Skip to main content

Entropy and Complexity Analyses of D-dimensional Quantum Systems

  • Chapter
Book cover Statistical Complexity

Abstract

This chapter briefly reviews the present knowledge about the analytic information theory of quantum systems with non-standard dimensionality in the position and momentum spaces. The main concepts of this theory are the power and entropic moments, which are very fertile largely because of their flexibility and multiple interpretations. They are used here to study the most relevant information-theoretic one-element (Fisher, Shannon, Rényi, Tsallis) and some composite two-elements (Fisher-Shannon, LMC shape and Cramér-Rao complexities) measures which describe the spreading measures of the position and momentum probability densities farther beyond the standard deviation. We first apply them to general systems, then to single particle systems in central potentials and, finally, to hydrogenic systems in D-dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witten E (1980) Quarks, atoms and the 1/N expansion. Phys Today 38:33, July

    Google Scholar 

  2. Weinberg S, Piran T (eds) (1986) Physics in higher dimensions. World Scientific, Singapore

    Google Scholar 

  3. Kunstatter G (2003) D-dimensional black hole entropy spectrum from quasinormal modes. Phys Rev Lett 90:161301

    Article  CAS  Google Scholar 

  4. Adhav KS, Nimkar AS, Dawande MV (2007) Astrophys Space Sci 310:321

    Article  Google Scholar 

  5. Avelino-Camelia G, Kowalski-Glikman J (eds) (2005) Planck scale effects in astrophysics and cosmology. Springer, Berlin

    Google Scholar 

  6. Harrison P (2005) Quantum wells, wires and dots: theoretical and computational physics of semiconductors nanostructure, 2nd edn. Wiley-Interscience, New York

    Book  Google Scholar 

  7. Li SS, Xia JB (2007) Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Phys Lett A 366:120

    Article  CAS  Google Scholar 

  8. McKinney BA, Watson DK (2000) Semiclassical perturbation theory for two electrons in a d-dimensional quantum dot. Phys Rev B 61:4958

    Article  CAS  Google Scholar 

  9. Dykman MI, Platzman PM, Seddgard P (2003) Qubits with electrons on liquid helium. Phys Rev B 67:155402

    Article  CAS  Google Scholar 

  10. Nieto MN (2000) Electrons above a helium surface and the one-dimensional Rydberg atom. Phys Rev A 61:034901

    Article  Google Scholar 

  11. Maia A, Lima JA (1998) D-dimensional radiative plasma: a kinetic approach. Class Quantum Gravity 15:2271

    Article  CAS  Google Scholar 

  12. Herschbach DR, Avery J, Goscinski O (eds) (1993) Dimensional scaling in chemical physics. Kluwer, Dordrecht

    Google Scholar 

  13. Tsipis CA, Herschbach DR, Avery J (eds) (1996) NATO conference book, vol 8. Kluwer, Dordrecht

    Google Scholar 

  14. Aquilanti V, Cavalli S, Colleti C (1997) The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets. Chem Phys 214:1–13

    Article  CAS  Google Scholar 

  15. Sälen L, Nepstad R, Hansen JR, Madsen LB (2007) The D-dimensional Coulomb problem: Stark effect in hyperparabolic and hyperspherical coordinates. J Phys A, Math Gen 40:1097

    Article  CAS  Google Scholar 

  16. Mlodinow LD, Papanicolaou N (1980) SO(2,1) algebra and the large n expansion in quantum mechanics. Ann Phys 128:314–334

    Article  CAS  Google Scholar 

  17. Jakubith S, Rotermund HH, Engel W, von Oertzen A, Ertl G (1985) Spatio-temporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys Rev Lett 65:3013–3016

    Article  Google Scholar 

  18. Beta C, Moula MG, Mikhailov AS, Rotermund HH, Ertl G (2004) Excitable CO oxidation on Pt(110) under nonuniform coupling. Phys Rev Lett 93:188302

    Article  CAS  Google Scholar 

  19. Cox MP (1985) Spatial self-organization of surface structure during an oscillating catalytic reaction. Phys Rev Lett 54:1725

    Article  CAS  Google Scholar 

  20. Gleick J (1987) Chaos making a new science. Viking Penguin, New York

    Google Scholar 

  21. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  22. Aquilanti V, Cavalli S, Coletti C, di Domenico D, Grossi G (2001) Hyperspherical harmonics as Sturmian orbitals in momentum space: A systematic approach to the few-body Coulomb problem. Int Rev Phys Chem 20:673

