Sonoluminescence of Inorganic Ions in Aqueous Solutions

  • Pak-Kon ChoiEmail author


Sonoluminescence from alkali-metal salt solutions reveals excited state alkali – metal atom emission which exhibits asymmetrically-broadened lines. The location of the emission site is of interest as well as how nonvolatile ions are reduced and electronically excited. This chapter reviews sonoluminescence studies on alkali-metal atom emission in various environments. We focus on the emission mechanism: does the emission occur in the gas phase within bubbles or in heated fluid at the bubble/liquid interface? Many studies support the gas phase origin. The transfer of nonvolatile ions into bubbles is suggested to occur by means of liquid droplets, which are injected into bubbles during nonspherical bubble oscillation, bubble coalescence and/or bubble fragmentation. The line width of the alkali-metal atom emission may provide the relative density of gas at bubble collapse under the assumption of the gas phase origin.


Line Width Atom Emission Continuum Emission Sodium Atom Bubble Collapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Shogo Abe and Yuichi Hayashi for their experimental studies, and Dr. Shin-ichi Hatanaka for his valuable discussion.


  1. 1.
    Taylor KJ, Jarman PD (1970) The spectra of sonoluminescence. Aust J Phys 23:319–334Google Scholar
  2. 2.
    Sehgal C, Sutherland RG, Verrall RE (1980) Optical spectra of sonoluminescence from transient and stable cavitation in water saturated with various gases. J Phys Chem 84:388–395CrossRefGoogle Scholar
  3. 3.
    Didenko YT, Gorrdeychuk TV, Koretz VL (1991) The effect of ultrasound power on water sonoluminescence. J Sound Vib 147:409–416CrossRefGoogle Scholar
  4. 4.
    Weninger KR, Camara CG, Putterman SJ (2000) Observation of bubble dynamics within luminescent cavitation clouds: Sonoluminescence at the nano-scale. Phys Rev E 63:016310CrossRefGoogle Scholar
  5. 5.
    Günther P, Zeil W, Grisar U, Heim E (1957) Versuche über die Sonolumineszenz wäßriger Lösungen. Z Electrochem 61:188–201Google Scholar
  6. 6.
    Heim E (1960) Asymmetrisch verbreiterte Emissionslinien in den Sonolumineszenzspektren wäßriger Salzlösungen. Z Angew Phys 12:423–424Google Scholar
  7. 7.
    Norrish RGW, MacF SW (1940) The quenching of the resonance radiation of sodium. Proc R Soc A176:295–312Google Scholar
  8. 8.
    Hayashi Y, Choi P-K (2006) Effects of alcohols on multi-bubble sonoluminescence spectra.Ultrasonics 44:e421–e423CrossRefGoogle Scholar
  9. 9.
    Didenko YT, McNamara WB III, Suslick KS (2000) Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys Rev Lett 84:777–780CrossRefGoogle Scholar
  10. 10.
    Lepoint-Mullie F, Voglet N, Lepoint T, Avni R (2001) Evidence for the emission of ‘alkali-metal-noble-gas’ van der Waals molecules from cavitation bubbles. Ultrason Sonochem 8:151–158CrossRefGoogle Scholar
  11. 11.
    Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896CrossRefGoogle Scholar
  12. 12.
    Yasui K, Tuziuchi T, Sivakumar M, Iida Y (2004) Sonoluminescence. Appl Spectrosc Rev 39:399–436CrossRefGoogle Scholar
  13. 13.
    Petrie C, Lamy M-F, Francony A, Benahcene A, David B (1994) Sonochemical degradation of phenol in dilute aqueous solutions: Comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520CrossRefGoogle Scholar
  14. 14.
    Sehgal C, Steer RP, Sutherland RG, Verrall RE (1979) Sonoluminescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation. J Chem Phys 70:2242–2248CrossRefGoogle Scholar
  15. 15.
    Ch’en SY, Takeo M (1957) Broadening and shift of spectral lines due to the presence of foreign gases. Rev Mod Phys 29:20–99CrossRefGoogle Scholar
  16. 16.
    Flint EB, Suslick KS (1991) Sonoluminescence from alkali-metal salt solutions. J Phys Chem 95:1484–1488CrossRefGoogle Scholar
  17. 17.
    Grieser F, Ashokkumar M (2001) The effect of surface active solutes on bubbles exposed to ultrasound. Adv Colloid Interface Sci 89–90:423–438CrossRefGoogle Scholar
  18. 18.
    Ashokkumar M, Vu T, Grieser F (2004) A quest to find the mechanism for the formation of excited state metal atoms during acoustic cavitation. Proc 18th Int Congr Acoust 4:2935–2936Google Scholar
  19. 19.
    Choi PK, Funayama K (2007) Multibubble sonoluminescence and Na atom emission in sodium dodecyl sulfate surfactant solutions. Jpn J Appl Phys 46:4768–4770CrossRefGoogle Scholar
