Sonoelectrochemical Synthesis of Materials

  • José González-GarcíaEmail author


In the last decade, the sonoelectrochemical synthesis of inorganic materials has experienced an important development motivated by the emerging interest in the nanostructures production. However, other traditional sonoelectrochemical synthesis such as gas production, metal deposits and metallic oxide films have also been improved with the simultaneous application of both electric and ultrasound fields. In this chapter, a summary of the fundamental basis, experimental set-up and different applications found in literature are reported, giving the reader a general approach to this branch of Applied Sonoelectrochemistry.


Ultrasonic Irradiation Cavitation Erosion Acoustic Streaming Ultrasound Intensity Lead Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank to his collegues R. Gómez, P. Bonete, T. Lana-Villarreal, O. Louisnard and Ph. D students A. J. Frías-Ferrer, V. Sáez, M. D. Esclapez-Vicente, D. Milán, I. Tudela, M. I. Díez, A. Rico for their help and friendship.


  1. 1.
    González-García J, Esclapez MD, Bonete P et al (2010) Current topics on Sonoelectrochemistry. Ultrasonics 50:318–322Google Scholar
  2. 2.
    Compton RG, Eklund JC, Marken F (1997) Dual activation: coupling ultrasound to electrochemistry – an overview. Electrochim Acta 42:2919–2927Google Scholar
  3. 3.
    Winand R (1998) Contribution to the study of copper electrocrystallization in view of industrial applications-submicrocopic and macroscopic considerations. Electrochim Acta 43:2925–2932Google Scholar
  4. 4.
    Saez V, Mason TJ (2009) The synthesis of nanoparticles using Sonoelectrochemistry: a review. Molecules 14:4284–4299Google Scholar
  5. 5.
    Asami R, Atobe M, Fuchigami T (2006) Ultrasonic effects on electroorganic processes. Part 27. Electroreduction of acrylonitrile at suspended lead particle-electrode. Ultrason Sonochem 13:19–23, and the seriesGoogle Scholar
  6. 6.
    Gogate PR (2008) Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason Sonochem 15:1–15Google Scholar
  7. 7.
    Agulló E, González-García J, Expósito E et al (1999) Influence of an ultrasonic field on lead electrodeposition on copper using a fluoroboric bath. New J Chem 23:95–101Google Scholar
  8. 8.
    Mohapatra SK, Misra M, Mahajan VK et al (2007) A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J Catal 246:362–369Google Scholar
  9. 9.
    Compton RG, Hardcastle JL, del Campo J et al (2003) Sonoelectroanalysis: applications. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Haas I, Gedanken A (2006) Sonoelectrochemistry of Cu2+ in the presence of cetyltrimethylammonium bromide: obtaining CuBr instead of copper. Chem Mater 18:1184–1189Google Scholar
  11. 11.
    González-García J, Iniesta J, Aldaz A et al (1998) Effects of ultrasound on the electrodeposition of lead dioxide on glassy carbon electrodes. New J Chem 22:343–347Google Scholar
  12. 12.
    Oturan MA, Sirés I, Oturan N (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332Google Scholar
  13. 13.
    Brett C (2008) Sonoelectrochemistry. In: Antonio Arnau Vives (ed) Piezoelectric transducer and Applications. Springer, Berlin HeidelbergGoogle Scholar
  14. 14.
    Pollet BG, Phull SS (2001) Sonoelectrochemistry-theory, principles and applications. Recent Res Develop Electrochem 4:55–78Google Scholar
  15. 15.
    Mason TJ, Lorimer JP, Walton DJ (1990) Sonoelectrochemistry. Ultrasonics 28:333–337Google Scholar
  16. 16.
    Suslick KS (1990) Sonochemistry. Science 247:1439–1445Google Scholar
  17. 17.
    Marken F, Compton RG (1998) Sonoelectrochemically modified electrodes: ultrasound assisted electrode cleaning, conditioning, and product trapping in 1-octanol/water emulsion systems. Electrochim Acta 43:2157–2165Google Scholar
  18. 18.