    Article  CAS  Google Scholar 

  23. Burgbacher F, Lämmerzahl C, Macias A (1999) Is there a stable hydrogen atom in higher dimensions? J Math Phys 40:625

    Article  CAS  Google Scholar 

  24. Gurevich L, Mostepanenko V (1971) On the existence of atoms in n dimensional space. Phys Lett A 35:201

    Article  Google Scholar 

  25. Kleppner D (1999) The yin and yang of hydrogen. Phys Today 52:11, April

    Google Scholar 

  26. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  27. Angulo JC, Dehesa JS (1992) Tight rigorous bounds to atomic information entropies. J Chem Phys 97:6485. Erratum 1 (1993)

    CAS  Google Scholar 

  28. Koga T, Angulo JC, Dehesa JS (1994) Electron-electron coalescence and interelectronic log-moments in atomic and molecular moments. Proc Indian Acad Sci, Chem Sci 106(2):123

    CAS  Google Scholar 

  29. Lenz F, Rosenfelder R (1971) Nuclear radii in the high-energy limit of elastic electron scattering. Nucl Phys A 176:571

    Article  Google Scholar 

  30. Liu S, Parr RG (1996) Expansions of the correlation-energy density functional and its kinetic-energy component in terms of homogeneous functionals. Phys Rev A 53:2211

    Article  CAS  Google Scholar 

  31. Liu S, Parr RG (1997) Expansions of density functionals: Justification and nonlocal representation of the kinetic energy, exchange energy, and classical Coulomb repulsion energy for atoms. Physica A 55:1792

    Article  CAS  Google Scholar 

  32. Nagy A, Liu S, Parr RG (1999) Density-functional formulas for atomic electronic energy components in terms of moments of the electron density. Phys Rev A 59:3349

    Article  CAS  Google Scholar 

  33. Angulo JC, Romera E, Dehesa JS (2000) Inverse atomic densities and inequalities among density functionals. J Math Phys 41:7906

    Article  CAS  Google Scholar 

  34. Pintarelli MB, Vericat F (2003) Generalized Hausdorff inverse moment problem. Physica A 324(3–4):568–588

    Article  Google Scholar 

  35. Romera E, Angulo JC, Dehesa JS (2001) The Hausdorff entropic moment problem. J Math Phys 42:2309. Erratum 44:1 (2003)

    Article  Google Scholar 

  36. Leonenko N, Pronzato L, Savani V (2008) A class of Rényi information estimator for multidimensional densities. Ann Stat 40(4):2153–2182

    Article  Google Scholar 

  37. Dehesa JS, Galvez FJ, Porras I (1989) Bounds to density-dependent quantities of D-dimensional many-particle systems in position and momentum spaces: Applications to atomic systems. Phys Rev A 40:35

    Article  Google Scholar 

  38. Dehesa JS, Galvez FJ (1988) Rigorous bounds to density-dependent quantities of D-dimensional many-fermion systems. Phys Rev A 37:3634

    Article  Google Scholar 

  39. Galvez FJ, Porras I (1991) Improved lower bounds to the total atomic kinetic energy and other density-dependent quantities. J Phys B, At Mol Opt Phys 24:3343

    Article  CAS  Google Scholar 

  40. Lieb EH, Oxford S (2004) Improved lower bound on the indirect Coulomb energy. Int J Quant Chem 19:427

    Article  Google Scholar 

  41. Odashima MM, Capelle K (2008) Empirical analysis of the Lieb-Oxford in ions and molecules. Int J Quant Chem 108:2428

    Article  CAS  Google Scholar 

  42. Lieb EH (1976) The stability of matter. Rev Mod Phys 48:553

    Article  Google Scholar 

  43. Lieb EH (2000) Kluwer encyclopedia of mathematics supplement, vol II. Kluwer, Dordrecht

    Google Scholar 

  44. Lieb EH, Seiringer R (2010) The stability of matter in quantum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  45. Dehesa JS, González-Férez R, Sánchez-Moreno P, Yáñez RJ (2007) Kinetic energy bounds for particles confined in spherically-symmetric traps with nonstandard dimensions. New J Phys 9:131