  20. 20.
    Gordeychuk TV, Kazachek MV (2009) Experimental observation of the intense enhancement of metal sonoluminescence under pressure and temperature. Opt Spectro 106:238–241CrossRefGoogle Scholar
  21. 21.
    Choi PK, Abe S, Hayashi Y (2008) Sonoluminescence of Na atom from NaCl solutions doped with ethanol. J Phys Chem B 112:918–922CrossRefGoogle Scholar
  22. 22.
    Ashokkumar M, Crum LA, Frenley CA, Grieser F, Matula TJ, McNamara WB III, Suslick KS (2000) Effect of solutes on single-bubble sonoluminescence in water. J Phys Chem A 104:8462–8465CrossRefGoogle Scholar
  23. 23.
    Yasui K (2002) Effect of volatile solutes on sonoluminescence. J Chem Phys 116:2945–2954CrossRefGoogle Scholar
  24. 24.
    Hooymayers HP, Alkemade CTJ (1966) Quenching of excited alkali atoms and related effects in flames: Part II. Measurements and discussion. J Quant Spectrosc Radiat Transfer 6:847–874CrossRefGoogle Scholar
  25. 25.
    Jongerius MJ, Van Bergen ARD, Hollander T, Alkemade CTH (1981) An experimental study of the collisional broadening of the Na-D lines by Ar, N2 and H2 perturbers in flames and vapor cells—I. The line core. J Quant Spectrosc Radiat Transfer 25:1–18CrossRefGoogle Scholar
  26. 26.
    Didenko YT, McNamara WB III, Suslick KS (2000) Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys Rev Lett 84:777–780CrossRefGoogle Scholar
  27. 27.
    McNamara WB III, Didenko YT, Suslick KS (2003) Pressure during sonoluminescence. J Phys Chem B 107:7303–7306CrossRefGoogle Scholar
  28. 28.
    Abe S, Choi P- K (2008) Effect of frequency on sonoluminescence spectrum from alkali-metal solutions. Nonlinear acoustics- Fundamentals and applications. AIP Confer Proc 22:189–192CrossRefGoogle Scholar
  29. 29.
    Yasui K, Tujiuti T, Kozuka T, Towata A, Iida Y (2007) Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J Chem Phys 127:154502CrossRefGoogle Scholar
  30. 30.
    Lwin N, McCartan DG (1978) Collision broadening of the potassium resonance lines by noble gases. J Phys B 11:3841–3849CrossRefGoogle Scholar
  31. 31.
    Mullamphy DFT, Peach G, Venturi V, Whittingham IB, Gibson SJ (2007) Collisional broadening of alkali doublets by helium perturbers. J Phys B 40:1141–1152CrossRefGoogle Scholar
  32. 32.
    Hayashi Y, Choi P-K (2010) Effects of rare gases on MBSL spectrum of K atom emission. Proc 20th Inter Congr Acoust:248–251Google Scholar
  33. 33.
    Suslick KS, Hammerton DA, Cline RE Jr (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642CrossRefGoogle Scholar
  34. 34.
    Henglein A (1995) Chemical effects of continuous and pulsed ultrasound in aqueous solutions. Ultason Sonochem 2:S115–S121CrossRefGoogle Scholar
  35. 35.
    Matula TJ, Roy RA, Mourad PD (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602–2605CrossRefGoogle Scholar
  36. 36.
    Alkemade C, Th J, Hermann R (1979) Fundamentals of analytical flame spectroscopy. Adam Hilger, BristolGoogle Scholar
  37. 37.
    Tauber A, Mark G, Schuchmann H-P, Von Sonntag C (1999) Sonolysis of tert-butyl alcohol in aqueous solution. J Chem Soc, Perkin Trans 2:1129–1136Google Scholar
  38. 38.
    Xu H, Eddinsaas NC, Suslick KS (2009) Spatial separation of cavitatin bubble populations: The nanodroplet injection model. J Am Chem Soc 131:6060–6061CrossRefGoogle Scholar
  39. 39.
    Hatanaka S, Hayashi S, Abe S, Choi P-K (2008) High-intensity Na* emission during multibubble sonoluminescence in surfuric acid. Nonlinear Acoustics-Fundamentals and Applications. AIP Confer Proc 1022:205–208CrossRefGoogle Scholar
  40. 40.
    Sunartio D, Yasui K, Tuziuti T, Kozuka T, Iida Y, Ashokkumar M, Grieser F (2007) Correlation between Na* emission and “chemically active” acoustic cavitation bubbles. Chemphyschem 8:2331–2335CrossRefGoogle Scholar
  41. 41.
    Abe S, Choi P-K (2009) Spatiotemporal separation of Na-atom emission from continuum emission in sonoluminescence. Jpn J Appl Phys 48:07GH02Google Scholar
  42. 42.
    Abe S, Choi P-K (2008) Effect of frequency on sonoluminescence from alkali-metal atoms. IEICE Tech Rep US2007-95:1-4Google Scholar
  43. 43.
    Koda S, Kondo T, Kimura T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Physics, School of Science and TechnologyMeiji UniversityKawasakiJapan

Personalised recommendations