Skip to main content

Sonophotocatalytic Degradation of Amines in Water

  • Chapter
  • First Online:
Theoretical and Experimental Sonochemistry Involving Inorganic Systems

Abstract

Hazardous effects of various amines, produced in the environment from the partial degradation of azo dyes and amino acids, adversely affect the quality of human life through water, soil and air pollution and therefore needed to be degraded. A number of such studies are already available in the literature, with or without the use of ultrasound, which have been summarized briefly. The sonochemical degradation of amines and in the combination with a photocatalyst, TiO2 has also been discussed. Similar such degradation studies for ethylamine (EA), aniline (A), diphenylamine (DPA) and naphthylamine (NA) in the presence of ultrasound, TiO2 and rare earths (REs); La, Pr, Nd, Sm and Gd, in aqueous solutions at 20 kHz and 250 W power have been carried out and reported, to examine the combinatorial efficacy of ultrasound in the presence of a photocatalyst and rare earth ions with reactive f-electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenrong H, Haiyan PEI (2002) Decomposition characteristics of azo dyes by ozonization with ultrasonic enhancement. Chinese Sci Bull 47(12):986–989

    Google Scholar 

  2. Shonle HA (July 12, 1932) U.S. Patent, 1,867,332

    Google Scholar 

  3. Calcott W-S, Walker HW (March 1, 1932) U.S. Patent 1,847,711

    Google Scholar 

  4. Adam CE (Nov 15, 1932) U.S. Patent, 1,888,023

    Google Scholar 

  5. Lawrence SA (2004) (ed.) Amines: Synthesis, properties and applications, Cambridge University Press, Cambridge

    Google Scholar 

  6. Drzyzga O (2003) Diphenylamine and derivatives in the environment: A review. Chemosphere 53(8):809–818

    Article  CAS  Google Scholar 

  7. Molineaux CJ, Batzinger RP, Schmidt W, Bueding E (1980) Mutagenic activation of an antischistosomal drug by enteric Streptococcus sps. in vitro and in vivo. Teratog Carcinog Mutagen 1(2):129–139

    Article  CAS  Google Scholar 

  8. Datta S, Bhattacharya PK, Verma N (2003) Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. J Membr Sci 2269(1–2):185–201

    Article  CAS  Google Scholar 

  9. Brillas E, Casado J (2002) Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for waste water treatment. Chemosphere 47(3):241–248

    Article  CAS  Google Scholar 

  10. O’Neill FJ, Bromley-Challenork KCA, Grrenwood RJ, Knapp JS (2000) Bacterial growth on aniline implication for the biotreatment of industrial wastewater. Water Res 34(18):4397–4409

    Article  Google Scholar 

  11. Qi-Xun H, Zhuang Yuan Y, Yuan You C, Gu Wen X (2002) Decomposition of aniline in supercritical water. J Hazard Mater 90(14):51–62

    Google Scholar 

  12. Kuo P-L, Chen C-C (2006) Generation of gold thread from Au(III) and triethylamine. Langmuir 22:7902–7906

    Article  CAS  Google Scholar 

  13. Reynolds R, Line LL, Nelson RF (1974) Electrochemical generation of carbazoles from aromatic amines. J Am Chem Soc 96(4):1087–1092

    Article  CAS  Google Scholar 

  14. Hou A, Chen S (2010) Preparation of microemulsions of the polysiloxanes modified with different amines and their effect on the color shade of dyed cellulose. J Dispersion Sci Technol 31:102–107

    Article  CAS  Google Scholar 

  15. Didgikar MR, Roy D, Gupta SP, Joshi SS, Chaudhari RV (2010) Immobilized palladium nanoparticles catalyzed oxidative carbonylation of amines. Ind Eng Chem Res 49:1027–1032

    Article  CAS  Google Scholar 

  16. Aslam M, Schultz EA, Sun T, Meade T, Dravid VP (2007) Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles. Cryst Growth Design 7(3):471–475

    Article  CAS  Google Scholar 

  17. Sortais J-B, Pannetier N, Holuigue A, Barloy L, Sirlin C, Pfeffer M, Kyritsakas N (2007) Cyclometalation of primary benzyl amines by ruthenium(II), rhodium(III), and iridium(III) complexes. Organometallics 26:1856–1867

