Sonochemical Preparation of Monometallic, Bimetallic and Metal-Loaded Semiconductor Nanoparticles

  • Sambandam Anandan
  • Muthupandian AshokkumarEmail author


A convenient method to synthesize metal nanoparticles with unique properties is highly desirable for many applications. The sonochemical reduction of metal ions has been found to be useful for synthesizing nanoparticles of desired size range. In addition, bimetallic alloys or particles with core-shell morphology can also be synthesized depending upon the experimental conditions used during the sonochemical preparation process. The photocatalytic efficiency of semiconductor particles can be improved by simultaneous reduction and loading of metal nanoparticles on the surface of semiconductor particles. The current review focuses on the recent developments in the sonochemical synthesis of monometallic and bimetallic metal nanoparticles and metal-loaded semiconductor nanoparticles.


Silver Nanoparticles Gold Nanoparticles Bimetallic Nanoparticles Acoustic Cavitation Bimetallic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research described herein was supported by the Department of Innovation, Industry, Science and Research (DIISR), Australia and Department of Science and Technology (DST), India.


  1. 1.
    Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and charcterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  2. 2.
    See articles in the (2006) special issue on Anisotropic Nanomaterials. J Mater Chem 16Google Scholar
  3. 3.
    Murphy CJ, San TK, Gole AM, Orendorff GJX, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109: 13857–13870CrossRefGoogle Scholar
  4. 4.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901CrossRefGoogle Scholar
  5. 5.
    Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903CrossRefGoogle Scholar
  6. 6.
    Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568CrossRefGoogle Scholar
  7. 7.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefGoogle Scholar
  8. 8.
    Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385CrossRefGoogle Scholar
  9. 9.
    Kuno M, Ahmed O, Protasenko V, Bacinello D, Kosel TH (2006) Solution-based straight and branched CdTe nanowires. Chem Mater 18:5722–5732CrossRefGoogle Scholar
  10. 10.
    Olson LG, Lo YS, Beebe TP Jr, Harris JM (2001) Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy. Anal Chem 73:4268–4276CrossRefGoogle Scholar
  11. 11.
    Kasumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy. Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040CrossRefGoogle Scholar
  12. 12.
    Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal Gen 222:427–437CrossRefGoogle Scholar
  13. 13.
    Zhong X, Yuan R, Chai Y, Liu Y, Dai J, Tang D (2005) Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate. Sensor Actuator B 104:191–198CrossRefGoogle Scholar
  14. 14.
    Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J Appl Phys 79:1244–1249CrossRefGoogle Scholar
  15. 15.
    Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg Core − shell nanoparticles. J Phys Chem B 104:11708–11718CrossRefGoogle Scholar
  16. 16.
    Chen YH, Yeh CS (2001) A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem Commun 371372Google Scholar
  17. 17.
    Papavassiliou GC (1976) Surface plasmons in small Au-Ag alloy particles. J Phys F Met Phys 6:L103–L105CrossRefGoogle Scholar
  18. 18.
    Suslick KS, Crum LA (1977) Sonochemistry and sonoluminescence, Encyclopedia of Acoustics. Wiley, New York, pp 271–282Google Scholar
  19. 19.
    Putterman SJ, Weninger KR (2000) Sonoluminescence: how bubbles turn sound into light. Annu Rev Fluid Mech 32:445–476CrossRefGoogle Scholar
  20. 20.
    Mason TJ, Lorimer JP (1988) Sonochemistry: theory applications and uses of ultrasound in Chemistry. Harword, Chichester, UKGoogle Scholar
  21. 21.
    Neppiras EA (1984) Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics 22:25–28CrossRefGoogle Scholar
  22. 22.
    Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–86CrossRefGoogle Scholar
  23. 23.
    Henglein A (1987) Sonochemistry: historical developments and modern aspects Ultrasonics 25:6–16Google Scholar
  24. 24.
    Suslick KS (1990) Sonochemistry. Science 247:1439–1445CrossRefGoogle Scholar
  25. 25.
    Kotronarou A, Mills G, Hoffmann MR (1991) Ultrasonic irradiation of p-nitrophenol in aqueous solution. J Phys Chem 95:3630–3638CrossRefGoogle Scholar
  26. 26.
    Petrier C, Lamy MF, Francony A, Benahceene A, David B, Renaudin V, Gondreson N (1994) Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520CrossRefGoogle Scholar
  27. 27.
    Sweet JD, Casadonte DJ (2001) Sonochemical synthesis of iron phosphide. Ultrason Sonochem 8:97–101CrossRefGoogle Scholar