    Article  Google Scholar 

  46. Beckner W (1995) Pitt’s inequality and the uncertainty principle. Proc Am Math Soc 123:159

    Google Scholar 

  47. Daubechies I (1983) An uncertainty principle for fermions with generalized kinetic energy. Commun Math Phys 90:511

    Article  Google Scholar 

  48. Rényi A (1970) Probability theory. Academy Kiado, Budapest

    Google Scholar 

  49. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479

    Article  Google Scholar 

  50. Havrda JH, Charvát F (1967) Quantification methods of classification processes: Concept of α-entropy. Kybernetica (Prague) 3:95–100

    Google Scholar 

  51. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379

    Google Scholar 

  52. Gyftopoulos EP, Cubukcu E (1997) Entropy: Thermodynamic definition and quantum expression. Phys Rev E 55:3851

    Article  CAS  Google Scholar 

  53. Bialynicki-Birula I, Mycielski J (1975) Uncertainty relations for information entropy in wave mechanics. Commun Math Phys 44:129

    Article  Google Scholar 

  54. Brukner C, Zeilinger A (1999) Operationally invariant information in quantum measurements. Phys Rev Lett 83:3354

    Article  CAS  Google Scholar 

  55. Zurek WH, Habib S, Paz JP (1993) Coherent states via decoherence. Phys Rev Lett 70:1187

    Article  Google Scholar 

  56. Angulo JC (1994) Information entropy and uncertainty in D-dimensional many-body systems. Phys Rev A 50:311

    Article  Google Scholar 

  57. López-Rosa S, Angulo JC, Dehesa JS, Yáñez RJ (2008) Existence conditions and spreading properties of extreme entropy D-dimensional distributions. Physica A 387:2243–2255. Erratum, ibid 387:4729–4730 (2008)

    Article  Google Scholar 

  58. López-Rosa S, Angulo JC, Dehesa JS (2009) Spreading measures of information-extremizer distributions: applications to atomic electron densities in position and momentum spaces. Eur J Phys D 51:321–329

    Article  CAS  Google Scholar 

  59. Brody DC, Buckley IRC, Constantinou IC (2007) Option price calibration from Rényi entropy. Phys Lett A 366:298–307

    Article  CAS  Google Scholar 

  60. Bashkirov AG (2004) Maximum Rényi entropy principle for systems with power-law Hamiltonians. Phys Rev Lett 93:130601

    Article  CAS  Google Scholar 

  61. Dehesa JS, Galvez FJ (1985) A lower bound for the nuclear kinetic energy. Phys Lett B 156:287

    Article  Google Scholar 

  62. Fisher RA (1925) Theory of statistical estimation. Proc Camb Philos Soc 22:700. Reprinted in Collected papers of RA Fisher, edited by JH Bennet, University of Adelaide Press, Australia, 1972, pp 15–40

    Article  Google Scholar 

  63. Frieden BR (2004) Science from Fisher information. Cambridge University Press, Cambridge

    Book  Google Scholar 

  64. Sears SB, Parr RG (1980) On the quantum-mechanical kinetic energy as a measure of the information in a distribution. Isr J Chem 19:165–173

    CAS  Google Scholar 

  65. March NH, Kais S (1998) Kinetic energy functional derivative for the Thomas-Fermi atom in D dimensions. Int J Quant Chem 65:411

    Article  Google Scholar 

  66. Massen SE, Panos CP (2001) A link of information entropy and kinetic energy for quantum many-body systems. Phys Lett A 280:65

    Article  CAS  Google Scholar 

  67. Luo S (2002) Fisher information, kinetic energy and uncertainty relation inequalities. J Phys A, Math Gen 35:5181

    Article  Google Scholar 

  68. Romera E, Dehesa JS (1994) Weiszäcker energy of many electron systems. Phys Rev A 50:256

    Article  CAS  Google Scholar 

  69. Dembo A, Cover TM, Thomas JA (1991) Information theoretic inequalities. IEEE Trans Inf Theory 37:1501

    Article  Google Scholar 

  70. Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience, New York

    Book  Google Scholar 

  71. López-Rosa S, Angulo JC, Antolin J (2009) Rigorous properties and uncertainty-like relationships on product-complexity measures: Applications to atomic systems. Physica A 388:2081–2091