    Article  CAS  Google Scholar 

  18. Murahashi S-I, Nakae T, Terai H, Komiya N (2008) Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation. J Am Chem Soc 130:11005–11012

    Article  CAS  Google Scholar 

  19. Liu W, Jiang H, Huang L (2010) One-pot silver-catalyzed and PIDA-mediated sequential reactions: Synthesis of polysubstituted pyrroles directly from alkynoates and amines. Org Lett 12(2):312–315

    Article  CAS  Google Scholar 

  20. Diamond LH, Audrieth LF (1955) Preparation of N-substituted hydrazines from amines and chloramine. J Am Chem Soc 77(11):3131

    Article  CAS  Google Scholar 

  21. Woodburn HM, Morehead BA, Chih CM (1950) The reaction of cyanogens with organic compounds. II. Primary aliphatic amines. J Org Chem 15(3):535–540

    Article  CAS  Google Scholar 

  22. Markert M, Mulzer M, Schetter B, Mahrwald R (2007) Amine- catalyzed direct aldol addition. J Am Chem Soc 129(23):7258–7259

    Article  CAS  Google Scholar 

  23. Amiri AP, Haghighi ASLA, Ehsani MR (2007) Alkanolamines foaming tendency: Effect of amine mixing, amine degradation and gas flow rate. Farayandno 8:2–7

    Google Scholar 

  24. Watanabe O, Nagai K (2003) Chemical modification of lacquer tree paint using primary amines. Bull Chem Soc Jpn 76(4):799–804

    Article  CAS  Google Scholar 

  25. Thalji NK, Crowe WE, Waldrop GL (2009) Kinetic mechanism and structural requirements of the amine-catalyzed decarboxylation of oxaloacetic acid. J Org Chem 74(1):144–152

    Article  CAS  Google Scholar 

  26. Kittilstved KR, Gamelin DR (2005) Activation of high-Tc ferromagnetism in Mn+2-doped ZnO using amines. J Am Chem Soc 127(15):5292–5293

    Article  CAS  Google Scholar 

  27. Than C, Ferguson GA, Raghavachari K (2010) Quaternary amine-induced peptide degradation via cyclization. J Phys Chem A 114:481–485

    Article  CAS  Google Scholar 

  28. Yang XB, Fu X-K, Zeng R-Q (2010) Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N, N-dimethylphosphonate. Chem Paper 64(1):118–122

    Article  CAS  Google Scholar 

  29. Mijos K (ed) (1978) Cyclic amines: In Kirk Othmer Encyclopedia of chemical technology, 3rd edn, vol 2, Wiley, New York, pp 295–308

    Google Scholar 

  30. Nakamura Y, Suzuki KO-kawa M, Konno T, Nishimura J (2005) Photoreactions between [60] Fullerene and various aromatic tertiary amines. J Org Chem 70(21):8472–8477

    Article  CAS  Google Scholar 

  31. O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Colour in textile effluents – sources, measurements, discharge, contents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  32. Lores EM, Bristal DW, Moseman RF (1978) Determination of electro- chemical and ultra-violet detection. J Chromatogr Sci 16:358–362

    CAS  Google Scholar 

  33. de Kok A, Vos YJ, van Garderen C, de Jong T, van Opstal M, Frei RW, Geerdink RB, Brinkman UAT (1984) Chromatographic determination of phenylurea herbicides and their corresponding anilinedegradation products in environmental samples. J Chromatogr Sci 288:71–90

    Article  Google Scholar 

  34. Spain JC (ed) (1995) Biodegradation of nitroaromatic compounds. Plenum Press, New York

    Google Scholar 

  35. Larson RA, Weber EJ (1994) Reaction mechanism in environmental organic chemistry. Lewis, Boca Raton, FL

    Google Scholar 

  36. Baughman GL, Weber E (1994) Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. J Environ Sci Technol 28:267–276

    Article  CAS  Google Scholar 

  37. Weber EJ, Adams RL (1995) Chemical- and sediment-mediated reduction of the azo dye disperse blue 79. Environ Sci Technol 29:1163–1170