  28. 28.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  29. 29.
    Sonochemical synthesis of inorganic nanoparticles: Ashokkumar M (2008) In: Cozzoli PD (ed)  Chapter 4: Advanced we-chemical synthetic approaches to inorganic nanostructures, Transworld Research Network, pp 107–131Google Scholar
  30. 30.
    Grieser F, Ashokkumar M (2004) In: Caruso F (ed) Sonochemical synthesis of inorganic and organic colloids, colloids and colloid assemblies. Wiley-VCH GmbH & Co. KgaA, Weinheim, pp 120–149Google Scholar
  31. 31.
    Brust M, Fink J, Bethell D, Shiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 1655–1656Google Scholar
  32. 32.
    Brust M, Walker M, Bethell D, Shiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 801–802Google Scholar
  33. 33.
    Yeung SA, Hobson R, Biggs S, Grieser F (1993) Formation of gold sols using ultrasound. J Chem Soc Chem Commun 378–379Google Scholar
  34. 34.
    Okitsu K, Teo BM, Ashokkumar M, Grieser F (2005) Controlled growth of sonochemically synthesized gold seed particles in aqueous solutions containing surfactants. Aust J Chem 58(2005):667CrossRefGoogle Scholar
  35. 35.
    Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675CrossRefGoogle Scholar
  36. 36.
    Nagata Y, Watanabe Y, Fujita S, Dohmaru T, Taniguchi S (1992) Formation of colloidal silver in water by ultrasonic irradiation. J Chem Soc Chem Commun 1620–1622Google Scholar
  37. 37.
    Anandan S, Ashokkumar M, Grieser F (2008) Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles. J Phys Chem C 112:15102–15105CrossRefGoogle Scholar
  38. 38.
    Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8:1–6CrossRefGoogle Scholar
  39. 39.
    Vinodgopal K, He Y, Ashokkumar M, Grieser F (2006) Sonochemically prepared platinum-ruthenium bimetallic nanoparticles. J Phys Chem B 110:3849–3852CrossRefGoogle Scholar
  40. 40.
    Nemamcha A, Rehspringer JL, Kharmi D (2006) Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution. J Phys Chem B 110: 383–387CrossRefGoogle Scholar
  41. 41.
    Kotranarou A, Mills G, Hoffman MR (1992) Oxidation of hydrogen sulfide in aqueous solution by ultrasonic irradiation. Environ Sci Technol 26:2420–2428CrossRefGoogle Scholar
  42. 42.
    Yang J, Lee JY, Too HP (2006) Phase-transfer identification of core-shell structures in bimetallic nanoparticles. Plasmonics 1:67–78CrossRefGoogle Scholar
  43. 43.
    Yang J, Lee JY, Too HP (2005) A phase transfer identification of core-shell structures in Au-Ru nanoparticles. Anal Chim Acta 537:279–284CrossRefGoogle Scholar
  44. 44.
    He Y, Vinodgopal K, Ashokkumar M, Grieser F (2006) Sonochemical synthesis of ruthenium nanoparticles. Res Chem Intermed 32:709–715CrossRefGoogle Scholar
  45. 45.
    Sathish Kumar P, Manivel A, Anandan S, Zhou M, Grieser F, Ashokkumar M (2010) Sonochemical synthesis and characterization of gold-ruthenium bimetallic nanoparticles. Colloids Surf A 356:140–144CrossRefGoogle Scholar
  46. 46.
    Mazzone G, Rivalta I, Russo N, Sicilia E (2008) Interaction of CO with PdAu(111) and PdAu(100) bimetallic surfaces: a theoretical cluster model study. J Phys Chem C 112:6073–6081CrossRefGoogle Scholar
  47. 47.
    Chimentao RJ, Cota I, Dafinov A, Medina F, Sueiras JE (2006) Synthesis of silver-gold alloy nanoparticles by a phase-transfer system. Mater Res 21:105–111CrossRefGoogle Scholar
  48. 48.
    Xie Y, Ding K, Liu Z, Tao R, Sun Z, Zhang H, An G (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131:6648–6649CrossRefGoogle Scholar
  49. 49.
    Gold-platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions: Miyamura H, Matsubara R, Kobayashi S (2008) Chem Commun 2031–2033.Google Scholar
  50. 50.
    Hajek J, Maki-Arvela P, Toukoniitty E, Kumar N, Salmi T, Murzin DY (2004) The effect of chemical reducing agents in the synthesis of sol-gel Ru-Sn catalysts: selective hydrogenation of cinnamaldehyde. J Sol-Gel Sci Technol 30:187–195CrossRefGoogle Scholar
  51. 51.
    Toshima N, Yonezawa T, Harada M, Asakuara K, Iwasawa Y (1990) The polymer-protected Pd-Pt bimetallic clusters having catalytic activity for selective hydrogenation of diene. Preparation and EXAFS investigation on the structure. Chem Lett 19:815–818CrossRefGoogle Scholar
  52. 52.
    Henglein A, Ershov BG, Malow M (1995) Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution. J Phys Chem 99:14129–14136CrossRefGoogle Scholar
  53. 53.
    Yonezawa Y, Sato T, Kuroda S, Kuge KJ (1991) Photochemical formation of colloidal silver: peptizing action of acetone ketyl radical. J Chem Soc Faraday Trans 87:1905–1910CrossRefGoogle Scholar
  54. 54.
    Mulvaney P, Giersig M, Henglein A (1992) Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects. J Phys Chem 96:10419–10424CrossRefGoogle Scholar
  55. 55.
