Skip to main content

Atomic and Molecular Complexities: Their Physical and Chemical Interpretations

  • Chapter
Statistical Complexity

Abstract

Within the present work on the meaning, interpretation and applications of the complexity measures, different order-uncertainty planes embodying relevant information-theoretical magnitudes are studied in order to analyse the information content of the position and momentum electron densities of several atomic (neutrals, singly-charged ions, isoelectronic series) and molecular (closed shells, radicals, isomers) systems. The quantities substaining those planes are the exponential and the power Shannon entropies, the disequilibrium, the Fisher information and the variance. Each plane gives rise to a measure of complexity, determined by the product of its components. In the present work, the values of the so-called López-Ruiz, Mancini and Calbet (LMC), Fisher-Shannon (FS) and Cramér-Rao (CR) complexities will be provided in both conjugated spaces and interpreted from physical and chemical points of view. Computations for atoms were carried out within a Hartree-Fock framework, while for molecules by means of CISD(T)/6-311++G(3df, 2p) wave functions. In order to have a complete information-theoretical description of these systems, it appears relevant to consider simultaneously the results in both spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sears SB, Gadre SR (1981) An information theoretic synthesis and analysis of Compton profiles. J Chem Phys 75:4626

    CAS  Google Scholar 

  2. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105:7391

    CAS  Google Scholar 

  3. Carbó-Dorca R, Arnau J, Leyda L (1980) How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int J Quant Chem 17:1185

    Google Scholar 

  4. Angulo JC, Antolín J (2007) Atomic quantum similarity indices in position and momentum spaces. J Chem Phys 126:044106

    CAS  Google Scholar 

  5. Antolín J, Angulo JC (2008) Quantum similarity indices for atomic ionization processes. Eur Phys J D 46:21

    Google Scholar 

  6. Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience, New York

    Google Scholar 

  7. Antolín J, Angulo JC, López-Rosa S (2009) Fisher and Jensen-Shannon divergences: quantitative comparisons among distributions. Application to position and momentum atomic densities. J Chem Phys 130:074110

    Google Scholar 

  8. López-Rosa S, Antolín J, Angulo JC, Esquivel RO (2009) Divergence analysis of atomic ionization processes and isoelectronic series. Phys Rev A 80:012505

    Google Scholar 

  9. Angulo JC, López-Rosa S, Antolín J (2010) Effect of the interelectronic repulsion on the information content of position and momentum atomic densities. Int J Quantum Chem 110:1738

    CAS  Google Scholar 

  10. Carbó-Dorca R, Girones X, Mezey PG (eds) (2001) Fundamentals of molecular similarity. Kluwer Academic/Plenum, Dordrecht/New York

    Google Scholar 

  11. Cioslowski J, Nanayakkara A (1993) Similarity of atoms in molecules. J Am Chem Soc 115:11213

    CAS  Google Scholar 

  12. Carbó-Dorca R, Amat L, Besalu E, Girones X, Robert D (2000) Quantum Mechanical Origin of QSAR: theory and applications. J Mol Struct, Theochem 504:181

    Google Scholar 

  13. Daudel R (1953) C R Acad Sci (Paris) 237:601

    CAS  Google Scholar 

  14. Aslangul C, Constanciel R, Daudel R, Kottis P (1972) Aspects of the localizability of electrons in atoms and molecules: loge theory and related methods. Adv Quantum Chem 6:94

    Google Scholar 

  15. Mezey PG, Daudel R, Csizmadia IG (1979) Dependence of approximate ab initio molecular loge sizes on the quality of basis functions. Int J Quant Chem 16:1009

    CAS  Google Scholar 

  16. Nalewajski RF (2003) Information principles in the loge theory. Chem Phys Lett 375:196

    CAS  Google Scholar 

  17. Wang L, Wang L, Arimoto S, Mezey PG (2006) Large-scale chirality measures and general symmetry deficiency measures for functional group polyhedra of proteins. J Math Chem 40:145

    CAS  Google Scholar 

  18. Avnir D, Meyer AY (1991) Quantifying the degree of molecular shape distortion. A chirality measure. J Mol Struct, Theochem 226:211

    Google Scholar 

  19. Cramér H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    Google Scholar 

  20. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  21. Fisher RA (1925) Statistical methods for research workers. Proc Camb Philos Soc 22:700