    Article  CAS  Google Scholar 

  38. Boer G, Schlett C, Tnier H-P (1993) Substituted anilines: Gas chromatographic determination and behaviour during a simulated subsoil passage. Vom Wasser 80:59–63

    Google Scholar 

  39. Weber EJ, Spidle DL, Thorn KA (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies. Environ Sci Technol 30(9):2755–2763

    Article  CAS  Google Scholar 

  40. Muller C, Iinuma Y, Karstensen J, van Pinxteren D, Lehmann S, Gnauk T, Herrmann H (2009) Seasonal variation of aliphatic amines in marine sub-micrometer particles at the cape verde islands. Atmos Chem Phys 9:9587–9597

    Article  Google Scholar 

  41. Padhye L, Tezel U, Mitch WA, Pavlostathis SG, Huang C-H (2009) Occurrence and fate of nitrosamines and their precursors in municipal sludge and anaerobic digestion systems. Environ Sci Technol 43:3087–3093

    Article  CAS  Google Scholar 

  42. Karlsson D, Spanne M, Dalenea M, Skarping G (2000) Airborne thermal degradation products of polyurethane coatings in car repair shops. J Environ Monit 2:462–469

    Article  CAS  Google Scholar 

  43. Sendon R, Bustos J, Sanchez JJ, Paseiro P, Cirugeda ME (2010) Validation of a liquid chromatography-mass spectrometry method for determining the migration of primary aromatic amines from cooking utensils and its application to actual samples. Food Additiv Contamin 27(1):107–117

    Article  CAS  Google Scholar 

  44. Morrison RT, Boyd RN (2008) Text book of organic chemistry, Pearson Education Print Ltd, Upper Saddle River, NJ, Chapter 22, p 856

    Google Scholar 

  45. Gilad GM, Gilad VH (1986) Cytotoxic effects of monodansylcadaverina and methylamine in primary cultures of rat cerebellar neurons. Int J Dev Neurosci 4(5):401–405

    Article  CAS  Google Scholar 

  46. http://www.osha.gov/SLTC/healthguidelines/ethylamine/recognition.html

  47. Tabuenca JM (1981) Toxic-allergic syndrome caused by ingestion of rapseed oil denatured with aniline. Lancet 318(8246):567–568

    Article  Google Scholar 

  48. Davis KR, Schultz TW, Dumont JN (1981) Toxic and teratogenic effects of selected aromatic amines on embryos of the amphibian Xenopus laevis. Arch Environ Contamin Toxicol 10(3):371–391

    Article  CAS  Google Scholar 

  49. Fouarge M, Mercier M, Poncelet F (1984) Liver, kidney and small-intestine microsomal-mediated mutagenicity of carcinogenic aromatic amines. Mutat Res 125(1):23–31

    Article  CAS  Google Scholar 

  50. http://www.cdc.gov/niosh/docs/81-123/pdfs/0441.pdf

  51. http://www.sciencelab.com/xMSDS-Diphenylamine-9927159

  52. Thomas JO, Ribelin WE, Woodward JR, Deeds F (1967) The chronic activity of diphenylamine for dogs. Toxicol Appl Pharmacol 11:184–194

    Article  CAS  Google Scholar 

  53. Drzyzga O, Jannsen S, Blotevogel KH (1995) Toxicity of diphenylamine and some of its nitrated and aminated derivatives to the luminescent bacterium vibrio fischeri. Environ Safety 31(12):149–152

    Article  CAS  Google Scholar 

  54. Masubuchi Y, Yamada S, Horie T (2000) Possible mechanism of hepatocyte injury induced by diphenylamine and its structuraaly related nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 292(3):982–987

    CAS  Google Scholar 

  55. Wei MM, Stewart R (1966) The Mechanisms of permanganate oxidation. VIII. substituted benzylamines. J Am Chem Soc 88:1974–1979

    Article  CAS  Google Scholar 

  56. Zamora R, Gallardo E, Hidalgo FJ (2006) Amine degradation by 4, 5-epoxy-2-decenal in model systems. J Agric Food Chem 54:2398–2404

