Advertisement

Sonophotocatalytic Degradation of Amines in Water

  • Mayank Verma
  • PankajEmail author
Chapter

Abstract

Hazardous effects of various amines, produced in the environment from the partial degradation of azo dyes and amino acids, adversely affect the quality of human life through water, soil and air pollution and therefore needed to be degraded. A number of such studies are already available in the literature, with or without the use of ultrasound, which have been summarized briefly. The sonochemical degradation of amines and in the combination with a photocatalyst, TiO2 has also been discussed. Similar such degradation studies for ethylamine (EA), aniline (A), diphenylamine (DPA) and naphthylamine (NA) in the presence of ultrasound, TiO2 and rare earths (REs); La, Pr, Nd, Sm and Gd, in aqueous solutions at 20 kHz and 250 W power have been carried out and reported, to examine the combinatorial efficacy of ultrasound in the presence of a photocatalyst and rare earth ions with reactive f-electrons.

Keywords

Methyl Orange TiO2 Particle Ethyl Amine Acid Orange Heterocyclic Amine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors are grateful to Arti Bhatnagar, Shita Tyagi, Manju, and Suchita Saxena for carrying out experiments as reported in their M.Phil. and M.Sc. dissertations.

References

  1. 1.
    Wenrong H, Haiyan PEI (2002) Decomposition characteristics of azo dyes by ozonization with ultrasonic enhancement. Chinese Sci Bull 47(12):986–989Google Scholar
  2. 2.
    Shonle HA (July 12, 1932) U.S. Patent, 1,867,332Google Scholar
  3. 3.
    Calcott W-S, Walker HW (March 1, 1932) U.S. Patent 1,847,711Google Scholar
  4. 4.
    Adam CE (Nov 15, 1932) U.S. Patent, 1,888,023Google Scholar
  5. 5.
    Lawrence SA (2004) (ed.) Amines: Synthesis, properties and applications, Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Drzyzga O (2003) Diphenylamine and derivatives in the environment: A review. Chemosphere 53(8):809–818CrossRefGoogle Scholar
  7. 7.
    Molineaux CJ, Batzinger RP, Schmidt W, Bueding E (1980) Mutagenic activation of an antischistosomal drug by enteric Streptococcus sps. in vitro and in vivo. Teratog Carcinog Mutagen 1(2):129–139CrossRefGoogle Scholar
  8. 8.
    Datta S, Bhattacharya PK, Verma N (2003) Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. J Membr Sci 2269(1–2):185–201CrossRefGoogle Scholar
  9. 9.
    Brillas E, Casado J (2002) Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for waste water treatment. Chemosphere 47(3):241–248CrossRefGoogle Scholar
  10. 10.
    O’Neill FJ, Bromley-Challenork KCA, Grrenwood RJ, Knapp JS (2000) Bacterial growth on aniline implication for the biotreatment of industrial wastewater. Water Res 34(18):4397–4409CrossRefGoogle Scholar
  11. 11.
    Qi-Xun H, Zhuang Yuan Y, Yuan You C, Gu Wen X (2002) Decomposition of aniline in supercritical water. J Hazard Mater 90(14):51–62Google Scholar
  12. 12.
    Kuo P-L, Chen C-C (2006) Generation of gold thread from Au(III) and triethylamine. Langmuir 22:7902–7906CrossRefGoogle Scholar
  13. 13.
    Reynolds R, Line LL, Nelson RF (1974) Electrochemical generation of carbazoles from aromatic amines. J Am Chem Soc 96(4):1087–1092CrossRefGoogle Scholar
  14. 14.
    Hou A, Chen S (2010) Preparation of microemulsions of the polysiloxanes modified with different amines and their effect on the color shade of dyed cellulose. J Dispersion Sci Technol 31:102–107CrossRefGoogle Scholar
  15. 15.
