Advertisement

The Role of Salts in Acoustic Cavitation and the Use of Inorganic Complexes as Cavitation Probes

  • Adam BrotchieEmail author
  • Franz Grieser
  • Muthupandian Ashokkumar
Chapter
  • 1.2k Downloads

Abstract

Inorganic complexes have been employed as cavitation probes to ascertain invaluable quantitative information pertaining to bubble collapse temperatures and pressures, and provide qualitative insight into other fundamental aspects of cavitation. In addition to serving as cavitation probes, simple salts exert a marked influence on critical facets of acoustic cavitation ranging from nucleation, to inter-bubble interactions and the bubble size distribution. Multi-bubble sonoluminescence intensities can be elevated by almost an order of magnitude at high electrolyte concentration and the coalescence behaviour exhibited between bubbles scales with the ‘salting-out’ effect of a range of solutes, adding an interesting insight in the context of ion-specific electrolyte coalescence inhibition. This chapter provides a review of the literature available in these areas.

Keywords

Single Bubble Bubble Collapse Bubble Coalescence Bubble Size Distribution Argon Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Neppiras EA, Noltingk BE (1951) Cavitation produced by ultrasonics: theoretical conditions of the onset of cavitation. Proc Phys Soc B 64:1032–1038CrossRefGoogle Scholar
  2. 2.
    Srinivasan D, Holroyd LV (1961) Optical spectrum of the sonoluminescence emitted by cavitated water. J Appl Phys 32:446–449CrossRefGoogle Scholar
  3. 3.
    Gunther P, Heim E, Borgstedt HV (1959) Uber die Kontinuierichen Sonolumineszenzspektren Wassriger Losungen. Z Elektrochem 63:43–47Google Scholar
  4. 4.
    Gompf B, Gunther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405–1408CrossRefGoogle Scholar
  5. 5.
    Sehgal C, Steer RP, Sutherland RG, Verrall RE (1979) Sonoluminescence of argon saturated alkali-metal salt-solutions as a probe of acoustic cavitation. J Chem Phys 70:2242–2248CrossRefGoogle Scholar
  6. 6.
    Flint EB, Suslick KS (1991) Sonoluminescence from alkali-metal salt-solutions. J Phys Chem 95:1484–1488CrossRefGoogle Scholar
  7. 7.
    Xu HX, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061CrossRefGoogle Scholar
  8. 8.
    Flannigan DJ, Suslick KS (2007) Emission from electronically excited metal atoms during single-bubble sonoluminescence. Phys Rev Lett 99:134301CrossRefGoogle Scholar
  9. 9.
    Didenko YT, McNamara WB, Suslick KS (2000) Molecular emission from single-bubble sonoluminescence. Nature 407:877–879CrossRefGoogle Scholar
  10. 10.
    McNamara WB, Didenko YT, Suslick KS (2003) Pressure during sonoluminescence. J Phys Chem B 107:7303–7306CrossRefGoogle Scholar
  11. 11.
    Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683CrossRefGoogle Scholar
  12. 12.
    Suslick KS, Hammerton DA, Cline RE Jr (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642CrossRefGoogle Scholar
  13. 13.
    Suslick KS, Flint EB, Grinstaff MW, Kemper KA (1993) Sonoluminescence from metal carbonyls. J Phys Chem 97:3098–3099CrossRefGoogle Scholar
  14. 14.
    McNamara WBI, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772–775CrossRefGoogle Scholar
  15. 15.
    Guan JF, Matula TJ (2003) Time scales for quenching single-bubble sonoluminescence in the presence of alcohols. J Phys Chem B 107:8917–8921CrossRefGoogle Scholar
  16. 16.
    Ashokkumar M, Mulvaney P, Grieser F (1999) The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids and bases. J Am Chem Soc 121:7355–7359CrossRefGoogle Scholar
  17. 17.
    Ashokkumar M, Crum LA, Frensley CA, Grieser F, Matula TJ, McNamara WB, Suslick KS (2000) Effect of solutes on single-bubble sonoluminescence in water. J Phys Chem A 104:8462–8465CrossRefGoogle Scholar
  18. 18.
    Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399CrossRefGoogle Scholar
  19. 19.
    Didenko YT, McNamara WB, Suslick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121:5817–5818CrossRefGoogle Scholar
  20. 20.