    Article  CAS  Google Scholar 

  57. Ho C-T (1996) Thermal degradation of Maillard aromas. In: Ikan R (ed) the Maillard reaction: Consequences for the chemical and life sciences. Wiley, Chichester, UK, pp 27–53

    Google Scholar 

  58. Hidalgo FJ, Zamera R (2004) Strecker-type degradation produced by the lipid oxidation products 4, 5 epoxy-2-alkenals. J Agri Food Chem 52:7126–7131

    Article  CAS  Google Scholar 

  59. Lepaumier H, Picq D, Carrette P-L (2009) New amines for CO2 capture. II. oxidative degradation mechanisms. Ind Eng Chem Res 48:9068–9075

    Article  CAS  Google Scholar 

  60. Lepaumier H, Picq D, Carrette P-L (2009) New amines for CO2 capture. I. Oxidative degradation mechanisms. Ind Eng Chem Res 48:9061–9067

    Article  CAS  Google Scholar 

  61. Mitch WA, Schreiber IM (2008) Degradation of tertiary alkylamines during chlorination/ chloramination: implications for formation of aldehydes, nitriles, halonitroalkanes, and nitrosamines. Environ Sci Technol 42:4811–4817

    Article  CAS  Google Scholar 

  62. (i) Murray RW, Iyanar K, Chen J, Wearing JT (1996) Oxidation of organonitrogen compounds by the methyltrioxorhenium-hydrogen peroxide system, Tetrahedr Lett 37(6):805–808; (ii) Zhu Z, Espenson JH (1995) Kinetics and mechanism of oxidation of anilines by hydrogen peroxide as catalyzed by methylrhenium trioxide, J Org Chem 60:1326–1332; (iii) Coperet C, Adolfsson H, Khuong T-AV, Yudin AK, Sharpless KB (1998) A simple and efficient method for the preparation of pyridine N-oxides, J Org Chem 63:1740–1741

    Google Scholar 

  63. Marinescu L, Molbach M, Rousseau C, Bols M (2005) Supramolecular oxidation of anilines using hydrogen peroxide as stoichiometric oxidant. J Am Chem Soc 127(50):17578–17579

    Article  CAS  Google Scholar 

  64. Stewart TD, Aston JG (1927) The decomposition of quaternary ammonium hydroxides. Alkoxymethyldiethyl-methylammonium hydroxides. J Am Chem Soc 49(7):1718–1728

    Article  CAS  Google Scholar 

  65. Boux LJ, Milligan JR, Archer MC (1988) Base-catalyzed decomposition of N-Nitrosobis(2-oxopropyl)amine. Chem Res Toxicol 1:32–34

    Article  CAS  Google Scholar 

  66. Meadows GW, Kirkland JJ (1952) Low pressure, fast flow pyrolysis of methylamines. J Phys Chem 65:2139–2143

    Article  Google Scholar 

  67. Chen Y, Hu C, Hu X, Qu J (2009) Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environ Sci Technol 43:2760–2765

    Article  CAS  Google Scholar 

  68. Cohen SG, Davis GA, Clark WDK (1972) Photoreduction of Π, Π* triplets by amines, 2-naphthaldehyde, and 2-acetonaphthone. J Am Chem Soc 94:869–874

    Article  CAS  Google Scholar 

  69. Cohen SG, Parola A, Parsons GH (1973) Photoreduction by amines. Chem Rev 73:141–161

    Article  CAS  Google Scholar 

  70. Mailhot B, Morlat-Therias S, Bussiere P-O, Gardette J-L (2005) Study of the degradation of an epoxy/amine resin, kinetics and depth-profiles. Macromol Chem Phys 206:585–591

    Article  CAS  Google Scholar 

  71. Emeleus HJ, Taylor HS (1931) The photochemical decomposition of amines and the photochemical interaction of amines and ethylene. J Am Chem Soc 53:3370–3377

    Article  CAS  Google Scholar 

  72. Hossein HM, Majid MMS (2000) A photocatlytic method for the degradation of pyrrolidine in water. Iran J Chem Chem Eng 19(2):84–87