    Didgikar MR, Roy D, Gupta SP, Joshi SS, Chaudhari RV (2010) Immobilized palladium nanoparticles catalyzed oxidative carbonylation of amines. Ind Eng Chem Res 49:1027–1032CrossRefGoogle Scholar
  16. 16.
    Aslam M, Schultz EA, Sun T, Meade T, Dravid VP (2007) Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles. Cryst Growth Design 7(3):471–475CrossRefGoogle Scholar
  17. 17.
    Sortais J-B, Pannetier N, Holuigue A, Barloy L, Sirlin C, Pfeffer M, Kyritsakas N (2007) Cyclometalation of primary benzyl amines by ruthenium(II), rhodium(III), and iridium(III) complexes. Organometallics 26:1856–1867CrossRefGoogle Scholar
  18. 18.
    Murahashi S-I, Nakae T, Terai H, Komiya N (2008) Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation. J Am Chem Soc 130:11005–11012CrossRefGoogle Scholar
  19. 19.
    Liu W, Jiang H, Huang L (2010) One-pot silver-catalyzed and PIDA-mediated sequential reactions: Synthesis of polysubstituted pyrroles directly from alkynoates and amines. Org Lett 12(2):312–315CrossRefGoogle Scholar
  20. 20.
    Diamond LH, Audrieth LF (1955) Preparation of N-substituted hydrazines from amines and chloramine. J Am Chem Soc 77(11):3131CrossRefGoogle Scholar
  21. 21.
    Woodburn HM, Morehead BA, Chih CM (1950) The reaction of cyanogens with organic compounds. II. Primary aliphatic amines. J Org Chem 15(3):535–540CrossRefGoogle Scholar
  22. 22.
    Markert M, Mulzer M, Schetter B, Mahrwald R (2007) Amine- catalyzed direct aldol addition. J Am Chem Soc 129(23):7258–7259CrossRefGoogle Scholar
  23. 23.
    Amiri AP, Haghighi ASLA, Ehsani MR (2007) Alkanolamines foaming tendency: Effect of amine mixing, amine degradation and gas flow rate. Farayandno 8:2–7Google Scholar
  24. 24.
    Watanabe O, Nagai K (2003) Chemical modification of lacquer tree paint using primary amines. Bull Chem Soc Jpn 76(4):799–804CrossRefGoogle Scholar
  25. 25.
    Thalji NK, Crowe WE, Waldrop GL (2009) Kinetic mechanism and structural requirements of the amine-catalyzed decarboxylation of oxaloacetic acid. J Org Chem 74(1):144–152CrossRefGoogle Scholar
  26. 26.
    Kittilstved KR, Gamelin DR (2005) Activation of high-Tc ferromagnetism in Mn+2-doped ZnO using amines. J Am Chem Soc 127(15):5292–5293CrossRefGoogle Scholar
  27. 27.
    Than C, Ferguson GA, Raghavachari K (2010) Quaternary amine-induced peptide degradation via cyclization. J Phys Chem A 114:481–485CrossRefGoogle Scholar
  28. 28.
    Yang XB, Fu X-K, Zeng R-Q (2010) Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N, N-dimethylphosphonate. Chem Paper 64(1):118–122CrossRefGoogle Scholar
  29. 29.
    Mijos K (ed) (1978) Cyclic amines: In Kirk Othmer Encyclopedia of chemical technology, 3rd edn, vol 2, Wiley, New York, pp 295–308Google Scholar
  30. 30.
    Nakamura Y, Suzuki KO-kawa M, Konno T, Nishimura J (2005) Photoreactions between [60] Fullerene and various aromatic tertiary amines. J Org Chem 70(21):8472–8477CrossRefGoogle Scholar
  31. 31.
    O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Colour in textile effluents – sources, measurements, discharge, contents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018CrossRefGoogle Scholar
  32. 32.