    Article  CAS  Google Scholar 

  72. González-Férez R, Dehesa JS (2005) Characterization of atomic avoided crossing by means of Fisher’s Information. Eur J Phys D 32:39–43

    Article  CAS  Google Scholar 

  73. Romera E (2002) Stam’s principle, D-dimensional uncertainty-like relationships and some atomic properties. Mol Phys 100:3325

    Article  CAS  Google Scholar 

  74. López-Rosa S, Esquivel RO, Angulo JC, Antolín J, Dehesa JS, Flores-Gallegos N (2010) Fisher information study in position and momentum spaces for elementary chemical reactions. J Chem Theory Comput 6:145–154

    Article  CAS  Google Scholar 

  75. Plastino A, Plastino AR (2006) Fisher info and thermodynamics first law. Physica A 369:432

    Article  Google Scholar 

  76. Romera E, Angulo JC, Dehesa JS (1999) Fisher entropy and uncertainty-like relationships in many-body systems. Phys Rev A 59:4064

    Article  CAS  Google Scholar 

  77. Angulo JC (1993) Uncertainty relationships in many-body systems. J Phys A, Math Gen 26:6493

    Article  CAS  Google Scholar 

  78. Folland GB, Sitaram A (1997) The uncertainty principle: A mathematical survey. J Fourier Anal Appl 3:207

    Article  Google Scholar 

  79. Wang YA, Carter EA (1999) Improved lower bounds for uncertainty like relationships in many-body systems. Phys Rev A 60:4153

    Article  Google Scholar 

  80. Beckner W (1975) Inequalities in Fourier analysis. Ann Math 102:159

    Article  Google Scholar 

  81. Rajagopal AK (1995) The Sobolev inequality and the Tsallis entropic uncertainty relation. Phys Lett A 205:32

    Article  CAS  Google Scholar 

  82. Maassen H, Uffink JBM (1988) Generalized entropic uncertainty relations. Phys Rev Lett 60:1103

    Article  Google Scholar 

  83. Dodonov DD, Man’ko VI (1989) Invariants and the evolution of non-stationary quantum states. Nova Publ, New York

    Google Scholar 

  84. Zakai M (1960) A class of definitions of duration (or uncertainty) and the associated uncertainty relations. Inf Control 3:101

    Article  Google Scholar 

  85. Hirschman II (1957) New bounds for the uncertainly principle. Am J Math 79:152

    Article  Google Scholar 

  86. Guevara NL, Sagar RP, Esquivel RO (2003) Shannon-information entropy sum as a correlation measure in atomic systems. Phys Rev A 67:012507

    Article  CAS  Google Scholar 

  87. Gadre SR (2003) In: Reviews of modern quantum chemistry: a celebration in the contributions of Robert G Parr, vol 1. World Scientific, Singapore

    Google Scholar 

  88. Gadre SR, Sears SB, Chakravorty SJ, Bendale RD (1985) Some novel characteristics of atomic information entropies. Phys Rev A 32:2602

    Article  CAS  Google Scholar 

  89. Bialynicki-Birula I (2006) Formulation of the uncertainty relations in terms of the Rényi entropies. Phys Rev A 74:052101

    Article  CAS  Google Scholar 

  90. Zozor S, Vignat C (2007) On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Physica A 375:499

    Article  Google Scholar 

  91. Zozor S, Portesi M, Vignat C (2008) Some extensions of the uncertainty principle. Physica A 387:4800–4808

    Article  CAS  Google Scholar 

  92. Stam AJ (1959) Some inequalities satisfied by the quantities of information. Inf Control 2:101

    Article  Google Scholar 

  93. Dehesa JS, Plastino AR, Sánchez-Moreno P (2011) A quantum uncertainty relation based on Fisher’s information. J Phys A 44:065301

    Article  Google Scholar 

  94. Dehesa JS, Martínez-Finkelshtein A, Sorokin V (2006) Information-theoretic measures for Morse and Pöschl-Teller potentials. Mol Phys 104:613

    Article  CAS  Google Scholar 

  95. Dehesa JS, González-Férez R, Sánchez-Moreno P (2007) The Fisher-information-based uncertainty relation, Cramér-Rao inequality and kinetic energy for the D-dimensional central problem. J Phys A, Math Gen 40:1845–1856

