Advertisement

Sonochemical Synthesis of Metal Nanoparticles

  • Kenji OkitsuEmail author
Chapter

Abstract

In this chapter, sonochemical synthesis of nanometer sized metal particles is described and consists of sonochemical reduction of the corresponding metal ions in aqueous solutions. The reduction mechanism is suggested to be due to the reactions with reducing species formed from the sonolysis of organic additives and water. The rate of reduction of metal ions can be changed by changing the types and concentration of organic additives. In addition, various parameters such as ultrasound intensity, ultrasound frequency, dissolved gas, position of reaction vessel, etc. also affect the rate of reduction of metal ions. It is important to control the rate of reduction of metal ions, because the size of the formed metal particles is dramatically affected by the rate of reduction. It is recognized that smaller metal particles are obtained when the rate of reduction is higher. Bimetallic nanoparticles with core/shell structures can be also prepared by the sonochemical reduction of the corresponding metal ions. In addition, the immobilization of metal nanoparticles on metal oxides and the shape control of metal nanoparticles by the sonochemical reduction are described.

Keywords

Metal Nanoparticles Cavitation Bubble Ultrasonic Irradiation Gold Nanorods Bimetallic Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  2. 2.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  3. 3.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  4. 4.
    Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 544–557Google Scholar
  5. 5.
    Wang Z, Ma L (2009) Gold nanoparticle probes. Coordination Chem Rev 253:1607–1618CrossRefGoogle Scholar
  6. 6.
    Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2:18–45CrossRefGoogle Scholar
  7. 7.
    Zijlstra P, Chon JWM, Gu M (2009) Five dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413CrossRefGoogle Scholar
  8. 8.
    Suslick KS, Fang M, Hyeon T (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118:11960–11961CrossRefGoogle Scholar
  9. 9.
    Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8:2172–2179CrossRefGoogle Scholar
  10. 10.
    Shafi KVPM, Gedanken A (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450CrossRefGoogle Scholar
  11. 11.
    Xia B, Lenggoro IW, Okuyama K (2001) Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv Mater 13:1579–1582CrossRefGoogle Scholar
  12. 12.
    Xia B, Lenggoro IW, Okuyama K (2002) Nanoparticle separation in salted droplet microreactors. Chem Mater 14:2623–2627CrossRefGoogle Scholar
  13. 13.
    Skrabalak SE, Suslick KS (2005) Porous MoS2 synthesized by ultrasonic spray pyrolysis. J Am Chem Soc 127:9990–9991CrossRefGoogle Scholar
  14. 14.
    Dunkel SS, Helmich RJ, Suslick KS (2009) BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C 113:11980–11983CrossRefGoogle Scholar
  15. 15.
    Jiang L-P, Xu S, Zhu JM, Zhang JR, Zhu JJ, Chen HY (2004) Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorganic Chem 43:5877–5883CrossRefGoogle Scholar
  16. 16.
    Zhou B, Liu B, Jiang LP, Zhu JJ (2007) Ultrasonic-assisted size-controllable synthesis of Bi2Te3 nanoflakes with electrogenerated chemiluminescence. Ultrason Sonochem 14:229–234CrossRefGoogle Scholar
  17. 17.
    Wu C, Mosher BP, Zeng T (2006) Rapid synthesis of gold and platinum nanoparticles using metal displacement reduction with sonomechanical assistance. Chem Mater 18:2925–2928CrossRefGoogle Scholar
  18. 18.
    Wu C, Mosher BP, Zeng T (2008) Chemically-mechanically assisted synthesis of metallic and oxide nanoparticles in ambient conditions. J Nanosci Nanotechnol 8:386–389Google Scholar
  19. 19.
    Jiang L-P, Wang A-N, Zhao Y, Zhang J-R, Zhu J-J (2004) A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509CrossRefGoogle Scholar
  20. 20.
    Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone). J Phys Chem B 110:16947–16952CrossRefGoogle Scholar
  21. 21.
    Gutierrez MS, Henglein A, Dohrmann JK (1987) H atom reactions in the sonolysis of aqueous solutions. J Phys Chem 91:6687–6690CrossRefGoogle Scholar
  22. 22.
    Nagata Y, Watanabe Y, Fujita S, Dohmaru T, Taniguchi S (1992) Formation of colloidal silver in water by ultrasonic irradiation. J Chem Soc Chem Commun 1620–1622Google Scholar
  23. 23.
    Yeung S A, Hobson R, Biggs S, Grieser F (1993) Formation of gold sols using ultrasound. J Chem Soc Chem Commun 378–379Google Scholar
  24. 24.
    Nagata Y, Mizukoshi Y, Okitsu K, Maeda Y (1996) Sonochemical formation of gold particles in aqueous solution. Radiat Res 146:333–338CrossRefGoogle Scholar
  25. 25.
    Grieser F, Hobson R, Sostaric J, Mulvaney P (1996) Sonochemical reduction processes in aqueous colloidal systems. Ultrasonics 34:547–550CrossRefGoogle Scholar