    Didenko YT, McNamara WB, Suslick KS (1999) Temperature of multibubble sonoluminescence in water. J Phys Chem A 103:10783–10788CrossRefGoogle Scholar
  21. 21.
    Misik V, Miyoshi N, Riesz P (1995) EPR spin-trapping studies of the sonolysis of H2O/D2O mixtures: probing the temperatures of cavitation regions. J Phys Chem 99:3605–3611CrossRefGoogle Scholar
  22. 22.
    Hart EJ, Fischer CH, Henglein A (1990) Sonolysis of hydrocarbons in aqueous solution. Radiat Phys Chem 36:511–516Google Scholar
  23. 23.
    Tauber A, Mark G, Schuchmann H-P, von Sonntag C (1999) Sonolysis of tert-butyl alcohol in aqueous solution. J Chem Soc Perkin Trans 2:1129–1136Google Scholar
  24. 24.
    Rae J, Ashokkumar M, Eulaerts O, von Sonntag C, Reisse J, Grieser F (2005) Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrason Sonochem 12:325–329CrossRefGoogle Scholar
  25. 25.
    Ciawi E, Ashokkumar M, Grieser F (2006) Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions. J Phys Chem B 110:9779–9781CrossRefGoogle Scholar
  26. 26.
    Ciawi E, Rae J, Ashokkumar M, Grieser F (2006) Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J Phys Chem B 110:13656–13660CrossRefGoogle Scholar
  27. 27.
    Sunartio D, Ashokkumar M, Grieser F (2007) Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. J Am Chem Soc 129:6031–6036CrossRefGoogle Scholar
  28. 28.
    Abe S, Choi P-K (2009) Spatiotemporal separation of Na-atom emission from continuum emission in sonoluminescence. Jpn J Appl Phys 48:07GH02CrossRefGoogle Scholar
  29. 29.
    Brotchie A, Grieser F, Ashokkumar M (2009) The effect of power and frequency on acoustic cavitation bubble size distributions. Phys Rev Lett 102:084302CrossRefGoogle Scholar
  30. 30.
    Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811CrossRefGoogle Scholar
  31. 31.
    Lepoint-Mullie F, Voglet N, Lepoint T, Avni R (2001) Evidence for the emission of ‘alkali-metal-noble-gas’ van der Waals molecules from cavitation bubbles. Ultrason Sonochem 8:151–158CrossRefGoogle Scholar
  32. 32.
    Matula TJ, Roy RA, Mourad PD, McNamara WB, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602–2605CrossRefGoogle Scholar
  33. 33.
    Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew Chem 122:1097–1100CrossRefGoogle Scholar
  34. 34.
    Bunkin NF, Kiseleva OA, Lobeyev AV, Movchan TG, Ninham BW, Vinogradova OI (1997) Effect of salts and dissolved gas on optical cavitation near hydrophobic and hydrophilic surfaces. Langmuir 13:3024–3028CrossRefGoogle Scholar
  35. 35.
    Attard P (2003) Nanobubbles and the hydrophobic attraction. Adv Colloid Interface Sci 104:75–91CrossRefGoogle Scholar
  36. 36.
    Borkent BM, Dammer SM, Schonherr H, Vancso GJ, Lohse D (2007) Superstability of surface nanobubbles. Phys Rev Lett 98:204502CrossRefGoogle Scholar
  37. 37.
    Brotchie A, Ashokkumar M, Zhang XH (2010) Behaviour of interfacial nanofluids under ultrasound irradiation. Manuscript under reviewGoogle Scholar
  38. 38.
    Ceccio SL, Gowing S, Shen Y (1997) The effects of salt water on bubble cavitation. J Fluid Eng 119:155–163Google Scholar
  39. 39.
    Wall M, Ashokkumar M, Tronson R, Grieser F (1999) Multibubble sonoluminescence in aqueous salt solutions. Ultrason Sonochem 6:7–14CrossRefGoogle Scholar
  40. 40.
    Tronson R, Ashokkumar M, Grieser F (2002) Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound. J Phys Chem B 106:11064–11068CrossRefGoogle Scholar
  41. 41.
    Brotchie A, Statham T, Zhou M, Devandra L, Grieser F, Ashokkumar M (2010) Acoustic bubble sizes, coalescence and sonochemical activity in aqueous electrolyte solutions saturated with different gases. Langmuir 26:12690–12695Google Scholar
  42. 42.
    Okitsu K, Suzuki T, Takenaka N, Bandow H, Nishimura R, Maeda Y (2006) Acoustic multibubble cavitation in water: a new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J Phys Chem B 110:20081–20084CrossRefGoogle Scholar
  43. 43.
    Craig VSJ, Ninham BW, Pashley RM (1993) Effect of electrolytes in bubble coalescence. Nature 364:317–319CrossRefGoogle Scholar
  44. 44.
    Christenson HK, Yaminsky VV (1995) Solute effects on bubble coalescence. J Phys Chem 99:10420CrossRefGoogle Scholar