    Google Scholar 

  73. Baum AA, Karnischky LA, McLeod Jr D, Kasai PH (1973) Mercury photo-sensitized oxidation of primary and secondary aliphatic amines J Am Chem Soc 95(2):617–618

    Google Scholar 

  74. Augugliaro V, Baiocchi C, Prevot AB, Garcia-Lopez E, Loddo V, Malato S, Marci G, Palmisano L, Pazzi M, Pramauro E (2002) Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere 49:1223–1230

    Article  CAS  Google Scholar 

  75. Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, Chen F, MaiZhi F, Zong H (2000) Photocatalytic degradation of azo dyes by supported TiO2 + UV in aqueous solution. Chemosphere 41:303–309

    Article  CAS  Google Scholar 

  76. Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170

    Article  CAS  Google Scholar 

  77. Tang WZ, An H (1995) Photocatalytic degradation kinetics and mechanism of acid blue 40 by UV/TiO2 in aqueous solution. Chemosphere 31:4171–4183

    Article  CAS  Google Scholar 

  78. Tang WZ, Zhang Z, An H, Quintana MO, Torres DF (1996) TiO2/UV photodegradation of azo dyes in aqueous solutions. Environ Technol 18:1–12

    CAS  Google Scholar 

  79. Mirkhani V, Tangestaninejad S, Habibi MH, Rostami-Vartooni A (2009) Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst. J Iran Chem Soc 6(3):578–587

    Article  CAS  Google Scholar 

  80. Gultekin I, Ince H (2004) Degradation of azo dyes by UV/H2O2: Impact of radical scavengers. J Environ Sci Health A 39(4):1069–1081

    Article  CAS  Google Scholar 

  81. Devi LG, Kumar SG, Reddy KM, Munikrishnappa C (2009) Photodegradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164:459–467

    Article  CAS  Google Scholar 

  82. Mamian M, Torres W, Larmat FE (2009) Electrochemical degradation of atrazine in aqueous solution at a platinum electrode. Portugaliae Electrochim Act 27(3):371–379

    Article  CAS  Google Scholar 

  83. Zanoni MVB, Stradiotto NR (2005) Electrochemical behaviour of aromatic amines protected by nitrobenzenesulfonyl group. Electroanalysis 7(4):365–369

    Article  Google Scholar 

  84. Mann CK, Barnes KK (1967) Electrochemical reactions in non-aqueous systems, Marcel Decker: New York, 1970. Chapter 9. J Electroanal Chem 13:1474

    Google Scholar 

  85. Santos V, Morão A, Pacheco MJ, Ciríaco L, Lopes A (2008) Electrochemical degradation of azo dyes on BDD: effect of chemical structure and operating conditions on the combustion efficiency. J Environ Eng Manage 18(3):193–204

    CAS  Google Scholar 

  86. Pacheco MJ, Ciriaco MLF, Lopes A, Goncalves IC, Nunes MR, Pereira MI (2006) Electrodegradation of azo dyes using the oxide BaPb0.9Sb0.1O3-δ as anode material. Portugaliae Electrochim Acta 24:273–282

    Article  CAS  Google Scholar 

  87. Kim GY, Lee K-B, Cho S-H, Shim J, Moon S-H (2005) Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. J Hazad Mater B 126:183–188

    Article  CAS  Google Scholar 

  88. Mohan SV, Prasad KK, Rao NC, Sarma PN (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalysed process. Chemosphere 58:1097–1105

    Article  CAS  Google Scholar 

  89. Nam S, Tratnyek PG (2000) Reduction of azo dyes with zero-valent iron. Water Res 34(6):1837–1845

    Article  CAS  Google Scholar 

  90. Cao J, Wei L, Huang Q, Wang L, Han S (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38(3):565–571

    Article  CAS  Google Scholar 

  91. Silva AC, Pic JS, Sant’Anna GL Jr, Dezotti M (2009) Ozonation of azo dyes (orange II and acid red 27) in saline media. J Hazard Mater 169:965–971

    Article  CAS  Google Scholar 

  92. Ozen AS, Aviyente V (2004) Modeling the substituent effect on the oxidative degradation of azo dyes. J Phys Chem A 108:5990–6000