    Rejňák M, Klíma J, Svodoba J et al (2004) Synthesis and electrochemical reduction of methyl 3-halo-1-benzothiophene-2-carboxylates. Collect Czech Chem Commum 69:242–260Google Scholar
  19. 19.
    Zhang H, Coury LA Jr (1993) Effects of high-intensity ultrasound on glassy carbon electrodes. Anal Chem 65:1552–1558Google Scholar
  20. 20.
    Compton RG, Eklund JC, Page SD et al (1994) Voltammetry in the presence of ultrasound. Sonovoltammetry and surface effects. J Phys Chem 98:12410–12414Google Scholar
  21. 21.
    Cooper EL, Coury LA jr (1998) Mass transport in sonovoltammetry with evidence of hydrodynamic modulation from ultrasound. J Electrochem Soc 145:1994–1999Google Scholar
  22. 22.
    Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes. A review. Electroanalysis 9:509–522Google Scholar
  23. 23.
    Compton RG, Hardcastle JL, del Campo J et al (2003) Sonoelectrochemistry: physical aspects. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Curie J, Curie P (1880) Dévelopment, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Compt Rend 91:291–294Google Scholar
  25. 25.
    Gallego-Juárez JA, Rodríguez Corral G, Riera E et al. (2001) Development of industrial models of high power stepped-plate sonic and ultrasonic transducer for use in fluids. IEEE Ultrasonic Sypoos. Proceedings, pp 571–578Google Scholar
  26. 26.
    Mason TJ, Cordemans E (1998) In: Jean-Louis Luche (ed) Practical considerations for process optimization in synthetic organic sonochemistry. Plenum Press, LondonGoogle Scholar
  27. 27.
    Mason TJ, Lorimer JP (1988) Ultrasonic equipment and chemical reactor design in: Sonochemistry: theory, applications and uses of ultrasound in Chemistry. Ellis Horwood, ChichesterGoogle Scholar
  28. 28.
    Walsh FC (1993) A first course in electrochemical engineering. The electrochemical consultancy, RomseyGoogle Scholar
  29. 29.
    Hyde ME, Compton RG (2002) How ultrasound influences the electrodeposition of metals. J Electroanal Chem 531:19–24Google Scholar
  30. 30.
    Touyeras F, Hihn JY, Bourgoin X et al (2005) Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electroplating. Ultrason Sonochem 12:13–19Google Scholar
  31. 31.
    Yegnaraman V, Bharathi S (1992) Sonoelectrochemistry – an emerging area. Bull Electrochem 8:84–85Google Scholar
  32. 32.
    Mohapatra SK, Raja KS, Misra M et al (2007) Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy. Electrochim Acta 53:590–597Google Scholar
  33. 33.
    Klíma J, Bernard C, Degrand C (1994) Sonoelectrochemistry: effects of ultrasound on voltammetric measurements at a solid electrode. J Electroanal Chem 367:297–300Google Scholar
  34. 34.
    Klíma J, Bernard C, Degrand C (1995) Sonoelectrochemistry: transient cavitation in acetonitrile in the neighbourhood of a polarized electrode. J Electroanal Chem 399:147–155Google Scholar
  35. 35.
    Klíma J, Bernard C (1999) Sonoassisted electrooxidative polymerisation of salicylic acid. Role of acoustic streaming and microjetting. J Electroanal Chem 462:181–186Google Scholar
  36. 36.
    Costa C, Hihn JH, Rebetez M et al (2008) Transport-limited current and microsonoreactor characterization at 3 low frequencies in the presence of water, acetonitrile and imidazolium-based ionic liquids ([BuMIm] [(CF3SO2)2N]). Phys Chem Chem Phys 10:2149–2158Google Scholar
  37. 37.
    Louisnard O, González-García J, Tudela I et al (2009) FEM simulation of a son-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250–259Google Scholar
  38. 38.