    Article  Google Scholar 

  96. Angulo JC, Antolin J, Esquivel RO (2010) Atomic and molecular complexities: their physical and chemical interpretations. Springer, Berlin. See Chap 6 of this book

    Google Scholar 

  97. López-Ruiz R, Mancini HL, Calvet X (1995) A statistical measure of complexity. Phys Lett A 209:321

    Article  Google Scholar 

  98. Catalán RG, Garay J, López-Ruiz R (2002) Features of the extension of a statistical measure of complexity to continue systems. Phys Rev E 66:011102

    Article  CAS  Google Scholar 

  99. Anteneodo C, Plastino AR (1996) Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity. Phys Lett A 223:348–354

    Article  CAS  Google Scholar 

  100. López-Rosa S, Montero J, Sánchez-Moreno P, Venegas J, Dehesa JS (2010) Position and momentum information-theoretic measures of a D-dimensional particle-in-a-box. J Math Chem 49:971

    Article  CAS  Google Scholar 

  101. López-Ruiz R, Nagy A, Romera E, Sañudo IJ (2009) A generalize statistical complexity measure: Applications to quantum systems. J Math Phys 50:123528

    Article  Google Scholar 

  102. Avery J (2000) Hyperspherical harmonics and generalized Sturmians. Kluwer, Dordrecht

    Google Scholar 

  103. Chatterjee A (1990) Large-N expansions in quantum mechanics, atomic physics and some O(N) invariant systems. Phys Rep 186:249

    Article  CAS  Google Scholar 

  104. Avery JS (2010) Harmonic polynomials, hyperspherical harmonics and atomic spectra. J Comput Appl Math 233:1366

    Article  Google Scholar 

  105. Avery J (1998) A formula for angular and hyperangular integration. J Math Chem 24:169

    Article  CAS  Google Scholar 

  106. Louck JD (1960) Generalized orbital angular momentum and the N-fold degenerated quantum-mechanical oscillator. J Mol Spectrosc 4:334

    Article  CAS  Google Scholar 

  107. Nikiforov AF, Suslov SK, Uvarov VB (1991) Classical orthogonal polynomials of a discrete variable. Springer, Berlin

    Google Scholar 

  108. Yáñez RJ, Van Assche W, Dehesa JS (1994) Position and momentum information entropies of the d-dimensional harmonic oscillator and hydrogen atom. Phys Rev A 50(4):3065–3079

    Article  Google Scholar 

  109. Ray A, Kalyaneswari M, Ray PP (1988) Moments of probability distributions, wavefunctions, and their derivatives at the origin of N-dimensional central potentials. Am J Phys 56:462

    Article  Google Scholar 

  110. Romera E, Sánchez-Moreno P, Dehesa JS (2006) Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J Math Phys 47:103504

    Article  CAS  Google Scholar 

  111. Dehesa JS, Martínez-Finkelshtdein A, Sánchez-Ruiz J (2001) Quantum information entropies and orthogonal polynomials. J Comput Appl Math 133:23–46

    Article  Google Scholar 

  112. Yáñez RJ, Van Assche W, Gonzalez-Ferez R, Dehesa JS (1999) Entropic integrals of hyperspherical harmonics and spatial entropy of D-dimensional central potentials. J Math Phys 40:5675

    Article  Google Scholar 

  113. Dehesa JS, López-Rosa S, Martínez-Finkelshtein A, Yáñez RJ (2010) Information theory of D-dimensional hydrogenic systems. Application to circular and Rydberg states. Int J Quant Chem 110:1529

    CAS  Google Scholar 

  114. Dehesa JS, López-Rosa S, Olmos B, Yáñez RJ (2006) Fisher information of D-dimensional hydrogenic systems in position and momentum spaces. J Math Phys 47:052104–1–13

    Article  CAS  Google Scholar 

  115. Sánchez-Moreno P, González-Férez R, Dehesa JS (2006) Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials. New J Phys 8:330

    Article  Google Scholar 

  116. Romera E, Sánchez-Moreno P, Dehesa JS (2005) The Fisher information of single-particle systems with a central potential. Chem Phys Lett 414:468–472