    Article  CAS  Google Scholar 

  93. Petrova SN, Volodarski MV, Makarov SV, Li LZ (2008) Oxidation of azo dyes with inorganic peroxides in the presence of cationic surfactants. Russian J Appl Chem 81(9):1573–1577

    Article  CAS  Google Scholar 

  94. Delnavaz M, Ayati B, Ganjidoust H (2008) Biodegradation of aromatic amine compounds using moving bed biofilm reactors. Iran J Environ Health Sci Eng 5(4):243–250

    CAS  Google Scholar 

  95. Scott EM, Jakoby WB (1959) Soluble gamma-aminobutyricglutamic transaminase from Pseudomonas fluorescens. J Biol Chem 234:932–936

    CAS  Google Scholar 

  96. Poupin P, Godon JJ, Zumstein E, Truffant N (1999) Degradation of morpholine, piperidine and pyrrolidine by microbacteria: evidence for the involvement of a cytochrome P450. Can J Microbiol 45:209–216

    Article  CAS  Google Scholar 

  97. Gupta RC, Kaul SM, Shukla OP (1975) Pyrrolidine metabolism and its regulation in Arthrobacter sp. Ind J Biophys 12:263–268

    CAS  Google Scholar 

  98. Bae H-S, Im W-T, Suwa Y, Lee JM, Lee S-T, Chang Y-K (2009) Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments. Arch Microbiol 191:329–340

    Article  CAS  Google Scholar 

  99. Tan NCG, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldu FX, Temmnik H, Lettinga G, Field A (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegr 16:527–537

    Article  CAS  Google Scholar 

  100. Schrader T, Schuffenhauer G, Sielaff B, Andreesen JR (2000) High morpholine degradation rates and formation of cytochrome P450 during growth on different cyclic amines by newly isolated Mycobacterium sp. Strain HE5 Microbiol 146:1091–1098

    CAS  Google Scholar 

  101. Chen H, Xu H, Heinze TM (2009) Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilis fermentum. J Ind Microbiol Biotechnol 36:1459–1466

    Article  CAS  Google Scholar 

  102. Olukanni OD, Osuntoki AA, Gbenle GO (2009) Decolourization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology 8(4):442–448

    Article  CAS  Google Scholar 

  103. Togo CA, Mutambanengwe CCZ, Whiteley CG (2008) Decolourization and degradation of textile dyes using a sulphate reducing bacteria (SRB) – biodigester microflora co-culture. Afr J Biotechnol 7(2):114–121

    CAS  Google Scholar 

  104. Ali N, Hameed A, Siddiqui MF, Ghumro P-b, Ahmed S (2009) Application of Aspergillus niger SA1 for the enhanced bioremoval of azo dyes in simulated textile effluent. Afr J Biotechnol 8(16):3839–3845

    CAS  Google Scholar 

  105. Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation 15:275–280

    Article  CAS  Google Scholar 

  106. Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pakistan J Biol Sci 11(10):1310–1316

    Article  CAS  Google Scholar 

  107. Martins MAM, Ferreira IC, Santos IFM, Queiroz MJ, Lima N (2001) Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. J Biotechnol 89:91–98

    Article  CAS  Google Scholar 

  108. Liu L, Li F-b, Feng CH (2009) Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Technol 85:175–183

    Article  CAS  Google Scholar 

  109. Mezohegyi G, Fabregat A, Font J, Bengoa C, Stuber F (2009) Advanced bioreduction of commercially important azo dyes: modeling and correlation with electrochemical characteristics. Ind Eng Chem Res 48:7054–7059

    Article  CAS  Google Scholar 

  110. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353:414–416

    Article  CAS  Google Scholar 

  111. Suslick KS, Hyeon T, Fang M, Cichowlas AA, Gonsalves KE, Chow GM, Xiao TO, Cammarata RC (1994) Molecular Design Nanostruct Maters 351:201–206

    CAS  Google Scholar 

  112. Suslick KS, Fang M, Hyeon T, Cichowlas AA, Gonsalves KE, Chow GM, Xiao TO, Cammarata RC (1994) Nanostructured Fe-Co catalysts generated by ultrasound. Molecular Design Nanostruct Mater 351:443–448