    Google Scholar 

  22. Frieden BR (2004) Science from Fisher information. Cambridge University Press, Cambridge

    Google Scholar 

  23. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev A 106:620

    Google Scholar 

  24. Nagy A (2006) Fisher information in a two-electron entangled artificial atom. Chem Phys Lett 425:154

    CAS  Google Scholar 

  25. Nalewajski R (2003) Information principles in the theory of electronic structure. Chem Phys Lett 372:28

    CAS  Google Scholar 

  26. Reginatto M (1998) Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys Rev A 58:1775

    CAS  Google Scholar 

  27. Romera E, Sánchez-Moreno P, Dehesa JS (2006) Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J Math Phys 47:103504

    Google Scholar 

  28. Dehesa JS, González-Férez R, Sánchez-Moreno P (2007) The Fisher-information-based uncertainty relation, Cramér-Rao inequality and kinetic energy for the D-dimensional central problem. J Phys A 40:1845

    Google Scholar 

  29. Kolmogorov AN (1965) Three approaches to the quantitative definition of information. Probl Inf Transm 1:1

    Google Scholar 

  30. Chaitin GJ (1966) On the length of programs for computing finite binary sequences. J ACM 13:547

    Google Scholar 

  31. Crutchfield JP, Shalizi KL (1999) Thermodynamic depth of causal states: Objective complexity via minimal representations. Phys Rev E 59:275

    CAS  Google Scholar 

  32. Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22:75

    Google Scholar 

  33. Grassberger P (1986) Toward a quantitative theory of self-generated complexity. Int J Theory Phys 25:907

    Google Scholar 

  34. Bennett CH (1988) Logical depth and physical complexity. In: The universal Turing machine: a half century survey. Oxford University Press, Oxford, pp 227–257

    Google Scholar 

  35. Lloyd SS, Pagels H (1988) Complexity as thermodynamic depth. Ann Phys NY 188:186

    Google Scholar 

  36. MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  37. Vitanyi PMB, Li M (2000) Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans Inf Theory 46:446

    Google Scholar 

  38. Shalizi CR, Shalizi KL, Haslinger R (2004) Quantifying self-organization with optimal predictors. Phys Rev Lett 93:118701

    Google Scholar 

  39. Rosso OA, Martin MT, Plastino A (2003) Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures. Physica A 320:497

    Google Scholar 

  40. Chatzisavvas KCh, Moustakidis ChC, Panos CP (2005) Information entropy, information distances and complexity in atoms. J Chem Phys 123:174111

    Google Scholar 

  41. Feldman DP, Crutchfield JP (1998) Measures of statistical complexity: Why? Phys Lett A 238:244

    CAS  Google Scholar 

  42. Lamberti PW, Martin MP, Plastino A, Rosso OA (2004) Intensive entropic non-triviality measure. Physica A 334:119

    Google Scholar 

  43. López-Ruiz R, Mancini HL, Calbet X (1995) A statistical measure of complexity. Phys Lett A 209:321

    Google Scholar 

  44. Shiner JS, Davison M, Landsberg PT (1999) Simple measure for complexity. Phys Rev E 59:1459

    CAS  Google Scholar 

  45. Anteonodo C, Plastino A (1996) Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity. Phys Lett A 223:348

    Google Scholar 

  46. Catalán RG, Garay J, López-Ruiz R (2002) Features of the extension of a statistical measure of complexity to continuous systems. Phys Rev E 66:011102

    Google Scholar 

  47. Martin MT, Plastino A, Rosso OA (2003) Statistical complexity and disequilibrium. Phys Lett A 311:126

    CAS  Google Scholar 

  48. López-Ruiz R (2005) Shannon information, LMC complexity and Rényi entropies: a straightforward approach. Biophys Chem 115:215

    Google Scholar 

  49. Yamano T (2004) A statistical complexity measure with nonextensive entropy and quasi-multiplicativity. J Math Phys 45:1974

    Google Scholar 

  50. Yamano T (2004) A statistical measure of complexity with nonextensive entropy. Physica A 340:131

    Google Scholar 

  51. Angulo JC (1994) Information entropy and uncertainty in D-dimensional many-body systems. Phys Rev A 50:311

    Google Scholar 

  52. Guevara NL, Sagar RP, Esquivel RO (2003) Shannon-information entropy sum as a correlation measure in atomic systems. Phys Rev A 67:012507

