Advertisement

Sonochemical Synthesis of Oxides and Sulfides

  • Sivakumar ManickamEmail author
Chapter

Abstract

Sonochemical synthesis, an energy efficient processing technique to induce a variety of physical and chemical transformations is on the rise. A variety of simple and mixed metal oxides and sulfides have been obtained using this technique. The present chapter reviews the types of oxides and sulfides obtained in the last few years.

Keywords

Ionic Liquid Hollow Sphere Ultrasound Irradiation Sonochemical Method Silica Hollow Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multibubble cavitation. Nature 401:772–775CrossRefGoogle Scholar
  2. 2.
    Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326CrossRefGoogle Scholar
  3. 3.
    Suslick KS (1998) Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 26, pp 517–541. Wiley: New York.Google Scholar
  4. 4.
    Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: Sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179CrossRefGoogle Scholar
  5. 5.
    Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55CrossRefGoogle Scholar
  6. 6.
    Majetich SA, Jin Y (1999) Magnetisation directions of individual nanoparticles. Science 284(5413):470–473CrossRefGoogle Scholar
  7. 7.
    Zarur AJ, Ying JY (2000) Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 403:65–67CrossRefGoogle Scholar
  8. 8.
    Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7(6):26–33CrossRefGoogle Scholar
  9. 9.
    Sivakumar M, Towata A, Yasui K, Tuziuti T, Iida Y (2005) Ultrasonic cavitational activation: a simple and feasible route for the direct conversion of zinc acetate to highly monodispersed ZnO. Chem Lett 35(1):60–61CrossRefGoogle Scholar
  10. 10.
    Xiao Q, Huangb S, Zhang J, Xiao C, Tan X (2008) Sonochemical synthesis of ZnO nanosheet. J Alloys Compounds 459:L18–L22CrossRefGoogle Scholar
  11. 11.
    Bhattacharyya S, Gedanken A (2008) A template-free, sonochemical route to porous ZnO nano-disks. Microp Mesop Mater 110:553–559CrossRefGoogle Scholar
  12. 12.
    Mishra P, Yadav RS, Pandey AC (2009) Starch assisted sonochemical synthesis of flower-like ZnO nanostructure. Digest J Nanomaterials Biostructures 4(1):193–198Google Scholar
  13. 13.
    Pal U, Kim CW, Jadhav NA, Kang YS (2009) Ultrasound-assisted synthesis of mesoporous ZnO nanostructures of different porosities. J Phys Chem C 113(33):14676–14680CrossRefGoogle Scholar
  14. 14.
    Jia X, Fan H, Zhang F, Qin L (2010) Using sonochemistry for the fabrication of hollow ZnO microspheres. Ultrason Sonochem 17:284–287CrossRefGoogle Scholar
  15. 15.
    Hou X, Zhou F, Sun Y, Liu W (2007) Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater Lett 61:1789–1792CrossRefGoogle Scholar
  16. 16.
    Goharshadi EK, Ding Y, Jorabchi MN, Nancarrow P (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason Sonochem 16:120–123CrossRefGoogle Scholar
  17. 17.
    Alammar T, Mudring AV (2009) Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater Lett 63:732–735CrossRefGoogle Scholar
  18. 18.
    Arefian NA, Shokuhfar A, Vaezi MR, Kandjani AE, Tabriz MF (2008) Sonochemical synthesis of SnO/ZnO nano-Composite: the effects of temperature and sonication power. In: Öchsner A, Murch GE (eds) Defect and diffusion forum, vol 273–276, Diffusion in solids and liquids III., pp 34–39Google Scholar
  19. 19.