    Lores EM, Bristal DW, Moseman RF (1978) Determination of electro- chemical and ultra-violet detection. J Chromatogr Sci 16:358–362Google Scholar
  33. 33.
    de Kok A, Vos YJ, van Garderen C, de Jong T, van Opstal M, Frei RW, Geerdink RB, Brinkman UAT (1984) Chromatographic determination of phenylurea herbicides and their corresponding anilinedegradation products in environmental samples. J Chromatogr Sci 288:71–90CrossRefGoogle Scholar
  34. 34.
    Spain JC (ed) (1995) Biodegradation of nitroaromatic compounds. Plenum Press, New YorkGoogle Scholar
  35. 35.
    Larson RA, Weber EJ (1994) Reaction mechanism in environmental organic chemistry. Lewis, Boca Raton, FLGoogle Scholar
  36. 36.
    Baughman GL, Weber E (1994) Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. J Environ Sci Technol 28:267–276CrossRefGoogle Scholar
  37. 37.
    Weber EJ, Adams RL (1995) Chemical- and sediment-mediated reduction of the azo dye disperse blue 79. Environ Sci Technol 29:1163–1170CrossRefGoogle Scholar
  38. 38.
    Boer G, Schlett C, Tnier H-P (1993) Substituted anilines: Gas chromatographic determination and behaviour during a simulated subsoil passage. Vom Wasser 80:59–63Google Scholar
  39. 39.
    Weber EJ, Spidle DL, Thorn KA (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies. Environ Sci Technol 30(9):2755–2763CrossRefGoogle Scholar
  40. 40.
    Muller C, Iinuma Y, Karstensen J, van Pinxteren D, Lehmann S, Gnauk T, Herrmann H (2009) Seasonal variation of aliphatic amines in marine sub-micrometer particles at the cape verde islands. Atmos Chem Phys 9:9587–9597CrossRefGoogle Scholar
  41. 41.
    Padhye L, Tezel U, Mitch WA, Pavlostathis SG, Huang C-H (2009) Occurrence and fate of nitrosamines and their precursors in municipal sludge and anaerobic digestion systems. Environ Sci Technol 43:3087–3093CrossRefGoogle Scholar
  42. 42.
    Karlsson D, Spanne M, Dalenea M, Skarping G (2000) Airborne thermal degradation products of polyurethane coatings in car repair shops. J Environ Monit 2:462–469CrossRefGoogle Scholar
  43. 43.
    Sendon R, Bustos J, Sanchez JJ, Paseiro P, Cirugeda ME (2010) Validation of a liquid chromatography-mass spectrometry method for determining the migration of primary aromatic amines from cooking utensils and its application to actual samples. Food Additiv Contamin 27(1):107–117CrossRefGoogle Scholar
  44. 44.
    Morrison RT, Boyd RN (2008) Text book of organic chemistry, Pearson Education Print Ltd, Upper Saddle River, NJ, Chapter 22, p 856Google Scholar
  45. 45.
    Gilad GM, Gilad VH (1986) Cytotoxic effects of monodansylcadaverina and methylamine in primary cultures of rat cerebellar neurons. Int J Dev Neurosci 4(5):401–405CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Tabuenca JM (1981) Toxic-allergic syndrome caused by ingestion of rapseed oil denatured with aniline. Lancet 318(8246):567–568CrossRefGoogle Scholar
  48. 48.
    Davis KR, Schultz TW, Dumont JN (1981) Toxic and teratogenic effects of selected aromatic amines on embryos of the amphibian Xenopus laevis. Arch Environ Contamin Toxicol 10(3):371–391CrossRefGoogle Scholar
  49. 49.
    Fouarge M, Mercier M, Poncelet F (1984) Liver, kidney and small-intestine microsomal-mediated mutagenicity of carcinogenic aromatic amines. Mutat Res 125(1):23–31CrossRefGoogle Scholar
  50. 50.
  51. 51.
  52. 52.
    Thomas JO, Ribelin WE, Woodward JR, Deeds F (1967) The chronic activity of diphenylamine for dogs. Toxicol Appl Pharmacol 11:184–194CrossRefGoogle Scholar
  53. 53.