    CAS  Google Scholar 

  113. Bellissent R, Galli G, Hyeon T, Magazu S, Majolino D, Migliardo P, Suslick KS (1995) Structural properties of amorphous bulk Fe, Co, and Fe-Co binary alloys. Phys Scripta 57:79–83, References and further reading may be available for this article. To view references and further read purchase this article

    Article  Google Scholar 

  114. Suslick KS, Hyeon T, Fang M, Cichowlas AA (1995) Sonochemical synthesis of nanostructured catalysts. Mater Sci Eng, A 204(1–2):186–192

    Google Scholar 

  115. Hyeon T, Fang M, Suslick KS (1996) Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties. J Am Chem Soc 118(23):5492–5493

    Article  CAS  Google Scholar 

  116. Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179

    Article  CAS  Google Scholar 

  117. Özkan A, Özkan MH, Gürkan R, Akçay M, Sökmen M (2004) Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation and the effects of some inorganic anions on the photocatalysis. J Photochem Photobiol A Chem 163:29–35

    Article  CAS  Google Scholar 

  118. Xu A-W, Gao Y, Liu H-Q (2002) The preparation, characterization, and their photocatalyticactivities of rare-earth-doped TiO2 nanoparticles. J Catal 207:151–157

    Article  CAS  Google Scholar 

  119. Colombo DP, Bowman RM (1995) Femtosecond diffuse reflectance spectroscopy of TiO2 powder. J Phys Chem 99:11752e6

    Article  Google Scholar 

  120. Liang C-H, Li F-B, Liu C-S, Lu J-L, Wang X-G (2008) The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of orange I. Dyes Pigm 76:477–484

    Article  CAS  Google Scholar 

  121. Vajnhandl S, Marechal AML (2007) Case study of the sonochemical decolouration of textile azo dye Reactive Black 5. J Hazard Mater 141:329–335

    Article  CAS  Google Scholar 

  122. Ozen AS, Aviyente V, Tezcanli-Guyer G, Ince NH (2005) Experimental and modeling approach to decolorization of azo dyes by ultrasound: degradation of the hydrazone tautomer. J Phys Chem A 109:3506–3516

    Article  CAS  Google Scholar 

  123. Petrier C, Lamy MF, Francony A, Benahcene A, David B, Renaudin N, Gondrexon V (1994) Sonochemical degradation of phenol in dilute aqueous solutions; comparison of the reaction rates at 20 kHz and 487 kHz. J Phys Chem 98:10514–10520

    Article  CAS  Google Scholar 

  124. Hua I, Hoffmann MR (1997) Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ Sci Technol 31:2237–2243

    Article  CAS  Google Scholar 

  125. Wang Y, Zhao D, MA W, Chen C, Zhao J (2008) Enhanced sonocatalytic degradation of azo dyes by Au/TiO2. Environ Sci Technol 42:6173–6178

    Article  CAS  Google Scholar 

  126. Rehorek A, Tauber M, Gubitz G (2004) Application of power ultrasound for azo dye degradation. Ultrason Sonochem 11:177–182

    Article  CAS  Google Scholar 

  127. Kenji O, Kazuya I, Yoshihiro Y, Hiroshi B, Rokuro N, Yasuaki M (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem 12(4):255–262

    Article  CAS  Google Scholar 

  128. El-Bahy ZM, Ismail AA, Mohamed RM (2009) Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J Hazard Mater 166:138–143

    Article  CAS  Google Scholar 

  129. Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ Sci Technol 35:1544–1549

    Article  CAS  Google Scholar 

  130. Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide doped titanium dioxide photocatalysts: Effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid. J Catal 204:305–313

    Article  CAS  Google Scholar 

  131. Uzunova-Bujnova M, Todorovska R, Dimitrov D, Todorovsky D (2008) Lanthanide-doped titanium dioxide layers as photocatalysts. Appl Surfac Sci 254:7296–7302

    Article  CAS  Google Scholar 

  132. (i) Chen Y-C, Smirniotis P (2002) Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound Ind Eng Chem Res 41:5958–5965; (ii) Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water Wat Res 35(16):3927–3933