    Xiong HM, Shchukin DG, Möhwald H, Xu Y, Xia YY (2009) Sonochemical synthesis of hghly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed 48(15):2727–2731CrossRefGoogle Scholar
  20. 20.
    Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J (2008) Sonochemical synthesis of amorphous nanoscopic iron (III) oxide from Fe(acac)3. Ultrason Sonochem 15:257–264CrossRefGoogle Scholar
  21. 21.
    Raya I, Chakraborty S, Chowdhury A, Majumdar S, Prakash A, Pyare R, Sena A (2008) Room temperature synthesis of γ-Fe2O3 by sonochemical route and its response towards butane. Sens Actu B 130:882–888CrossRefGoogle Scholar
  22. 22.
    Stengl V, Bakardjieva S, Marikova M, Bezdicka P, Subrt J (2003) Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxides. Mater Lett 57:3998–4003CrossRefGoogle Scholar
  23. 23.
    Karami H, Karimi MA, Haghdar S, Sadeghi A, Mir-Ghasemi R, Mahdi-Khani S (2008) Synthesis of lead oxide nanoparticles by sonochemical method and its application as cathode and anode of lead-acid batteries. Mater Chem Phys 108:337–344CrossRefGoogle Scholar
  24. 24.
    Ghasemi S, Mousavi MF, Shamsipur M, Karami H (2008) Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrason Sonochem 15:448–455CrossRefGoogle Scholar
  25. 25.
    Majumdar S, Chakraborty S, Sujatha Devi P, Sen A (2008) Room temperature synthesis of nanocrystalline SnO through sonochemical route. Mater Lett 62:1249–1251CrossRefGoogle Scholar
  26. 26.
    Wang HC, Li Y, Yang MJ (2006) Fast response thin film SnO2 gas sensors operating at room temperature. Sens Actu B 119:380–383CrossRefGoogle Scholar
  27. 27.
    Mosadegh Sedghi S, Mortazavi Y, Khodadadi A (2009) Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens Actu B (In Press)Google Scholar
  28. 28.
    Pol VG, Palchik O, Gedanken A, Felner I (2002) Synthesis of europium oxide nanorods by ultrasound irradiation. J Phys Chem B 106(38):9737–9743CrossRefGoogle Scholar
  29. 29.
    Askarinejad A, Morsali A (2009) Synthesis and characterization of mercury oxide unusual nanostructures by ultrasonic method. Chem Eng J 153:183–186CrossRefGoogle Scholar
  30. 30.
    Bourlinos AB, Karakassides MA, Petridis D (2001) Synthesis and characterisation of hollow clay microspheres through a resin template approach. Chem Commun 16:1518–1519CrossRefGoogle Scholar
  31. 31.
    Hubert DHW, Jung M, Frederick PM, Bomans PHH, Meuldijk J, German AL (2000) Vesicle-directed growth of silica. Adv Mater 12(17):1286–1290CrossRefGoogle Scholar
  32. 32.
    Rana RK, Mastai Y, Gedanken A (2002) Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles. Adv Mater 14(19):1414–1418CrossRefGoogle Scholar
  33. 33.
    Fan W, Gao L (2006) Synthesis of silica hollow spheres assisted by ultrasound. J Colloid Interface Sci 297:157–160CrossRefGoogle Scholar
  34. 34.
    Taufiq-Yap YH, Wong YC, Zainal Z, Hussein MZ (2009) Synthesis of self-assembled nanorod vanadium oxide bundles by sonochemical treatment. J Nat Gas Chem 18:312–318CrossRefGoogle Scholar
  35. 35.
    Gonzalez-Reyes L, Hernandez-Perez I, Robles Hernandez FC, Rosales HD, Arce-Estrada EM (2008) Sonochemical synthesis of nanostructured anatase and study of the kinetics among phase transformation and coarsening as a function of heat treatment conditions. J Eur Ceramic Soc 28:1585–1594CrossRefGoogle Scholar
  36. 36.
    Gabashvili A, Major DT, Perkas N, Gedanken A (2010) The sonochemical synthesis and characterization of mesoporous chiral titania using a chiral inorganic precursor. Ultrason Sonochem 17:605–609CrossRefGoogle Scholar