    Google Scholar 

  53. Romera E, Torres JJ, Angulo JC (2002) Reconstruction of atomic effective potentials from isotropic scattering factors. Phys Rev A 65:024502

    Google Scholar 

  54. Ho M, Smith VH Jr., Weaver DF, Gatti C, Sagar RP, Esquivel RO (1998) Molecular similarity based on information entropies and distances. J Chem Phys 108:5469

    CAS  Google Scholar 

  55. Zarzo A, Angulo JC, Antolín J, Yáñez RJ (1996) Maximum-entropy analysis of one-particle densities in atoms. Z Phys D 37:295

    CAS  Google Scholar 

  56. Antolín J, Zarzo A, Angulo JC, Cuchí JC (1997) Maximum-entropy analysis of momentum densities in diatomic molecules. Int J Quant Chem 61:77

    Google Scholar 

  57. Antolín J, Cuchí JC, Angulo JC (1999) Reciprocal form factors from momentum density magnitudes. J Phys B 32:577

    Google Scholar 

  58. Nagy A, Sen KD (2006) Atomic Fisher information versus atomic number. Phys Lett A 360:291

    CAS  Google Scholar 

  59. Sen KD, Panos CP, Chtazisavvas KCh, Moustakidis ChC (2007) Net Fisher information measure versus ionization potential and dipole polarizability in atoms. Phys Lett A 364:286

    CAS  Google Scholar 

  60. Hornyak I, Nagy A (2007) Phase-space Fisher information. Chem Phys Lett 437:132

    CAS  Google Scholar 

  61. Borgoo A, Godefroid M, Sen KD, de Proft F, Geerlings P (2004) Quantum similarity of atoms: a numerical Hartree-Fock and information theory approach. Chem Phys Lett 399:363

    CAS  Google Scholar 

  62. de Proft F, Ayers PW, Sen KD, Geerlings P (2004) On the importance of the density per particle (shape function) in the density functional theory. J Chem Phys 120:9969

    Google Scholar 

  63. Borgoo A, Godefroid M, Indelicato P, de Proft F, Geerlings P (2007) Quantum similarity study of atomic density functions: Insights from information theory and the role of relativistic effects. J Chem Phys 126:044102

    CAS  Google Scholar 

  64. Angulo JC, Antolín J, Sen KD (2008) Fisher-Shannon plane and statistical complexity of atoms. Phys Lett A 372:670

    CAS  Google Scholar 

  65. Onicescu O (1966) Énergie informationnelle. C R Acad Sci Paris A 263:841

    Google Scholar 

  66. Pipek J, Varga I (1992) Universal classification scheme for the spatial-localization properties of one-particle states in finite, d-dimensional systems. Phys Rev A 46:3148

    Google Scholar 

  67. Sen KD, Antolín J, Angulo JC (2007) Fisher-Shannon analysis of ionization processes and isoelectronic series. Phys Rev A 76:032502

    Google Scholar 

  68. Nagy A (2003) Fisher information in density functional theory. J Chem Phys 119:9401

    CAS  Google Scholar 

  69. Dembo A, Cover TA, Thomas JA (1991) Information theoretic inequalities. IEEE Trans Inf Theory 37:1501

    Google Scholar 

  70. Pearson JM (1997) A logarithmic Sobolev inequality on the real line. Proc Am Math Soc 125:3339

    Google Scholar 

  71. Antolín J, Angulo JC (2009) Complexity analysis of ionization processes and isoelectronic series. Int J Quant Chem 109:586

    Google Scholar 

  72. Angulo JC, Antolín J (2008) Atomic complexity measures in position and momentum spaces. J Chem Phys 128:164109

    CAS  Google Scholar 

  73. Esquivel RO, Angulo JC, Antolín J, Dehesa JS, López-Rosa S, Flores-Gallegos N (2009) Complexity analysis of selected molecules in position and momentum spaces. Preprint

    Google Scholar 

  74. Dehesa JS, Sánchez Moreno P, Yáñez RJ (2006) Cramér-Rao information plane of orthogonal hypergeometric polynomials. J Comput Appl Math 186:523

    Google Scholar 

  75. Calbet X, López-Ruiz R (2001) Tendency towards maximum complexity in a nonequilibrium isolated system. Phys Rev E 63:066116