    Drzyzga O, Jannsen S, Blotevogel KH (1995) Toxicity of diphenylamine and some of its nitrated and aminated derivatives to the luminescent bacterium vibrio fischeri. Environ Safety 31(12):149–152CrossRefGoogle Scholar
  54. 54.
    Masubuchi Y, Yamada S, Horie T (2000) Possible mechanism of hepatocyte injury induced by diphenylamine and its structuraaly related nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 292(3):982–987Google Scholar
  55. 55.
    Wei MM, Stewart R (1966) The Mechanisms of permanganate oxidation. VIII. substituted benzylamines. J Am Chem Soc 88:1974–1979CrossRefGoogle Scholar
  56. 56.
    Zamora R, Gallardo E, Hidalgo FJ (2006) Amine degradation by 4, 5-epoxy-2-decenal in model systems. J Agric Food Chem 54:2398–2404CrossRefGoogle Scholar
  57. 57.
    Ho C-T (1996) Thermal degradation of Maillard aromas. In: Ikan R (ed) the Maillard reaction: Consequences for the chemical and life sciences. Wiley, Chichester, UK, pp 27–53Google Scholar
  58. 58.
    Hidalgo FJ, Zamera R (2004) Strecker-type degradation produced by the lipid oxidation products 4, 5 epoxy-2-alkenals. J Agri Food Chem 52:7126–7131CrossRefGoogle Scholar
  59. 59.
    Lepaumier H, Picq D, Carrette P-L (2009) New amines for CO2 capture. II. oxidative degradation mechanisms. Ind Eng Chem Res 48:9068–9075CrossRefGoogle Scholar
  60. 60.
    Lepaumier H, Picq D, Carrette P-L (2009) New amines for CO2 capture. I. Oxidative degradation mechanisms. Ind Eng Chem Res 48:9061–9067CrossRefGoogle Scholar
  61. 61.
    Mitch WA, Schreiber IM (2008) Degradation of tertiary alkylamines during chlorination/ chloramination: implications for formation of aldehydes, nitriles, halonitroalkanes, and nitrosamines. Environ Sci Technol 42:4811–4817CrossRefGoogle Scholar
  62. 62.
    (i) Murray RW, Iyanar K, Chen J, Wearing JT (1996) Oxidation of organonitrogen compounds by the methyltrioxorhenium-hydrogen peroxide system, Tetrahedr Lett 37(6):805–808; (ii) Zhu Z, Espenson JH (1995) Kinetics and mechanism of oxidation of anilines by hydrogen peroxide as catalyzed by methylrhenium trioxide, J Org Chem 60:1326–1332; (iii) Coperet C, Adolfsson H, Khuong T-AV, Yudin AK, Sharpless KB (1998) A simple and efficient method for the preparation of pyridine N-oxides, J Org Chem 63:1740–1741Google Scholar
  63. 63.
    Marinescu L, Molbach M, Rousseau C, Bols M (2005) Supramolecular oxidation of anilines using hydrogen peroxide as stoichiometric oxidant. J Am Chem Soc 127(50):17578–17579CrossRefGoogle Scholar
  64. 64.
    Stewart TD, Aston JG (1927) The decomposition of quaternary ammonium hydroxides. Alkoxymethyldiethyl-methylammonium hydroxides. J Am Chem Soc 49(7):1718–1728CrossRefGoogle Scholar
  65. 65.
    Boux LJ, Milligan JR, Archer MC (1988) Base-catalyzed decomposition of N-Nitrosobis(2-oxopropyl)amine. Chem Res Toxicol 1:32–34CrossRefGoogle Scholar
  66. 66.
    Meadows GW, Kirkland JJ (1952) Low pressure, fast flow pyrolysis of methylamines. J Phys Chem 65:2139–2143CrossRefGoogle Scholar
  67. 67.
    Chen Y, Hu C, Hu X, Qu J (2009) Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environ Sci Technol 43:2760–2765CrossRefGoogle Scholar
  68. 68.