    Article  CAS  Google Scholar 

  117. Andrew K, Supplee K (1990) A hydrogenic atom in D-dimensions. Am J Phys 58:1177

    Article  Google Scholar 

  118. Dehesa JS, López-Rosa S, Manzano D (2009) Configuration complexities of hydrogenic atoms. Eur J Phys D 55:539–548

    Article  CAS  Google Scholar 

  119. Fock V (1935) Zur theorie des wasserstoffatoms. Z Phys 98:145

    Article  Google Scholar 

  120. Lombardi JR (1980) Hydrogen atom in the momentum representation. Phys Rev A 22:797

    Article  CAS  Google Scholar 

  121. Hey JD (1993) On the momentum representation of hydrogenic wave functions: Some properties and applications. Am J Phys 61:28

    Article  Google Scholar 

  122. Hey JD (1993) Further properties of hydrogenic wave functions. Am J Phys 61:741

    Article  Google Scholar 

  123. Tarasov VF (2004) Exact numerical values of diagonal matrix elements 〈rk nl , as n≤8 and −7≤k≤4, and the symmetry of Appell’s function F2(1,1). Int J Mod Phys B 18:3177–3184

    Article  CAS  Google Scholar 

  124. Van Assche W, Yáñez RJ, González-Férez R, Dehesa JS (2000) Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values. J Math Phys 41:6600

    Article  Google Scholar 

  125. Delburgo R, Elliott D (2009) Inverse momentum expectation value for hydrogenic systems. J Math Phys 50:062107

    Article  CAS  Google Scholar 

  126. Dehesa JS, Yáñez RJ, Aptekarev AA, Buyarov V (1998) Strong asymptotics of Laguerre polynomials and information entropies of 2D harmonic oscillator and 1D Coulomb potentials. J Math Phys 39:3050

    Article  Google Scholar 

  127. Buyarov V, Dehesa JS, Martínez-Finkelshtein A, Sánchez-Lara J (2004) Computation of the entropy of polynomials orthogonal on an interval. SIAM J Sci Comput 26:488

    Article  Google Scholar 

  128. Schleich VP, Dahl JP (2002) Dimensional enhancement of kinetic energies. Phys Rev A 65:052109

    Article  CAS  Google Scholar 

  129. Sen KD et al (2009) Private communication

    Google Scholar 

  130. López-Rosa S, Manzano D, Dehesa JS (2009) Complexity of D-dimensional hydrogenic systems in position and momentum spaces. Physica A 388:3273–3281

    Article  CAS  Google Scholar 

  131. Sañudo J, López-Ruiz R (2009) Generalized statistical complexity and Fisher-Rényi entropy product in the H-atom. IREPHY 3:207

    Google Scholar 

  132. Cizek J, Vinette F (1987) N-dimensional hydrogen atom in an external spherically symmetric-field. Theor Chim Acta 72:497

    Article  CAS  Google Scholar 

  133. Hall MJW (1999) Universal geometric approach to uncertainty, entropy and information. Phys Rev A 59:2602

    Article  CAS  Google Scholar 

  134. Dong SH, Gu XY, Ma ZQ (2003) The Klein-Gordon equation with Coulomb potential in D dimensions. Int J Mod Phys E 12:555

    Article  CAS  Google Scholar 

  135. Howard IA, March NH (2004) Relativistic effects when many independent fermions are confined in D dimensions. J Phys A, Math Gen 37:965

    Article  CAS  Google Scholar 

  136. Goodson DZ, Morgan JD III, Herschbach DR (1991) Dimensional singularity analysis of relativistic equations. Phys Rev A 43:4617

    Article  CAS  Google Scholar 

  137. Bencheikh K, Nieto LM (2007) On the density profile in Fourier space of a harmonically trapped ideal Fermi gas in d dimensions. J Phys A, Math Gen 40:13503

    Article  Google Scholar 

  138. Loos PF, Gill PMW (2009) Two electrons on a hypersphere: a quasiexactly solvable model. Phys Rev Lett 103:123008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the projects FQM-2445 and FQM-4643 of the Junta de Andalucia (Spain, EU), and the grant FIS2008-2380 of the Ministerio de Innovación y Ciencia. We belong to the Andalusian research group FQM-207. We are very grateful to C. Vignat and S. Zozor for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Dehesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dehesa, J.S., López-Rosa, S., Manzano, D. (2011). Entropy and Complexity Analyses of D-dimensional Quantum Systems. In: Sen, K. (eds) Statistical Complexity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3890-6_5

Download citation

Publish with us

Policies and ethics