  37. 37.
    Ohayon E, Gedanken A (2010) The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in a non-aqueous solvent. Ultrason Sonochem 17:173–178CrossRefGoogle Scholar
  38. 38.
    Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651CrossRefGoogle Scholar
  39. 39.
    Wang SB, Murata K, Hayakawa T, Hamakawa S, Suzuki K (1999) Excellent performance of lithium doped sulphated zirconia in oxidative dehydrogenation of ethane. Chem Commun 103–104.Google Scholar
  40. 40.
    Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y (2003) Characterisation and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater Res Bull 38:161–168CrossRefGoogle Scholar
  41. 41.
    Thongtem T, Phuruangrat A, Thongtem S (2008) Sonochemical synthesis of MMoO4 (M = Ca, Sr and Ba) nanocrystals. J Cer Proc Res 9(2):189–191Google Scholar
  42. 42.
    Dutta DP, Ghildiyal R, Tyagi AK (2009) Luminescent properties of doped zinc aluminate and zinc gallate white light emitting nanophosphors prepared via sonochemical method. J Phys Chem C 113(39):16954–16961CrossRefGoogle Scholar
  43. 43.
    Kim KH, Kim KB (2008) Ultrasound assisted synthesis of nanosized lithium cobalt oxide. Ultrason Sonochem 15:1019–1025CrossRefGoogle Scholar
  44. 44.
    Nagarajan R, Tomar N (2009) Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M = Fe, Ga). J Solid State Chem 182:1283–1290CrossRefGoogle Scholar
  45. 45.
    Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–80CrossRefGoogle Scholar
  46. 46.
    Park JP, Kim SK, Park JY, Hwang CH, Choi MH, Kim JE, Ok KM, Kwak HY, Shim IW (2009) Syntheses of Mn3O4 and LiMn2O4 nanoparticles by a simple sonochemical method. Mater Lett 63:2201–2204CrossRefGoogle Scholar
  47. 47.
    Das N, Bhattacharya D, Sen A, Maiti HS (2009) Sonochemical synthesis of LaMnO3 nano-powder. Ceram Int 35:21–24CrossRefGoogle Scholar
  48. 48.
    Baudin C, Martinez R, Pena P (1995) High temperature mechanical behaviour of stoichiometric magnesium spinel. J Am Ceram Soc 78(7):1857–1862CrossRefGoogle Scholar
  49. 49.
    Troia A, Pavese M, Geobaldo F (2009) Sonochemical preparation of high surface area MgAl2O4 spinel. Ultrason Sonochem 16(1):136–140CrossRefGoogle Scholar
  50. 50.
    Pirola C, Bianchi CL, Michele AD, Diodati P, Boffito D, Ragaini V (2010) Ultrasound and microwave assisted synthesis of high loading Fe-supported Fischer–Tropsch catalysts. Ultrason Sonochem 17:610–616CrossRefGoogle Scholar
  51. 51.
    Sun L, Li J, Wang C, Li S, Lai Y, Chen H, Lin C (2009) Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J Hazar Mater 171:1045–1050CrossRefGoogle Scholar
  52. 52.
    Reisse J, Francois H, Vandercammen J, Fabre O, Kirsch-de Mesmaeker A, Maerschalk C, Delplancke JL (1994) Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor. Electrochim Acta 39(1):37–39CrossRefGoogle Scholar
  53. 53.
    Mancier V, Daltin AL, Leclercq D (2008) Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry. Ultrason Sonochem 15:157–163CrossRefGoogle Scholar
  54. 54.
    Hassan ML, Ali AF (2008) Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine. J Crys Growth 310:5252–5258CrossRefGoogle Scholar
  55. 55.
    Dhas NA, Zaban A, Gedanken A (1999) Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chem Mater 11(3):806–813CrossRefGoogle Scholar
  56. 56.