    Cohen SG, Davis GA, Clark WDK (1972) Photoreduction of Π, Π* triplets by amines, 2-naphthaldehyde, and 2-acetonaphthone. J Am Chem Soc 94:869–874CrossRefGoogle Scholar
  69. 69.
    Cohen SG, Parola A, Parsons GH (1973) Photoreduction by amines. Chem Rev 73:141–161CrossRefGoogle Scholar
  70. 70.
    Mailhot B, Morlat-Therias S, Bussiere P-O, Gardette J-L (2005) Study of the degradation of an epoxy/amine resin, kinetics and depth-profiles. Macromol Chem Phys 206:585–591CrossRefGoogle Scholar
  71. 71.
    Emeleus HJ, Taylor HS (1931) The photochemical decomposition of amines and the photochemical interaction of amines and ethylene. J Am Chem Soc 53:3370–3377CrossRefGoogle Scholar
  72. 72.
    Hossein HM, Majid MMS (2000) A photocatlytic method for the degradation of pyrrolidine in water. Iran J Chem Chem Eng 19(2):84–87Google Scholar
  73. 73.
    Baum AA, Karnischky LA, McLeod Jr D, Kasai PH (1973) Mercury photo-sensitized oxidation of primary and secondary aliphatic amines J Am Chem Soc 95(2):617–618Google Scholar
  74. 74.
    Augugliaro V, Baiocchi C, Prevot AB, Garcia-Lopez E, Loddo V, Malato S, Marci G, Palmisano L, Pazzi M, Pramauro E (2002) Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere 49:1223–1230CrossRefGoogle Scholar
  75. 75.
    Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, Chen F, MaiZhi F, Zong H (2000) Photocatalytic degradation of azo dyes by supported TiO2 + UV in aqueous solution. Chemosphere 41:303–309CrossRefGoogle Scholar
  76. 76.
    Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170CrossRefGoogle Scholar
  77. 77.
    Tang WZ, An H (1995) Photocatalytic degradation kinetics and mechanism of acid blue 40 by UV/TiO2 in aqueous solution. Chemosphere 31:4171–4183CrossRefGoogle Scholar
  78. 78.
    Tang WZ, Zhang Z, An H, Quintana MO, Torres DF (1996) TiO2/UV photodegradation of azo dyes in aqueous solutions. Environ Technol 18:1–12Google Scholar
  79. 79.
    Mirkhani V, Tangestaninejad S, Habibi MH, Rostami-Vartooni A (2009) Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst. J Iran Chem Soc 6(3):578–587CrossRefGoogle Scholar
  80. 80.
    Gultekin I, Ince H (2004) Degradation of azo dyes by UV/H2O2: Impact of radical scavengers. J Environ Sci Health A 39(4):1069–1081CrossRefGoogle Scholar
  81. 81.
    Devi LG, Kumar SG, Reddy KM, Munikrishnappa C (2009) Photodegradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164:459–467CrossRefGoogle Scholar
  82. 82.
    Mamian M, Torres W, Larmat FE (2009) Electrochemical degradation of atrazine in aqueous solution at a platinum electrode. Portugaliae Electrochim Act 27(3):371–379CrossRefGoogle Scholar
  83. 83.
    Zanoni MVB, Stradiotto NR (2005) Electrochemical behaviour of aromatic amines protected by nitrobenzenesulfonyl group. Electroanalysis 7(4):365–369CrossRefGoogle Scholar
  84. 84.
    Mann CK, Barnes KK (1967) Electrochemical reactions in non-aqueous systems, Marcel Decker: New York, 1970.  Chapter 9. J Electroanal Chem 13:1474Google Scholar
  85. 85.
    Santos V, Morão A, Pacheco MJ, Ciríaco L, Lopes A (2008) Electrochemical degradation of azo dyes on BDD: effect of chemical structure and operating conditions on the combustion efficiency. J Environ Eng Manage 18(3):193–204Google Scholar
  86. 86.
