Advertisement

Acoustic and Hydrodynamic Cavitations for Nano CaCO3 Synthesis

  • Shirish H. SonawaneEmail author
  • Ravindra D. Kulkarni
Chapter
  • 1.2k Downloads

Abstract

Calcium carbonate is a common inorganic compound known as limestone. Calcium carbonate has many applications in industries such as medicine, agriculture, paint plastic and surface coatings etc. The vast majority of calcium carbonate used in industry is extracted by mining process. Pure calcium carbonate (e.g. for food or pharmaceutical use), is synthesized by passing carbon dioxide into a solution of calcium hydroxide slurry. In this process calcium carbonate precipitates out, and this grade of product is referred to as precipitate calcium carbonate (abbreviated as PCC).

Keywords

Induction Time Ultrasonic Irradiation Inorganic Particle Carbonation Process Precipitate Calcium Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Juvekar VA, Sharma M M (1973) Absorption in of CO2 in a suspension of lime. Chem Eng Sci 28(3):825–837CrossRefGoogle Scholar
  2. 2.
    Lin R, Zhang J, Bai Y (2006) Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chem Eng Sci 61(21):7019–7028CrossRefGoogle Scholar
  3. 3.
    Morris M, Woodburn ET (1967) S. A. Chemical Process. Mcgraw-Hill, New YorkGoogle Scholar
  4. 4.
    Dagaonkar MV, Mehra A, Jain R, Heeres HJ (2004) Synthesis of CaCO3 nanoparticles by carbonation Of lime solutions in reverse micellar systems. Chem Eng Res Des 82(11):1438–1443CrossRefGoogle Scholar
  5. 5.
    Pach L, Duncan S, Roy R, Komarneni S (1996) Morphological control of precipitated calcium carbonates and phosphates by colloidal additives. J Mater Sci 31:6565–6569CrossRefGoogle Scholar
  6. 6.
    Wakayama H, Hall SR, Fukushima Y, Mann S (2006) CaCO3/biopolymer composite films prepared using supercritical CO2. Ind Eng Chem Res 45(10):3332–3334CrossRefGoogle Scholar
  7. 7.
    Mason T, Lorimer J (2002) Applied sonochemistry. Wiley-VCH, LondonCrossRefGoogle Scholar
  8. 8.
    Lindley J (1992) Sonochemical effects on syntheses involving solid and supported catalysts. Ultrasonics 30(3):163–169CrossRefGoogle Scholar
  9. 9.
    Kim D, Oh S, Lee J (1999) Preparation of ultrafine monodispersed Indium-Tin Oxide particles in AOT-Based reverse microemulsions as nanoreactors. Langmuir 15(5):1599–1603CrossRefGoogle Scholar
  10. 10.
    Li H, Wang J, Bao Y, Guo Z, Zhang M (2003) Rapid crystallization in the salting out process. J Cryst Growth 247(1–2):192–198CrossRefGoogle Scholar
  11. 11.
    Gogate P, Tatake P, Kanthale P, Pandit A (2002) Mapping of sonochemical reactors: review, analysis, and experimental verification. AIChE J 48(7):1542–1560CrossRefGoogle Scholar
  12. 12.
    Castro M, Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14(6):717–724CrossRefGoogle Scholar
  13. 13.
    Miyasaka E, Kato Y, Hagisawa M, Hirasawa I (2006) Effect of ultrasonic irradiation on the number of acetylsalicylic acid crystals produced under the supersaturated condition and the ability of controlling the final crystal size via primary nucleation. J Cryst Growth 289(1):324–330CrossRefGoogle Scholar
  14. 14.
    Dalas E (2001) The effect of ultrasonic field on calcium carbonate scale formation. J Cryst Growth 222(1):287–292CrossRefGoogle Scholar
  15. 15.
    Nishida I (2004) Precipitation of calcium carbonate by ultrasonic irradiation. Ultrason Sonochem 11(6):423–428Google Scholar
  16. 16.
    Harada H (2001) Isolation of hydrogen from water and/or artificial seawater by sonophotocatalysis using alternating irradiation method. Int J Hydrogen Energy 26(4):303–307CrossRefGoogle Scholar
  17. 17.
    Bradley M, Grieser F (2002) Emulsion polymerization synthesis of cationic polymer latex in an ultrasonic field. J Colloids Interface Sci 251(1):78–84CrossRefGoogle Scholar
  18. 18.
    Feng Q, Jun Z, Hong C (2003) Controllable synthesis of nanocrystalline gold assembled whiskery structures via sonochemical route. J Cryst Growth 257(3):378–383CrossRefGoogle Scholar
  19. 19.
    Mersmann A (2001) Crystallization technology handbook. Marcel Dekker, New YorkCrossRefGoogle Scholar
  20. 20.
    Mullins J (2001) Crystallisation, 4th edn. Buterworth-Heinemann, UKGoogle Scholar
  21. 21.
    Mersmann A, Bartosch K (1998) How to predict metasable zone width. J Cryst Growth 183(1):240–250CrossRefGoogle Scholar
  22. 22.
    Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW (2005) Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Process Res Dev 9(6):923–932CrossRefGoogle Scholar
  23. 23.
    Sohnel O, Mullin J (1982) Precipitation of calcium carbonate. J Cryst Growth 60(2):239–250CrossRefGoogle Scholar
  24. 24.