    Dewald HD, Peterson BA (1990) Ultrasonic hydrodynamic modulation voltammetry. Anal Chem 62:779–782Google Scholar
  39. 39.
    Eklund JC, Marken F, Waller DN et al (1996) Voltammetry in the presence of ultrasound: a novel sono-electrode geometry. Electrochim Acta 41:1541–1547Google Scholar
  40. 40.
    Marken F, Compton RG (1996) Electrochemistry in the presence of ultrasound: the need for bipotentiostatic control in sonovoltammetric experiments. Ultrason Sonochem 3:S131–S134Google Scholar
  41. 41.
    Reisse J, François H, Vandercammen J et al (1994) Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor. Electrochim Acta 39:37–39Google Scholar
  42. 42.
    Aqil A, Serwas H, Delplancke JL (2008) Preparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry. Ultrason Sonochem 15:1055–1061Google Scholar
  43. 43.
    Lei H, Tang YJ, Wei JJ et al (2007) Synthesis of tugsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 14:81–83Google Scholar
  44. 44.
    Marken F, Kumbhat S, Sanders GHW et al (1996) Voltammetry in the presence of ultrasound: surface and solution processes in the sonovoltammetric reduction at glassy carbon and gold electrodes. J Electroanal Chem 414:95–105Google Scholar
  45. 45.
    Sonovoltametric measurement of the rates of electrode processes with fast coupled homogeneous kinetics: making macroelectrodes behave like microelectrodes: Compton RG, Marken F, Rebbitt TO (1996) Chem Commun 1017–1018Google Scholar
  46. 46.
    Marken F, Compton RG, Davies SG et al (1997) Electrolysis in the presence of ultrasound: cell geometries for the application of rates of mass transfer in electrosynthesis. J Chem Soc (Perkin Trans) 2(10):2055–2059Google Scholar
  47. 47.
    Esclapez MD, Sáez V, Milán-Yáñez D et al (2010) Sonochemical treatment of water poulled with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020Google Scholar
  48. 48.
    Sáez V, Frías-Ferrer A, Iniesta J et al (2005) Characterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12:59–65Google Scholar
  49. 49.
    Klima J, Frías-Ferrer A, González-García J et al (2007) Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason Sonochem 14:19–28Google Scholar
  50. 50.
    Compton RG, Hardcastle JL, del Campo J et al (2003) Ultrasound and electrosynthesis. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  51. 51.
    Cognet P, Wilhem AM, Delmas H et al (2000) Ultrasound in organic electrosynthesis. Ultrason Sonochem 7:163–167Google Scholar
  52. 52.
    Walton DJ, Mason TJ (1998) In: Jean-Louis Luche (ed) Organic sonoelectrochemistry in synthetic organic sonochemistry. Plenum Press, London, pp 263–300Google Scholar
  53. 53.
    Morigushi N (1934) The effect of supersonic waves on chemical phenomena (III). The effect of the concentration polarization. J Chem Soc Jpn 55:749–750Google Scholar
  54. 54.
    Cataldo F (1992) Effects of ultrasound on the yield of hydrogen and chlorine during electrolysis of aqueous solutions of NaCl or HCl. J Electroanal Chem 332:325–331Google Scholar
  55. 55.
    Walton DJ, Burke LD, Murphy MM (1996) Sonoelectrochemistry: chlorine, hydrogen and oxygen evolution at platinised platinum. Electrochim Acta 41:2747–2751Google Scholar
  56. 56.
    Šljukić B, Bank CE, Compton RG (2004) The search for stable and efficient sonoelectrocatalysts for oxygen reduction and hydrogen peroxide formation: azobenzene and derivatives. Phys Chem Chem Phys 6:4034–4041Google Scholar
  57. 57.
    Šljukić B, Bank CE, Compton RG (2005) Exploration of stable sonoelectrocatalysis for the electrochemical reduction of oxygen. Electroanalysis 17:1025–1034Google Scholar
  58. 58.