    Google Scholar 

  133. Gondal MA, Seddigi Z (2006) Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst. Chem Phys Lett 417:124–127

    Article  CAS  Google Scholar 

  134. Gondal MA, Sayeed MN, Seddigi Z (2008) Laser-inhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst. J Hazard Mater 155:83–89

    Article  CAS  Google Scholar 

  135. Xu AW, Gao Y, Liu H-Q (2002) Preparation, characterization, and their photocatalytic activities of rare earth doped TiO2 nanoparticles. J Catal 207:151–157

    Article  CAS  Google Scholar 

  136. Sharipov GL, Gainetdinov RKh, Abdrakhmanov AM (2008) Effect of argon on the multibubble sonoluminescence of cerium, terbium and dysprosium trichlorides. Russ Chem Bull 57(9):1831–1836

    Article  CAS  Google Scholar 

  137. Vikram L, Sivasankar BN (2008) New nine coordinated hydrated heavier lanthanide ethyldiamine tetraacetates containing hydrazinium cation: Crystal structure of N2H5[Dy(EDTA)(H2O)3(H2O)5. Ind J Chem 47A:25–31

    CAS  Google Scholar 

  138. Juengsuwattananon K, Jaroenworaluck A, Panyathanmaporn T, Jinawath S, Supothina S (2007) Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method. Physica Status Solidi A 204(6):1751–1756

    Article  CAS  Google Scholar 

  139. Baolong Z, Baishun C, Keyu S, Shangjin H, Xiaodong L, Zongjie D, Kelian Y (2003) Preparation and characterization of nanocrystal grain TiO2 porous microspheres. Appl Catal B 40(4):253–258

    Article  CAS  Google Scholar 

  140. Citron IM, Allan M (1964) Spectrophotometric determination of primary amines in aqueous solution with copper-(ethylenedinitrilo) tetraacetic acid. Anal Chem 36(1):208–210

    Article  CAS  Google Scholar 

  141. Norwitz G, Kellher PN (1981) Spectrophotometric determination of aniline by the diazotation-coupling method with N-(1-napthyl) ethylenediamine as the coupling agent. Anal Chem 53:1238–1240

    Article  CAS  Google Scholar 

  142. DeAtley WW (1970) Spectrophotometric determination of diphenylamine, 2-nitrodiphenylamine, and 4-nitrodipheylamine by oxidation with ferric ion. Anal Chem 42(6):662–664

    Article  CAS  Google Scholar 

  143. Pandey OP, Bajpai DN, Giri S (2006) Practical chemistry, S. Chand & Company Ltd, New Delhi

    Google Scholar 

  144. Handrickson JB, Cram DJ, Hammond GS (1970) Organic chemistry, Chap. 4: A survey of the class of compounds, Tosho Printing Company Ltd, Tokyo, Japan, pp 107–109

  145. Finar IL (2000) Organic chemistry, vol. 1: The fundamental principles, 6th edn, Chap. 23: Aromatic amino-compounds. Wiley, New York, p 664

    Google Scholar 

  146. Finar IL (2000) Organic chemistry vol. 1: The fundamental principles, 6th ed., Chap 23; Aromatic amino-compounds, Wiley, New York, p 655

    Google Scholar 

  147. Premchandran RS, Banerjee S, Wu XK, John VT, McPherson GL, Ayyagari M, Kaplan D (1996) Enzymatic synthesis of fluorescent naphthol-based polymers. Macromolecules 29(20):6452–6460

    Article  Google Scholar 

  148. Cox PA (1992) Transition metal oxides: An introduction to their electronic structure and properties. Clarendon Press, Oxford

    Google Scholar 

  149. Yuhong Zhang,, Huaxing Zhang, Yongxi Xu, Yanguang Wang l (2004) Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2. J Solid State Chem 177(10):3490–3495

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Arti Bhatnagar, Shita Tyagi, Manju, and Suchita Saxena for carrying out experiments as reported in their M.Phil. and M.Sc. dissertations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Verma, M., Pankaj (2010). Sonophotocatalytic Degradation of Amines in Water. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_12

Download citation

Publish with us

Policies and ethics