    Trivino GC, Klabunde KJ, Dale EB (1987) Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. 14. Langmuir 3:986–992CrossRefGoogle Scholar
  56. 56.
    Ashokkumar M, Grieser F (2006) Sonochemical preparation of colloids, Encyclopedia of surface and colloid science, 2nd edn. Taylor & Francis, New York, pp 5685–5699Google Scholar
  57. 57.
    Sonochemistry: Ashokkumar M, Mason T (2007) In: Kirk-Othmer (ed) Encylcopedia of chemical technology. Wiley, New YorkGoogle Scholar
  58. 58.
    Suslick KS, Fang MM, Hyeon T, Mdleleni MM (1999) In: Crum LA, Mason TJ, Riesse JL, Suslick KS (eds) Sonochemistry and sonoluminescence, vol 524. Kluwer, London, p 291Google Scholar
  59. 59.
    Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104:6028–6032CrossRefGoogle Scholar
  60. 60.
    Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto YA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101:7033–7037CrossRefGoogle Scholar
  61. 61.
    Kan C, Cai W, Li C, Zhang L, Hofmeister H (2003) Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol. J Phys D Appl Phys 36:1609–1614CrossRefGoogle Scholar
  62. 62.
    Harada M, Asakura K, Toshima N (1993) Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride. J Phys Chem 97:5103–5114CrossRefGoogle Scholar
  63. 63.
    Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60:275–283CrossRefGoogle Scholar
  64. 64.
    Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60: 267–273CrossRefGoogle Scholar
  65. 65.
    Basnayake R, Li Z, Katar S, Zhou W, Rivera H, Smotkin ES, Casadonte DJ, Korzeniewski C Jr (2006) PtRu nanoparticle electrocatalyst with bulk alloy properties prepared through a sonochemical method. Langmuir 22:10446–10450CrossRefGoogle Scholar
  66. 66.
    Takagi E, Mizukoshi Y, Oshima R, Nagata Y, Bandow H, Maeda Y (2001) Sonochemical preparation of noble metal nanoparticles in the presence of various surfactants. Stud Surf Sci Catal 132:335–338CrossRefGoogle Scholar
  67. 67.
    Shchukin DG, Ustinovich E, Sviridov DV, Lvov YM, Sukhorukov GB (2003) Photocatalytic microreactors based on TiO2-modified polyelectrolyte multilayer capsules. Photochem Photobiol Sci 2:975–977CrossRefGoogle Scholar
  68. 68.
    Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C Rev 10:33–56CrossRefGoogle Scholar
  69. 69.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  70. 70.
    Chen J, Ollis DF, Rulkens WM (1999) Kinetic processes of photocatalytic mineralization of alcohols on metallized titanium dioxide. Water Res 33:1173–1180CrossRefGoogle Scholar
  71. 71.
    Kuwabata S, Yamauchi H, Yoneyama H (1998) Urea Photosynthesis from inorganic carbon and nitrogen compounds using TiO2 as photocatalyst. Langmuir 14:1899–1904CrossRefGoogle Scholar
  72. 72.
    Driessen MD, Goodman AL, Miller TM, Zaharias GA, Grassian VH (1998) Gas-phase photooxidation of trichloroethylene on TiO2 and ZnO: Influence of trichloroethylene pressure, oxygen pressure, and the photocatalyst surface on the product distribution. J Phys Chem B 102:549–556CrossRefGoogle Scholar
  73. 73.
    Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorgnic Chem 46:6980–6986CrossRefGoogle Scholar
  74. 74.
    Anandan S, Sathish Kumar P, Pugazhenthiran N, Madhavan J, Maruthamuthu P (2008) Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Solar Energy Mater Solar Cells 92:929–937CrossRefGoogle Scholar
  75. 75.
    Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570CrossRefGoogle Scholar
  76. 76.
    Sathish Kumar P, Sivakumar R, Anandan S, Madhavan J, Maruthamuthu P, Ashokkumar M (2008) Photocatalytic degradation of Acid Red 88 using Au–TiO2 nanoparticles in aqueous solutions. Water Res 42:4878–4884CrossRefGoogle Scholar
  77. 77.
    Lu W, Gao W, Wang S (2008) One-pot synthesis of Ag/ZnO self-assembled 3d hollow microspheres with enhanced photocatalytic performance. J Phys Chem C 112:16792–16800CrossRefGoogle Scholar
  78. 78.
    Pan JH, Zhang X, Du Alan J, Sun DD, Leckie JO (2009) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257CrossRefGoogle Scholar
  79. 79.
    Wang Y, Tang X, Lin L, Huang W, Haochen Y, Gedanken A (2000) Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures. Adv Mater 12:1183–1186CrossRefGoogle Scholar
  80. 80.
    Yu JC, Zhang L, Yu J (2002) Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem Mater 14:4647–4653CrossRefGoogle Scholar
  81. 81.
    Anandan S, Ashokkumar M (2009) Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrason Sonochem 16:316–320CrossRefGoogle Scholar
  82. 82.
    Mizukozhi Y, Makise Y, Shuto T, Hu J, Tominaga A, Shrionita S, Tanabe S (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14:387–392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of ChemistryUniversity of MelbourneParkvilleAustralia

Personalised recommendations