    Sonawane S, Shirsath S, Khanna P, Pawar S, Mahajan C, Paithankar V, Shinde V, Kapadnis C (2008) An innovative method for effective micro mixing of CO2 gas during synthesis of nano calcite crystal using sonochemical carbonization. Chem Eng J 143(1–3):308–313CrossRefGoogle Scholar
  25. 25.
    Loffelmann M, Mersmann A (2002) How to measure supersaturation. Chem Eng Sci 57(20):4301–4310CrossRefGoogle Scholar
  26. 26.
    Parsiegla K, Katz J (1999) Calcite growth inhibition by copper (II) Effect of supersaturation. J Cryst Growth 200(1–2):213–226CrossRefGoogle Scholar
  27. 27.
    Virone C, Kramer H, Rosmalen G, Stoop A, Bakker T (2006) Primary nucleation induced by ultrasonic cavitation. J Cryst Growth 294(1):9–15CrossRefGoogle Scholar
  28. 28.
    Li S, Xu J, Luo G (2007) Control of crystal morphology through supersaturation ratio and mixing conditions. J Cryst Growth 304(1):219–224CrossRefGoogle Scholar
  29. 29.
    Keck A, Gilbert E, Koster R (2002) Influence of particles on sonochemical reactions in aqueous solutions. Ultrasonics 40(1–8):661–665CrossRefGoogle Scholar
  30. 30.
    Lv W, Luo Z, Yang H, Liu B, Weng W, Liu J (2010) Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders. Ultrason Sonochem 17(2):344–351CrossRefGoogle Scholar
  31. 31.
    Mizukoshi Y, Takagi E, Okuno H (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8(1):1–6CrossRefGoogle Scholar
  32. 32.
    Fujimoto T, Mizukoshi Y, Nagata Y (2001) Sonolytical preparation of various types of metal nanoparticles in aqueous solution. Scripta Mater 44(8–9):2183–2186Google Scholar
  33. 33.
    Abbas A, Srour M, Tang P, Chiou H, Kim C, Romagnolid J (2007) Sonocrystallisation of sodium chloride particles for inhalation. Chem Eng Sci 62(9):2445–2453CrossRefGoogle Scholar
  34. 34.
    Guo Z, Jones A G, Li N (2006) The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization. Chem Eng Sci 61(5):1617–1626CrossRefGoogle Scholar
  35. 35.
    Amara N, Ratsimba B, Wilhelm A, Delmas H (2001) Crystallization of potash alum: effect of power ultrasound. Ultrason Sonochem 8(3):265–270CrossRefGoogle Scholar
  36. 36.
    Amara N, Ratsimba B, Wilhelm A, Delmas H (2004) Growth rate of potash alum crystals: comparison of silent and ultrasonic conditions. Utrason Sonochem 11(1):17–21CrossRefGoogle Scholar
  37. 37.
    Ohayon E, Gedanken A (2010) The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in a non-aqueous solvent. Ultrason Sonochem 17(1):173–178CrossRefGoogle Scholar
  38. 38.
    Cravotto G, Omiccioli G, Stevanato L (2005) An improved sonochemical reactor. Ultrason Sonochem 12(3):213–217CrossRefGoogle Scholar
  39. 39.
    Mingzhao H, Foressberg E, Wang Y, Han Y (2005) Ultrasonic assisted synthesis of calcium carbonate nanoparticles. Chem Eng Comm 192(11):1468–1481CrossRefGoogle Scholar
  40. 40.
    Xiang L, Xiang Y, Wen Y, Wei F (2004) Formation of CaCO3 nanoparticles in the presence of terpineol. Mat Lett 58(6):959–965CrossRefGoogle Scholar
  41. 41.
    Wei S-H, Mahuli S K, Agnihotri R, Fan L-S (1997) High surface area calcium carbonate: pore structural properties and sulfation characteristic. Ind Eng Chem Res 36(6):2141–2148CrossRefGoogle Scholar
  42. 42.
    Sheng Y, Zhou B, Zhao J, Tao N, Yu K, Tian Y, Wang Z (2004) Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate. J Colloid Interface Sci 272((2):326–329CrossRefGoogle Scholar
  43. 43.
    Sonawane S, Khanna P, Meshram S, Mahajan C, Deosarkar M, Gumfekar S (2009) Effect of surfactant on synthesis of calcium carbonate nanoparticles using sonochemical carbonization. Int J Chem Reactor Eng (Be press) 7 A(47):1–15,www.bepress.com/ijcre/vol7/47Google Scholar
  44. 44.
    Senthilkumar P, Sivakumar M, Pandit AB (2000) Experimental quantification of chemical effects of hydrodynamic cavitation. Chem Eng Sci 55(9):1633–1639CrossRefGoogle Scholar
  45. 45.
    Moholkar VS, Senthilkumar P, Pandit AB (1999) Hydrodynamic cavitation for sono-chemical effect. Ultrason Sonochem 6(1–2):53–65CrossRefGoogle Scholar
  46. 46.
    Nano Calcium Carbonate Crystallization using New Hydrodynamic Cavitation Reactor: Sonawane S, Mahajan C, Gumfekar S, Kate K, Meshram S, Kunte K, Ramajee L, Ashokkumar M (2010) Int J Chem Eng. Article ID 242963,1–8 doi:10.1155/2010/242963Google Scholar
  47. 47.
    Chivate MM, Pandit AB (1993) Effect of sonic and hydrodynamic cavitation on aqueous polymeric solutions. Indian Chem Eng 35:52–57Google Scholar
  48. 48.
    Mishra C, Peles Y (2006) An experimental investigation of hydrodynamic cavitation in micro-Venturis. Phys Fluids 18:103–109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Vishwakarma Institute of TechnologyPuneIndia

Personalised recommendations