    González-García J, Banks CE, Šljukić B et al (2007) Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrason Sonochem 14:405–412Google Scholar
  59. 59.
    Murphy MA, Marken F, Mocak J (2003) Sonoelectrochemistry of molecular and colloidal redox systems at carbon nanofiber-ceramic composite electrodes. Electrochim Acta 48:3411–3417Google Scholar
  60. 60.
    Pletcher D, Walsh FC (1993) Industrial electrochemistry. Chapman & Hall, LondonGoogle Scholar
  61. 61.
    Kuhn AT (1971) Industrial electrochemical processes. Elsevier, AmsterdamGoogle Scholar
  62. 62.
    Lindstrom O (1952) Astudy of some electrochemical effects in a field of stationary ultrasonic waves. Acta Chem Scand 6:1313–1323Google Scholar
  63. 63.
    Dereska J, Jaeger E, Hovorka F (1957) Effects of acoustical waves on the electrodeposition of Chromium. J Acoust Soc Am 29:769–769Google Scholar
  64. 64.
    Walker R (1990) Ultrasound and electroplating. Chem Britain 26:251–254Google Scholar
  65. 65.
    Lorimer P, Mason TJ (1999) Sonoelectrochemisry. The application of ultrasound in electroplating. Electrochemistry 67:924–930Google Scholar
  66. 66.
    Hardcastle JL, Compton RG (2001) The electroanalytical detection and determination of copper in heavily passivating media: ultrasonically enhanced solvent extraction by N-benzoyl-N-phenyl-hydroxylamine in ethyl acetate coupled with electrochemical detection by sono-square wave stripping voltammetry analysis. Analyst 126:2025–2031Google Scholar
  67. 67.
    Prasad PBSN, Vasudevan R, Seshadri SK (1994) Effect of ultrasonic agitation on surface finish of electrodeposits Indian. J Eng Mater Sci 1:178–180Google Scholar
  68. 68.
    Walken R, Halagan SA (1985) Electrodeposition of nickel-iron alloys with ultrasound. Plat Surf Finish 72:68–73Google Scholar
  69. 69.
    Namgoong E, Chun JS (1984) The effect of ultrasonic vibration on hard chromium plating in a modified self-regulating high speed bath. Thin Solid Films 120:153–159Google Scholar
  70. 70.
    Walker R, Walker CT (1975) New explanation for the brightness of electrodeposits produced by ultrasound. Ultrasonics 13:79–82Google Scholar
  71. 71.
    Lee C-W, Compton RG, Eklund JC et al (1995) Mercury-electroplated platinum electrodes and microelectrodes for sonoelectrochemistry. Ultrason Sonochem 2:S59–S62Google Scholar
  72. 72.
    Kang J, Shin Y, Tak Y (2005) Growth of etch pits formed during sonoelectrochemical etching of aluminium. Electrochim Acta 51:1012–1016Google Scholar
  73. 73.
    Doche ML, Hihn JY, Mandroyan A et al (2003) Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media. Ultrason Sonochem 3:357–362Google Scholar
  74. 74.
    Effects of sonication on the anodic dissolution of copper and nickel electrodeposits: Chiba A (2003) Met Finish 117–122Google Scholar
  75. 75.
    Holt KB, Sabin G, Compton RG et al (2002) Reduction of tetrachloroaureate(III) at boron-doped diamond electrodes: gold deposition versus gold colloid formation. Electroanalysis 14:797–803Google Scholar
  76. 76.
    Narasimham KC, Gomathi PS, Udupa HVK (1976) The influence of ultrasonics on the electrodeposition of lead dioxide. J Appl Electrochem 6:397–401Google Scholar
  77. 77.
    González-García J, Gallud F, Iniesta J et al (2001) Kinetics of electrocrystallization of PbO2 on glassy carbon electrodes: influence of ultrasound. New J Chem 25:1195–1198Google Scholar
  78. 78.