    Rana RK, Zhang L, Yu JC, Mastai Y, Gedanken A (2003) Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles. Langmuir 19(14):5904–5911CrossRefGoogle Scholar
  57. 57.
    Zhou H, Fan T, Zhang D, Guo Q, Ogawa H (2007) Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem Mater 19(9):2144–2146CrossRefGoogle Scholar
  58. 58.
    Elbaum R, Vega S, Hodes G (2001) Preparation and surface structure of nanocrystalline cadmium sulfide (sulfoselenide) precipitated from dimethyl sulfoxide solutions. Chem Mater 13(7):2272–2280CrossRefGoogle Scholar
  59. 59.
    Li HL, Zhu YC, Chen SG, Palchik O, Xiong JP, Koltypin Y, Gofer Y, Gedanken A (2003) A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. J Solid State Chem 172:102–110CrossRefGoogle Scholar
  60. 60.
    Tao C, Zheng S, Möhwald H, Li J (2003) CdS crystal growth of lamellar morphology within templates of polyelectrolyte/surfactant complex. Langmuir 19(21):9039–9042CrossRefGoogle Scholar
  61. 61.
    Jian D, Gao Q (2006) Synthesis of CdS nanocrystals and Au/CdS nanocomposites through ultrasound activation liquid–liquid two-phase approach at room temperature. Chem Eng J 121:9–16CrossRefGoogle Scholar
  62. 62.
    Yadav RS, Mishra P, Mishra R, Kumar M, Pandey AC (2010) Growth mechanism and optical property of CdS nanoparticles synthesised using amino-acid histidine as chelating agent under sonochemical process. Ultrason Sonochem 17:116–122CrossRefGoogle Scholar
  63. 63.
    Wu YD, Wang LS, Xiao MW, Huang XJ (2008) A novel sonochemical synthesis and nanostructured assembly of polyvinylpyrrolidone-capped CdS colloidal nanoparticles. J Non-Cryst Solid 354(26):2993–3000CrossRefGoogle Scholar
  64. 64.
    Singh KV, Martinez-Morales AA, Senthil Andavan GT, Bozhilov KN, Ozkan M (2007) A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition. Chem Mater 19(10):2446–2454CrossRefGoogle Scholar
  65. 65.
    Ma J, Tai G, Guo W (2010) Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason Sonochem 17:534–540CrossRefGoogle Scholar
  66. 66.
    Xiu Z, Liu S, Yu J, Xu F, Yu W, Feng G (2008) Sonochemical synthesis of PbS nanorods. J Alloys Compounds 457:L9–L11CrossRefGoogle Scholar
  67. 67.
    Mdleleni MM, Hyeon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc 120:6189–6190CrossRefGoogle Scholar
  68. 68.
    Uzcanga I, Bezverkhyy I, Afanasiev P, Scott C, Vrinat M (2005) Sonochemical preparation of MoS2 in aqueous solution: replication of the cavitation bubbles in an inorganic material morphology. Chem Mater 17(14):3575–3577CrossRefGoogle Scholar
  69. 69.
    Avivi (Levi) A, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2001) Sonochemical synthesis of nanophase indium sulphide. Chem Mater 13(6):2195–2200CrossRefGoogle Scholar
  70. 70.
    Wang H, Zhu JJ, Zhu JM, Chen HY (2002) Sonochemical method for the preparation of bismuth sulfide nanorods. J Phys Chem B 106(15):3848–3854CrossRefGoogle Scholar
  71. 71.
    Zhu YQ, Hsu WK, Kroto HW, Walton DRM (2002) An alternative route to NbS2 nanotubes. J Phys Chem B 106(31):7623–7626CrossRefGoogle Scholar
  72. 72.
    Pejova B, Grozdanov I, Nesheva D, Petrova A (2008) Size-dependent properties of sonochemically synthesized three-dimensional arrays of close-packed semiconducting AgBiS2 quantum dots. Chem Mater 20(7):2551–2565CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemical and Environmental EngineeringUniversity of Nottingham (Malaysia Campus)SemenyihMalaysia

Personalised recommendations