    CAS  Google Scholar 

  76. Martin MT, Plastino A, Rosso OA (2006) Generalized statistical complexity measures: Geometrical and analytical properties. Physica A 369:439

    Google Scholar 

  77. Romera E, Nagy A (2008) Fisher-Rényi entropy product and information plane. Phys Lett A 372:6823

    CAS  Google Scholar 

  78. Antolín J, López-Rosa S, Angulo JC (2009) Rényi complexities and information planes: atomic structure in conjugated spaces. Chem Phys Lett 474:233

    Google Scholar 

  79. Rényi A (1961) On measures of entropy and information. In: Proc 4th Berkeley symposium on mathematics of statistics and probability, vol 1, pp 547–561

    Google Scholar 

  80. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479

    Google Scholar 

  81. Kendall MG, Stuart A (1969) The advanced theory of statistics, vol 1. Charles Griffin and Co Ltd, London

    Google Scholar 

  82. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  83. Hall MJW (1999) Universal geometric approach to uncertainty, entropy, and information. Phys Rev A 59:2602

    CAS  Google Scholar 

  84. López-Rosa S, Angulo JC, Antolín J (2009) Rigorous properties and uncertainty-like relationships on product-complexity measures: Application to atomic systems. Physica A 388:2081

    Google Scholar 

  85. Dehesa JS, Gálvez FJ, Porras I (1989) Bounds to density-dependent quantities of D-dimensional many-particle systems in position and momentum spaces: Applications to atomic systems. Phys Rev A 40:35

    Google Scholar 

  86. Angulo JC, Dehesa JS (1992) Tight rigorous bounds to atomic information entropies. J Chem Phys 97:6485. Erratum 98:1 (1993)

    CAS  Google Scholar 

  87. Stam A (1959) Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf Control 2:101

    Google Scholar 

  88. Fraga S, Malli G (1968) Many electron systems: properties and interactions. Saunders, Philadelphia

    Google Scholar 

  89. Epstein IR (1973) Calculation of atomic and molecular momentum expectation values and total energies from Compton-scattering data. Phys Rev A 8:160

    CAS  Google Scholar 

  90. Bialynicky-Birula I, Mycielski J (1975) Uncertainty relations for information entropy in wave mechanics. Commun Math Phys 44:129

    Google Scholar 

  91. Heisenberg W (1927) Uber den anschaulichen inhalt der quanten-theoretischen kinematik und mechanik. Z Phys 443:172

    Google Scholar 

  92. Sánchez-Moreno P (2008) Medidas de Información de Funciones Especiales y sistemas mecano-cuánticos, y dinámica molecular en presencia de campos eléctricos homogéneos y dependientes del tiempo. PhD Thesis, University of Granada, Spain

    Google Scholar 

  93. Bialynicky-Birula I (2006) Formulation of the uncertainty relations in terms of the Rényi entropies 91. Phys Rev A 74:052101

    Google Scholar 

  94. Rajagopal AK (1995) The Sobolev inequality and the Tsallis entropic uncertainty relation. Phys Lett A 205:32

    CAS  Google Scholar 

  95. Angulo JC (1993) Uncertainty relationships in many-body systems. J Phys A 26:6493

    CAS  Google Scholar 

  96. Gadre SR (1984) Information entropy and Thomas-Fermi theory. Phys Rev A 30:620

    Google Scholar 

  97. Gadre SR, Bendale RD (1985) Information entropies in quantum chemistry. Curr Sci (India) 54:970

    CAS  Google Scholar 

  98. Panos CP, Chatzisavvas KCh, Moustakidis ChC, Kyhou EG (2007) Comparison of SDL and LMC measures of complexity: Atoms as a testbed. Phys Lett A 363:78

    CAS  Google Scholar 

  99. Gadre SR, Bendale RD, Gejji SP (1985) Refinement of electron momentum densities of ionic solids using an experimental energy constraint. Chem Phys Lett 117:138

    CAS  Google Scholar 

  100. Sagar RP, Guevara NL (2006) Mutual information and electron correlation in momentum space. J Chem Phys 124:134101

    Google Scholar 

  101. Romera E, Dehesa JS (2004) The Fisher-Shannon information plane, an electron correlation tool. J Chem Phys 120:8906

    CAS  Google Scholar 

  102. Koga T, Kanayama K, Watanabe S, Thakkar AJ (1999) Analytical Hartree-Fock wave functions subject to cusp and asymptotic constraints: He to Xe, Li+ to Cs+, H to I. Int J Quant Chem 71:491