    Pacheco MJ, Ciriaco MLF, Lopes A, Goncalves IC, Nunes MR, Pereira MI (2006) Electrodegradation of azo dyes using the oxide BaPb0.9Sb0.1O3-δ as anode material. Portugaliae Electrochim Acta 24:273–282CrossRefGoogle Scholar
  87. 87.
    Kim GY, Lee K-B, Cho S-H, Shim J, Moon S-H (2005) Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. J Hazad Mater B 126:183–188CrossRefGoogle Scholar
  88. 88.
    Mohan SV, Prasad KK, Rao NC, Sarma PN (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalysed process. Chemosphere 58:1097–1105CrossRefGoogle Scholar
  89. 89.
    Nam S, Tratnyek PG (2000) Reduction of azo dyes with zero-valent iron. Water Res 34(6):1837–1845CrossRefGoogle Scholar
  90. 90.
    Cao J, Wei L, Huang Q, Wang L, Han S (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38(3):565–571CrossRefGoogle Scholar
  91. 91.
    Silva AC, Pic JS, Sant’Anna GL Jr, Dezotti M (2009) Ozonation of azo dyes (orange II and acid red 27) in saline media. J Hazard Mater 169:965–971CrossRefGoogle Scholar
  92. 92.
    Ozen AS, Aviyente V (2004) Modeling the substituent effect on the oxidative degradation of azo dyes. J Phys Chem A 108:5990–6000CrossRefGoogle Scholar
  93. 93.
    Petrova SN, Volodarski MV, Makarov SV, Li LZ (2008) Oxidation of azo dyes with inorganic peroxides in the presence of cationic surfactants. Russian J Appl Chem 81(9):1573–1577CrossRefGoogle Scholar
  94. 94.
    Delnavaz M, Ayati B, Ganjidoust H (2008) Biodegradation of aromatic amine compounds using moving bed biofilm reactors. Iran J Environ Health Sci Eng 5(4):243–250Google Scholar
  95. 95.
    Scott EM, Jakoby WB (1959) Soluble gamma-aminobutyricglutamic transaminase from Pseudomonas fluorescens. J Biol Chem 234:932–936Google Scholar
  96. 96.
    Poupin P, Godon JJ, Zumstein E, Truffant N (1999) Degradation of morpholine, piperidine and pyrrolidine by microbacteria: evidence for the involvement of a cytochrome P450. Can J Microbiol 45:209–216CrossRefGoogle Scholar
  97. 97.
    Gupta RC, Kaul SM, Shukla OP (1975) Pyrrolidine metabolism and its regulation in Arthrobacter sp. Ind J Biophys 12:263–268Google Scholar
  98. 98.
    Bae H-S, Im W-T, Suwa Y, Lee JM, Lee S-T, Chang Y-K (2009) Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments. Arch Microbiol 191:329–340CrossRefGoogle Scholar
  99. 99.
    Tan NCG, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldu FX, Temmnik H, Lettinga G, Field A (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegr 16:527–537CrossRefGoogle Scholar
  100. 100.
    Schrader T, Schuffenhauer G, Sielaff B, Andreesen JR (2000) High morpholine degradation rates and formation of cytochrome P450 during growth on different cyclic amines by newly isolated Mycobacterium sp. Strain HE5 Microbiol 146:1091–1098Google Scholar
  101. 101.
    Chen H, Xu H, Heinze TM (2009) Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilis fermentum. J Ind Microbiol Biotechnol 36:1459–1466CrossRefGoogle Scholar
  102. 102.
    Olukanni OD, Osuntoki AA, Gbenle GO (2009) Decolourization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology 8(4):442–448CrossRefGoogle Scholar
  103. 103.
    Togo CA, Mutambanengwe CCZ, Whiteley CG (2008) Decolourization and degradation of textile dyes using a sulphate reducing bacteria (SRB) – biodigester microflora co-culture. Afr J Biotechnol 7(2):114–121Google Scholar
  104. 104.