    González-García J, Sáez V, Iniesta J et al (2002) Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound power. Electrochem Commun 4:370–373Google Scholar
  79. 79.
    Sáez V, González-García J, Iniesta J et al (2004) Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound frequency. Electrochem Commun 6:757–761Google Scholar
  80. 80.
    González-García J, Iniesta J, Expósito E et al (1999) Early stages of lead dioxide electrodeposition on rough titanium. This Solid Films 352:49–56Google Scholar
  81. 81.
    Saterlay AJ, Wilkins SJ, Holt KB et al (2001) Lead dioxide deposition and electrocalysis at highly boron-doped diamond electrodes in the presence of ultrasound. J Electrochem Soc 148:E66–E72Google Scholar
  82. 82.
    Saterlay AJ, Wilkins SJ, Goeting CH et al (2000) Sonoelectrochemistry at highly boron-doped diamond electrodes: silver oxide deposition and electrocatalysis in the presence of ultrasound. J Solid State Electrochem 4:383–389Google Scholar
  83. 83.
    Ko WY, Chen WH, Tzeng SD et al (2006) Synthesis of pyramidal copper nanoparticles on gold substrate. Chem Mater 18:6097–6099Google Scholar
  84. 84.
    Fukami K, Nakanishi S, Yamasaki H et al (2007) General Mechanism for the synchronization of electrochemical oscillations and self-organized dendrite electrodeposition of metals with ordered 2D and 3D microstructures. J Phys Chem C 111:1150–1160Google Scholar
  85. 85.
    Jiang LP, Wang AN, Zhao Y et al (2004) A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509Google Scholar
  86. 86.
    Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55Google Scholar
  87. 87.
    Tang S, Men X, Lu H et al (2009) PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Mater Chem Phys 116:464–468Google Scholar
  88. 88.
    Pileni MP, Lisiecki I (1993) Nanometer metallic copper particle synthesis in reverse micelles. Colloids Surf A 80:63–68Google Scholar
  89. 89.
    Zhu J, Liu S, Palchik O et al (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399Google Scholar
  90. 90.
    Socol Y, Abramson O, Gedanken A et al (2002) Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Lagmuir 18:4736–4740Google Scholar
  91. 91.
    Mancier V, Daltin A-L, Leckercq D (2008) Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry. Ultrason Sonochem 15:157–163Google Scholar
  92. 92.
    Dabalà M, Pollet BG, Zin V et al (2008) Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. J Appl Electrochem 38:395–402Google Scholar
  93. 93.
    Ganesan R, Shanmugam S, Gedanken A (2008) Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties. Synt Met 158:848–853Google Scholar
  94. 94.
    Shen Q, Jiang K, Zhang H et al (2008) Three-dimensional dendritic Pt Nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392Google Scholar
  95. 95.
    Mastai Y, Polsky R, Koltypin Y et al (1999) Pulsed sonoelectrochemical of cadmium selenide nanoparticles. J Am Chem Soc 121:10047–10052Google Scholar
  96. 96.
    Zhu JJ, Aruna ST, Koltypin Y et al (2000) A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem Mater 12:143–147Google Scholar
  97. 97.
    Synthesis of metallic magnesium by sonoelectrochemistry: Hass I, Gedanken A (2008) Chem Commun 1795–1797Google Scholar
  98. 98.
    Mohapatra SK, Misra M, Mahajan VK et al (2008) Synthesis of Y-branched TiO2 nanotubes. Mat Lett 62:1772–1774Google Scholar
  99. 99.
    Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilize by poly(N-vinylpyrrolidone). J Phys Chem B 110:16947–16952Google Scholar
  100. 100.
    Lei H, Tang Y-J, Wei J-J et al (2007) Synthesis of tungsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 14:81–83Google Scholar
  101. 101.
    Sáez V, González-García J, Kulandainathan MA et al (2007) Electro-deposition and stripping of catalytically iron metal nanoparticles at boron-doped diamond electrodes. Electrochem Commun 9:1127–1133Google Scholar
  102. 102.
    Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168Google Scholar
  103. 103.
    Liu S, Huang W, Chen S et al (2001) Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method. J Non-Cryst solids 283:231–236Google Scholar
  104. 104.
    Liu YC, Yu CC, Yang KH (2006) Active catalysts of electrochemically prepared gold nanoparticles for the decomposition of aldehyde in alcohol solutions. Electrochem Commun 8:1163–1167Google Scholar
  105. 105.
    Liu YC, Kin LH, Chiu WH (2004) Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods. J Phys Chem B 108:19237–19240Google Scholar
  106. 106.
    Liu YC, Yang KH, Yang SJ (2006) Sonoelectrochemical synthesis of spike-like gold-silver alloy nanoparticles from bulk substrates and the application on surface-enhanced Raman scattering. Anal Chim Acta 572:290–294Google Scholar
  107. 107.
    Reisse J, Caulier T, Deckerkheer C et al (1996) Quantitative sonochemistry. Ultrason Sonochem 3:S147–S151Google Scholar
  108. 108.
    Yang YJ (2006) A novel electrochemical preparation of PbS nanoparticles. Mat Sci Eng B 131:200–202Google Scholar
  109. 109.
    Mastai Y, Homyonfer M, Gedanken A et al (1999) Room temperature sonoelectrochemical synthesis of molybdenum sulfide fullurene-like nanoparticles. Adv Mat 11:1010–1013Google Scholar
  110. 110.
    Liu YC, Wang CC, Juang LC (2004) Sonoelectrochemical methods of preparing silver-coated TiO2 nanoparticles with extremely high coverage. J Electroanal Chem 574:71–75Google Scholar
  111. 111.
    Zhu JJ, Qiu QF, Wang H et al (2002) Synthesis of silver nanowires by a sonoelectrochemical method. Inor Chem Commun 5:242–244Google Scholar
  112. 112.
    Singh KV, Martinez-Morales AA, Senthil Andavan GT et al (2007) A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication using template-assisted electrodeposition. Chem Mater 19:2446–2454Google Scholar
  113. 113.
    Qiu X, Lou Y, Samia ACS et al (2005) PbTe nanorods by sonoelectrochemistry Angew. Chem Int Ed 44:5855–5857Google Scholar
  114. 114.
    Sonoelectrochemical synthesis of CdSe nanotubes: Shen Q, Jiang L, Miao J (2008) Chem Commun 1683–1685Google Scholar
  115. 115.
    Jia F, Hu Y, Tang Y et al (2007) A general nonaqueous sonoelectrochemical approach to nanoporous Zn and Ni particles. Power Tech 176:130–136Google Scholar
  116. 116.
    Haas I, Shanmugam S, Gedanken A (2008) Synthesis of copper dendrite nanostructures by a sonochemical method. Chem Eur J 14:4696–7403Google Scholar
  117. 117.
    Qiu XF, Xu JZ, Zhu JM et al (2003) Controlable synthesis of palladium nanopaticles via a simple sonochemical method. J Mater Res 18:1399–1404Google Scholar
  118. 118.
    Del Campo FJ, Coles BA, Marken F et al (1999) High-frequency sonoelectrochemical process: mass transport, thermal and surface effects induced by cavitation in a 500 kHz reactor. Ultrason Sonochem 6:189–197Google Scholar
  119. 119.
    Qiu XF, Burda C, Fu RL et al (2004) Heterostructured Bi2Se3 nanowires with periodic phase boundaries. J Am Chem Soc 126:16276–16277Google Scholar
  120. 120.
    Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered nano-tubular structure of anodic oxide layer of titanium. Electrochim Acta 51:154–165Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Grupo de Nuevos Desarrollos Tecnológicos en Electroquímica: Sonoelectroquímica y Bioelectroquímica. Departamento de Química Física e Instituto de ElectroquímicaUniversidad de AlicanteAlicanteSpain

Personalised recommendations