    CAS  Google Scholar 

  103. Koga T, Kanayama K, Watanabe S, Imai S, Thakkar AJ (2000) Analytical Hartree-Fock wave functions for the atoms Cs to Lr. Theor Chem Acc 104:411

    CAS  Google Scholar 

  104. Borgoo A, de Proft F, Geerlings P, Sen KD (2007) Complexity of Dirac-Fock atom increases with atomic number. Chem Phys Lett 444:186

    CAS  Google Scholar 

  105. Szabo JB, Sen KD, Nagy A (2008) The Fisher-Shannon information plane for atoms. Phys Lett A 372:2428

    CAS  Google Scholar 

  106. Hoffmann-Ostenhof M, Hoffmann-Ostenhof T (1977) “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys Rev A 16:1782

    CAS  Google Scholar 

  107. Benesch R, Smith VH Jr (1973) Wave mechanics: the first fifty years. Butterworth, London

    Google Scholar 

  108. Romera E, Nagy A (2008) Rényi information of atoms. Phys Lett A 372:4918

    CAS  Google Scholar 

  109. Koga T, Omura M, Teruya H, Thakkar AJ (1995) Improved Roothaan-Hartree-Fock wavefunctions for isoelectronic series of the atoms He to Ne. J Phys B 28:3113

    CAS  Google Scholar 

  110. Koopmans TA (1933) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104

    CAS  Google Scholar 

  111. Janak JF (1978) Proof that ∂E/∂n i =ε in density-functional theory. Phys Rev B 18:7165

    CAS  Google Scholar 

  112. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512

    CAS  Google Scholar 

  113. Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Phys Chem 97:4951

    CAS  Google Scholar 

  114. Roy R, Chandra AK, Pal S (1994) Correlation of polarizability, hardness, and electronegativity: polyatomic molecules. J Phys Chem 98:10447

    CAS  Google Scholar 

  115. Hati S, Datta D (1994) Hardness and electric dipole polarizability. Atoms and clusters. J Phys Chem 98:10451

    CAS  Google Scholar 

  116. Simon-Manso Y, Fuentealba E (1998) On the density functional relationship between static dipole polarizability and global softness. J Phys Chem A 102:2029

    CAS  Google Scholar 

  117. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065

    CAS  Google Scholar 

  118. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533

    CAS  Google Scholar 

  119. Pearson RG (1973) Hard and soft acids and bases. Dowen, Hutchinson and Ross, Stroudsberg

    Google Scholar 

  120. Pearson RG (1997) Chemical hardness. Wiley-VCH, New York

    Google Scholar 

  121. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922

    CAS  Google Scholar 

  122. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, González C, Pople JA (2004) Gaussian 03, Revision D.01, Gaussian Inc, Wallingford

    Google Scholar 

  123. Pérez-Jordá JM, San-Fabián E (1993) A simple, efficient and more reliable scheme for automatic numerical integration. Comput Phys Commun 77:46

    Google Scholar 

  124. Pérez-Jordá JM, Becke AD, San-Fabián E (1994) Automatic numerical integration techniques for polyatomic molecules. J Chem Phys 100:6520

    Google Scholar 

  125. Kohout M (2007) Program DGRID, version 4.2

    Google Scholar 

  126. Computational Chemistry Comparison and Benchmark DataBase, http://cccbdb.nist.gov/

  127. Kurzer F (2000) Fulminic acid in the history of organic chemistry. J Chem Educ 77:851

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Nelson Flores-Gallegos and Sheila López-Rosa for their kind help in the preparation of this chapter, and to Professor K.D. Sen for helpful discussions. This work was supported in part by the Spanish grants FIS-2008-02380 and FIS-2005-06237 (MICINN), FQM-1735 and P06-FQM-2445 (Junta de Andalucía), and the Mexican grants 08266 CONACyT, PIFI 3.3 PROMEP-SEP. We belong to the Andalusian research group FQM-0207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Angulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Angulo, J.C., Antolín, J., Esquivel, R.O. (2011). Atomic and Molecular Complexities: Their Physical and Chemical Interpretations. In: Sen, K. (eds) Statistical Complexity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3890-6_6

Download citation

Publish with us

Policies and ethics