    Ali N, Hameed A, Siddiqui MF, Ghumro P-b, Ahmed S (2009) Application of Aspergillus niger SA1 for the enhanced bioremoval of azo dyes in simulated textile effluent. Afr J Biotechnol 8(16):3839–3845Google Scholar
  105. 105.
    Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation 15:275–280CrossRefGoogle Scholar
  106. 106.
    Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pakistan J Biol Sci 11(10):1310–1316CrossRefGoogle Scholar
  107. 107.
    Martins MAM, Ferreira IC, Santos IFM, Queiroz MJ, Lima N (2001) Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. J Biotechnol 89:91–98CrossRefGoogle Scholar
  108. 108.
    Liu L, Li F-b, Feng CH (2009) Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Technol 85:175–183CrossRefGoogle Scholar
  109. 109.
    Mezohegyi G, Fabregat A, Font J, Bengoa C, Stuber F (2009) Advanced bioreduction of commercially important azo dyes: modeling and correlation with electrochemical characteristics. Ind Eng Chem Res 48:7054–7059CrossRefGoogle Scholar
  110. 110.
    Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353:414–416CrossRefGoogle Scholar
  111. 111.
    Suslick KS, Hyeon T, Fang M, Cichowlas AA, Gonsalves KE, Chow GM, Xiao TO, Cammarata RC (1994) Molecular Design Nanostruct Maters 351:201–206Google Scholar
  112. 112.
    Suslick KS, Fang M, Hyeon T, Cichowlas AA, Gonsalves KE, Chow GM, Xiao TO, Cammarata RC (1994) Nanostructured Fe-Co catalysts generated by ultrasound. Molecular Design Nanostruct Mater 351:443–448Google Scholar
  113. 113.
    Bellissent R, Galli G, Hyeon T, Magazu S, Majolino D, Migliardo P, Suslick KS (1995) Structural properties of amorphous bulk Fe, Co, and Fe-Co binary alloys. Phys Scripta 57:79–83, References and further reading may be available for this article. To view references and further read purchase this articleCrossRefGoogle Scholar
  114. 114.
    Suslick KS, Hyeon T, Fang M, Cichowlas AA (1995) Sonochemical synthesis of nanostructured catalysts. Mater Sci Eng, A 204(1–2):186–192Google Scholar
  115. 115.
    Hyeon T, Fang M, Suslick KS (1996) Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties. J Am Chem Soc 118(23):5492–5493CrossRefGoogle Scholar
  116. 116.
    Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179CrossRefGoogle Scholar
  117. 117.
    Özkan A, Özkan MH, Gürkan R, Akçay M, Sökmen M (2004) Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation and the effects of some inorganic anions on the photocatalysis. J Photochem Photobiol A Chem 163:29–35CrossRefGoogle Scholar
  118. 118.
    Xu A-W, Gao Y, Liu H-Q (2002) The preparation, characterization, and their photocatalyticactivities of rare-earth-doped TiO2 nanoparticles. J Catal 207:151–157CrossRefGoogle Scholar
  119. 119.
    Colombo DP, Bowman RM (1995) Femtosecond diffuse reflectance spectroscopy of TiO2 powder. J Phys Chem 99:11752e6CrossRefGoogle Scholar
  120. 120.
    Liang C-H, Li F-B, Liu C-S, Lu J-L, Wang X-G (2008) The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of orange I. Dyes Pigm 76:477–484CrossRefGoogle Scholar
  121. 121.
    Vajnhandl S, Marechal AML (2007) Case study of the sonochemical decolouration of textile azo dye Reactive Black 5. J Hazard Mater 141:329–335CrossRefGoogle Scholar
  122. 122.
    Ozen AS, Aviyente V, Tezcanli-Guyer G, Ince NH (2005) Experimental and modeling approach to decolorization of azo dyes by ultrasound: degradation of the hydrazone tautomer. J Phys Chem A 109:3506–3516CrossRefGoogle Scholar
  123. 123.
