Google Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Behavioural BiologyUniversity of OsnabrueckOsnabrueckGermany

Personalised recommendations