  26. 26.
    Okitsu K, Bandow H, Maeda Y, Nagata Y (1996) Sonochemical preparation of ultrafine palladium particles. Chem Mater 8:315–317CrossRefGoogle Scholar
  27. 27.
    Okitsu K, Mizukoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y (1996) Formation of noble metal particles by ultrasonic irradiation. Ultrason Sonochem 3:S249–S251CrossRefGoogle Scholar
  28. 28.
    Caruso RA, Ashokkumar M, Grieser F (2002) Sonochemical formation of gold sols. Langmuir 18:7831–7836CrossRefGoogle Scholar
  29. 29.
    Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y, Yoo Y (2002) Sonolytic control of rate of gold(III) reduction and size of formed gold nanoparticles: relation between reduction rates and sizes of formed nanoparticles. Bull Chem Soc Jpn 75:2289–2296CrossRefGoogle Scholar
  30. 30.
    Okitsu K, Nagaoka S, Tanabe S, Matsumoto H, Mizukoshi Y, Nagata Y (1999) Sonochemical preparation of size-controlled palladium nanoparticles on alumina surface. Chem Lett 28:271–272CrossRefGoogle Scholar
  31. 31.
    Okitsu K, Yue A, Tanabe S, Matsumoto H (2000) Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem Mater 12:3006–3011CrossRefGoogle Scholar
  32. 32.
    Maeda Y, Okitsu K, Inoue H, Nishimura R, Mizukoshi Y, Nakui H (2004) Preparation of nanoparticles by reducing intermediate radicals formed in sonolytical pyrolysis of surfactants. Res Chem Intermed 30:775–783CrossRefGoogle Scholar
  33. 33.
    Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675CrossRefGoogle Scholar
  34. 34.
    Tronson R, Ashokkumar M, Grieser F (2002) Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound. J Phys Chem B 106:11064–11068CrossRefGoogle Scholar
  35. 35.
    Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8:1–6CrossRefGoogle Scholar
  36. 36.
    He Y, Vinodgopal K, Ashokkumar M, Grieser F (2006) Sonochemical synthesis of ruthenium nanoparticles. Res Chem Intermed 32:709–715CrossRefGoogle Scholar
  37. 37.
    Vinodgopal K, He Y, Ashokkumar M, Grieser F (2006) Sonochemically prepared platinum-ruthenium bimetallic nanoparticles. J Phys Chem B 110:3849–3852CrossRefGoogle Scholar
  38. 38.
    Mizukoshi Y, Seino S, Okitsu K, Kinoshita T, Otome Y, Nakagawa T, Yamamoto TA (2005) Sonochemical preparation of composite nanoparticles of Au/γ−Fe2O3 and magnetic separation of glutathione. Ultrason Sonochem 12:191–195CrossRefGoogle Scholar
  39. 39.
    Mizukoshi Y, Sato K, Konno TJ, Masahashi N, Tanabe S (2008) Magnetically retrievable palladium/maghemite nanocomposite catalysts prepared by sonochemical reduction method. Chem Lett 37:922–923CrossRefGoogle Scholar
  40. 40.
    Pol VG, Gedanken A, Calderon-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118CrossRefGoogle Scholar
  41. 41.
    Sivakumar M, Towata A, Yasui K, Tuziuti T, Kozuka T, Tsujimoto M, Zhong Z, Iida Y (2010) Fabrication of nanosized Pt on rutile TiO2 using a standing wave sonochemical reactor (SWSR) – observation of an enhanced catalytic oxidation of CO. Ultrason Sonochem 17:213–218CrossRefGoogle Scholar
  42. 42.
    Mizukoshi Y, Okitsu K, Yamamoto T, Oshima J, Nagata Y, Maeda Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101:7033–7037CrossRefGoogle Scholar
  43. 43.
    Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104:6028–6032CrossRefGoogle Scholar
  44. 44.
    Okitsu K, Murakami M, Tanabe S, Matsumoto H (2000) Catalytic behavior of Au core/Pd shell bimetallic nanoparticles on silica prepared by sonochemical and sol-gel processes. Chem Lett 29:1336–1337CrossRefGoogle Scholar
  45. 45.
    Xu C, Lai X, Zajac GW, Goodman DW (1997) Scanning tunneling microscopy studies of the TiO(110) surface: structure and the nucleation growth of Pd. Phys Rev B 56:13464–13482CrossRefGoogle Scholar
  46. 46.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650CrossRefGoogle Scholar
  47. 47.
    Okitsu K, Yue A, Tanabe S, Matsumoto H (2002) Formation of palladium nanoclusters on Y-zeolite via a sonochemical process and conventional methods. Bull Chem Soc Jpn 75:449–455CrossRefGoogle Scholar
  48. 48.
    Chen W, Cai W, Lei Y, Zhang L (2001) A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Mater Lett 50:53–56CrossRefGoogle Scholar
  49. 49.
    Chen W, Zhang J, Cai W (2003) Sonochemical preparation of Au, Ag, Pd/SiO2 mesoporous nanocomposites. Scripta Materialia 48:1061–1066CrossRefGoogle Scholar
  50. 50.
    Zhu S, Zhou H, Hibino M, Honma I, Ichihara M (2005) Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv Funct Mater 15:381–386CrossRefGoogle Scholar
  51. 51.
    Okitsu K, Sharyo K, Nishimura R (2009) One-pot synthesis of gold nanorods by ultrasonic irradiation: The effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25:7786–7790CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations