Advertisement

An Introduction to Termites: Biology, Taxonomy and Functional Morphology

  • Paul EggletonEmail author
Chapter

Abstract

Termites are fully social insects, with an extraordinary range of morphological forms. It is now clearly established that they are a very specialised form of cockroach, with far more complex social systems than other cockroaches, and with a far wider range of diets. Termites all live in colonies, with reproductives (kings, queens, and nymphs), soldiers and “helpers” (true workers and also immature stages that assist within the colony to some extent). Termite morphological and anatomical adaptations are caste-specific, with structures evolving independently in reproductives (to allow dispersal, pair bonding and fecundity), workers (foraging and feeding, tending and feeding of immatures, nest construction) and soldiers (only defence). The modifications seen in termite societies are similar to those found in the somatic parts of multicellular organisms, leading to the idea that a termite colony is best thought of as a single organism (or, more controversially, a “superorganism”). The structures that termites build, the mounds and nests, might also be defined as part of this organism. Mounds and nests contribute greatly to the well-being of termite colonies by providing shelter, fortifications and climate control. Overall, termites have amongst the most complex social, anatomical and structural adaptations of any animal.

Keywords

Dead Wood Fore Wing Malpighian Tubule Termite Mound Marginal Tooth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Backwell LR, d’Errico F (2001) Evidence of termite foraging by Swartkrans early hominids. Proc Natl Acad Sci U S A 98:1358–1363PubMedCrossRefGoogle Scholar
  2. Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc Lond B Biol Sci 364:3191–3207PubMedCrossRefGoogle Scholar
  3. Cribb BW, Stewart A, Huang H, et al (2008) Unique zinc mass in mandibles separates drywood termites from other groups of termites. Naturwissenschaften 95:433–441PubMedCrossRefGoogle Scholar
  4. Crosland, MWJ, Su, N-Y, Scheffrahn, RH (2005) Arolia in termites (Isoptera): functional significance and evolutionary loss. Insectes Soc, 52:63–66CrossRefGoogle Scholar
  5. Das I, Coe M (1994) Dental morphology and diet in anuran amphibians from South India. J Zool 233:417–427CrossRefGoogle Scholar
  6. Davies RG, Eggleton P, Jones DT, et al (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877CrossRefGoogle Scholar
  7. De Visser SN, Freymann BP, Schnyder H (2008) Trophic interactions among invertebrates in termitaria in the African savanna: a stable isotope approach. Ecol Entomol 33:758–764Google Scholar
  8. Dial KP, Vaughan TA (1987) Opportunistic predation on alate termites in Kenya. Biotropica 19:185–187CrossRefGoogle Scholar
  9. Donovan SE (2002) A morphological study of the enteric valves of the Afrotropical Apicotermitinae (Isoptera: Termitidae). J Nat Hist 36:1823–1840CrossRefGoogle Scholar
  10. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366CrossRefGoogle Scholar
  11. Donovan SE, Jones DT, Sands WA, Eggleton P (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513CrossRefGoogle Scholar
  12. Eggleton P, Beccaloni G, Inward D (2007) Save Isoptera: a comment on Inward et al. – response to Lo et al. Biol Lett 3:564–565CrossRefGoogle Scholar
  13. Eggleton P, Bignell DE, Sands WA, et al (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond B Biol Sci 351:51–68CrossRefGoogle Scholar
  14. Emerson AE (1965) A review of the Mastotermitidae (Isoptera), including a new fossil genus from Brazil. Am Mus Novit 2236:1–46Google Scholar
  15. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27CrossRefGoogle Scholar
  16. Higashi M, Abe T, Burns TP (1992) Carbon-nitrogen balance and termite ecology. Proc R Soc Lond B Biol Sci 249:303–308CrossRefGoogle Scholar
  17. Holldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. W. W. Norton, New York, NY and London, 522 ppGoogle Scholar
  18. Holmgren N (1909) Termitenstudien I. Anatomische Untersuchungen. Klg Svenska Vetenskapsakad Handl 44:1–215Google Scholar
  19. Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publisher, Dordrecht, pp 389–407Google Scholar
  20. Hyodo F, Tayasu L, Konaté S, et al (2008) Gradual enrichment of 15N with humification in a below-ground food web: relationship between 15N and diet age determioned using 14C. Funct Ecol 22:516–522CrossRefGoogle Scholar
  21. Inward D, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335PubMedCrossRefGoogle Scholar
  22. Inward DJG, Vogler P, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967PubMedCrossRefGoogle Scholar
  23. Jaffe K, Ramos C, Issa S (1995) Trophic interactions between ants and termites that share common cests. Ann Entomol Soc Am 88:328–333Google Scholar
  24. Jeschke JM, Tollrian R (2007) Prey swarming: which predators become confused and why? Anim Behav 74:387–393CrossRefGoogle Scholar
  25. Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37:1648–1655CrossRefGoogle Scholar
  26. Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283CrossRefGoogle Scholar
  27. Kambhampati S, Eggleton P (2000) Taxonomy and phylogrny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1–23Google Scholar
  28. Koepfli KP, Jenks SM, Eizirik E, et al (2006) Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol Phylogenet Evol 38:603–620PubMedCrossRefGoogle Scholar
  29. Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212–219PubMedGoogle Scholar