  45. 45.
    Weissenborn PK, Pugh RJ (1996) Surface tension of aqueous solutions of electrolytes: relationship with hydration, oxygen solubility, and bubble coalescence. J Colloid Interface Sci 184:550–553CrossRefGoogle Scholar
  46. 46.
    Deschenes LA, Barret J, Muller LJ, Fourkas JT, Mohanty U (1998) Inhibition of bubble coalescence in aqueous solutions. 1. Electrolytes. J Phys Chem B 102:5115–5119CrossRefGoogle Scholar
  47. 47.
    Marcelja S (2006) Selective coalescence of bubbles in simple electrolytes. J Phys Chem B 110:13062–13067CrossRefGoogle Scholar
  48. 48.
    Henri CL, Parkinson L, Ralston JR, Craig VSJ (2008) A mobile gas-water interface in electrolyte solutions. J Phys Chem C 112:15094–15097CrossRefGoogle Scholar
  49. 49.
    Christenson HK, Bowen RE, Carlton JA, Denne JRM, Lu Y (2008) Electrolytes that show a transition to bubble coalescence inhibition at high concentrations. J Phys Chem C 112:794–796CrossRefGoogle Scholar
  50. 50.
    Henri CL, Dalton CN, Scruton L, Craig VSJ (2007) Ion-specific coalescence on bubbles in mixed electrolyte solutions. J Phys Chem C 2007:1015–1023CrossRefGoogle Scholar
  51. 51.
    Lee J, Kentish SE, Ashokkumar M (2005) The effect of surface active solutes on bubble coalescence in the presence of ultrasound. J Phys Chem B 109:5095–5099CrossRefGoogle Scholar
  52. 52.
    Craig VSJ, Ninham BW, Pashley RM (1993) The effect of electrolytes on bubble coalescence in water. J Phys Chem 97:10192–10197CrossRefGoogle Scholar
  53. 53.
    Lang W, Zander R (1986) Salting-out of oxygen from aqueous electrolyte solutions: prediction and measurement. Ind Eng Chem Fundam 25:775–782CrossRefGoogle Scholar
  54. 54.
    Hermann C, Dewes I, Schumpe A (1995) The estimation of gas solubilities in salt solutions. Chem Eng Sci 50:1673–1675CrossRefGoogle Scholar
  55. 55.
    Young RF (1976) Sonoluminescence from water containing dissolved gases. J Acoust Soc Am 60:100–104CrossRefGoogle Scholar
  56. 56.
    Prudhomme RO, Guilmart T (1957) photogenese ultraviolette par irradiation ultrasonore de l’eau en presence des gaz rares. J Chim Phys 54:336Google Scholar
  57. 57.
    Barber BP, Hiller RA, Lofstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143CrossRefGoogle Scholar
  58. 58.
    Didenko YT, McNamara WB, Suslick KS (2000) Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys Rev Lett 84:777–780CrossRefGoogle Scholar
  59. 59.
    Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y, Yoo Y (2002) Sonolytic control of rate of gold (III) reduction and size of formed gold nanoparticles: relation between reduction rates and sizes of formed nanoparticles. Bull Chem Soc Jpn 75:2289–2296CrossRefGoogle Scholar
  60. 60.
    Vu T (2004) MSc. Thesis, Effects of organic and inorganic solutes on multibubble sonoluminesence in aqueous solutions. The University of MelbourneGoogle Scholar
  61. 61.
    Ashokkumar M, Grieser F (1999) Ultrasound assisted chemical processes. Rev Chem Eng 15:41–83CrossRefGoogle Scholar
  62. 62.
    Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326CrossRefGoogle Scholar
  63. 63.
    Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55CrossRefGoogle Scholar
  64. 64.
    Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW (2005) Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Process Res Dev 9:923–932CrossRefGoogle Scholar
  65. 65.
    Prakash P, Ghosh AK (1959) The influence of ultrasonic waves on silver hydrosol. J Colloid Sci 14:338–342CrossRefGoogle Scholar
  66. 66.
    Sostaric JZ, Mulvaney P, Grieser F (1995) Sonochemical dissolution of MnO2 colloids. J Chem Soc Faraday Trans 91:2843–2846CrossRefGoogle Scholar
  67. 67.
    Sostaric JZ, Caruso-Hobson RA, Mulvaney P, Grieser F (1997) Ultrasound-induced formation and dissolution of colloidal CdS. J Chem Soc Faraday Trans 93:1791–1795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Adam Brotchie
    • 1
    Email author
  • Franz Grieser
  • Muthupandian Ashokkumar
  1. 1.School of ChemistryThe University of MelbourneParkvilleAustralia

Personalised recommendations