  30. Korb J (2008) Termites, hemimetabolous diploid white ants? Front Zool 5:15PubMedCrossRefGoogle Scholar
  31. Korb J, Linsenmair KE (2000) Ventilation of termite mounds: new results require a new model. Behav Ecol 11:486–494CrossRefGoogle Scholar
  32. Leal IR, Oliveira PS (1995) Behavioral ecology of theneotropical termite hunting ant Pachycondyla (=Termitopone) marginata – colony founding, group-raiding and migratory patterns. Behav Ecol Sociobiol 37:373–383CrossRefGoogle Scholar
  33. Legendre F, Whiting MF, Bordereau C, et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627PubMedCrossRefGoogle Scholar
  34. Lo N, Engel MS, Cameron S, et al (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3:562–563PubMedCrossRefGoogle Scholar
  35. Longrich NR, Currie PJ (2009) Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: implications for the systematics and ecology of the Alvarezsauridae. Cretaceous Res 30:239–252CrossRefGoogle Scholar
  36. Luo ZX, Wible JR (2005) A late Jurassic digging mammal and early mammalian diversification. Science 308:103–107PubMedCrossRefGoogle Scholar
  37. Luscher M (1951) Air-conditioned nests. Sci Am 205:138–145CrossRefGoogle Scholar
  38. Martius C, Bandeira AG, da Silva Medeiros LG (1996) Variation in termite alate swarming in rain forests of central Amazonia. Ecotropica 2:1–11Google Scholar
  39. Matsuura K (2002) Colony-level stabilization of soldier head width for head-plug defense in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Behav Ecol Sociobiol 51:172–179CrossRefGoogle Scholar
  40. Mitchell JD (2007) Swarming and pairing in the fungus-growing termite, Macrotermes natalensis (Haviland) (Isoptera: Macrotermitinae). Afr Entomol 15:153–160CrossRefGoogle Scholar
  41. Miura T, Matsumoto T (1998) Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, termitidae) in Borneo. Insectes Soc 45:17–32CrossRefGoogle Scholar
  42. Morrow EH (2004) How the sperm lost its tail: the evolution of aflagellate sperm. Biol Rev 79:795–814PubMedCrossRefGoogle Scholar
  43. Nalepa CA, Lenz M (2000) The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae. Proc R Soc Lond B Biol Sci 267:1809–1813CrossRefGoogle Scholar
  44. Noirot C (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Ann Soc Entomol Fr 37:431–471Google Scholar
  45. Noirot C, Pasteels JM (1987) Ontogenic development and evolution of the worker caste in termites. Experientia 43:851–860CrossRefGoogle Scholar
  46. Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9PubMedGoogle Scholar
  47. Perna A, Jost C, Couturier E (2008) The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95:877–884PubMedCrossRefGoogle Scholar
  48. Prestwich GD (1984) Defense-mechanisms of termites. Annu Rev Entomol 29:201–232CrossRefGoogle Scholar
  49. Riparbelli MG, Callaini G, Mercati D, et al (2009) Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera). Cell Motil Cytoskeleton 66:248–259PubMedCrossRefGoogle Scholar
  50. Roisin Y (2001) Caste sex ratios, sex linkage, and reproductive strategies in termites. Insectes Soc 48:224–230CrossRefGoogle Scholar
  51. Roux EA, Roux M, Korb J (2009) Selection on defensive traits in a sterile caste – caste evolution: a mechanism to overcome life-history trade-offs? Evol Dev 11:80–87PubMedCrossRefGoogle Scholar
  52. Ruggiero RG, Fay FM (1994) Utilization of termitarium soils by elephants and its ecological implications. Afri J Ecol 32:222–232CrossRefGoogle Scholar
  53. Sands WA (1982) Agonistic behavior of African soldierless Apicotermitinae (Isoptera, Termitidae). Sociobiology 7:61–72Google Scholar
  54. Sands WA (1998) The identification of worker castes of termite genera from soil of African and the Middle East. CAB International, Wallingford, CTGoogle Scholar
  55. Santos CA, Costa-Leonard AM (2006) Anatomy of the frontal gland and ultramorphology of the frontal tube in the soldier caste of species of Nasutitermitinae (Isoptera, Termitidae). Microsc Res Tech 69:913–918PubMedCrossRefGoogle Scholar
  56. Scholtz OI, Macleod N, Eggleton P (2008) Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology. Zool J Linn Soc Lond 153:631–650CrossRefGoogle Scholar
  57. Suzuki S, Kuroda S, Nishihara T (1995) Tool-set for termite-fishing by chimpanzees in the Ndoki Forest, Congo. Behaviour 132:219–235CrossRefGoogle Scholar
  58. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci U S A 100:12808–12813PubMedCrossRefGoogle Scholar
  59. Turner JS, Soar RM (2008) Beyond biomimicry. What termites can tell us about realizing the living building. Proceedings of the First International Conference on Industrialized, Intelligent Construction (I3CON) 1: 1–18Google Scholar
  60. Ware JL, Litman J, Klass KD, Spearman LA (2008) Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Syst Entomol 33:429–450CrossRefGoogle Scholar
  61. Weesner F (1965) The termites of the United States. The National Pest Control Association, Elizabeth, NJ, 70 ppGoogle Scholar
  62. Weesner F (1970) External anatomy. In: Krishna K, Weesner F (eds) Biology of termites, vol I. Academic Press, New York, NY, pp 1–23Google Scholar
  63. Wilson EO (1992) The effects of complex social-life on evolution and biodiversity. Oikos 63:13–18CrossRefGoogle Scholar
  64. Yarnell RW, Metcalfe DJ, Dunstone N, et al (2008) The impact of fire on habitat use by the short-snouted elephant shrew (Elephantulus brachyrhynchus) in North West Province, South Africa. Afr Zool 43:45–52CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Termite Research Group and Soil Biodiversity Programme, Entomology DepartmentNatural History MuseumLondonUK

Personalised recommendations