    Petrier C, Lamy MF, Francony A, Benahcene A, David B, Renaudin N, Gondrexon V (1994) Sonochemical degradation of phenol in dilute aqueous solutions; comparison of the reaction rates at 20 kHz and 487 kHz. J Phys Chem 98:10514–10520CrossRefGoogle Scholar
  124. 124.
    Hua I, Hoffmann MR (1997) Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ Sci Technol 31:2237–2243CrossRefGoogle Scholar
  125. 125.
    Wang Y, Zhao D, MA W, Chen C, Zhao J (2008) Enhanced sonocatalytic degradation of azo dyes by Au/TiO2. Environ Sci Technol 42:6173–6178CrossRefGoogle Scholar
  126. 126.
    Rehorek A, Tauber M, Gubitz G (2004) Application of power ultrasound for azo dye degradation. Ultrason Sonochem 11:177–182CrossRefGoogle Scholar
  127. 127.
    Kenji O, Kazuya I, Yoshihiro Y, Hiroshi B, Rokuro N, Yasuaki M (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem 12(4):255–262CrossRefGoogle Scholar
  128. 128.
    El-Bahy ZM, Ismail AA, Mohamed RM (2009) Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J Hazard Mater 166:138–143CrossRefGoogle Scholar
  129. 129.
    Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ Sci Technol 35:1544–1549CrossRefGoogle Scholar
  130. 130.
    Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide doped titanium dioxide photocatalysts: Effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid. J Catal 204:305–313CrossRefGoogle Scholar
  131. 131.
    Uzunova-Bujnova M, Todorovska R, Dimitrov D, Todorovsky D (2008) Lanthanide-doped titanium dioxide layers as photocatalysts. Appl Surfac Sci 254:7296–7302CrossRefGoogle Scholar
  132. 132.
    (i) Chen Y-C, Smirniotis P (2002) Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound Ind Eng Chem Res 41:5958–5965; (ii) Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water Wat Res 35(16):3927–3933Google Scholar
  133. 133.
    Gondal MA, Seddigi Z (2006) Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst. Chem Phys Lett 417:124–127CrossRefGoogle Scholar
  134. 134.
    Gondal MA, Sayeed MN, Seddigi Z (2008) Laser-inhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst. J Hazard Mater 155:83–89CrossRefGoogle Scholar
  135. 135.
    Xu AW, Gao Y, Liu H-Q (2002) Preparation, characterization, and their photocatalytic activities of rare earth doped TiO2 nanoparticles. J Catal 207:151–157CrossRefGoogle Scholar
  136. 136.
    Sharipov GL, Gainetdinov RKh, Abdrakhmanov AM (2008) Effect of argon on the multibubble sonoluminescence of cerium, terbium and dysprosium trichlorides. Russ Chem Bull 57(9):1831–1836CrossRefGoogle Scholar
  137. 137.
    Vikram L, Sivasankar BN (2008) New nine coordinated hydrated heavier lanthanide ethyldiamine tetraacetates containing hydrazinium cation: Crystal structure of N2H5[Dy(EDTA)(H2O)3(H2O)5. Ind J Chem 47A:25–31Google Scholar
  138. 138.
    Juengsuwattananon K, Jaroenworaluck A, Panyathanmaporn T, Jinawath S, Supothina S (2007) Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method. Physica Status Solidi A 204(6):1751–1756CrossRefGoogle Scholar
  139. 139.
    Baolong Z, Baishun C, Keyu S, Shangjin H, Xiaodong L, Zongjie D, Kelian Y (2003) Preparation and characterization of nanocrystal grain TiO2 porous microspheres. Appl Catal B 40(4):253–258CrossRefGoogle Scholar
  140. 140.
    Citron IM, Allan M (1964) Spectrophotometric determination of primary amines in aqueous solution with copper-(ethylenedinitrilo) tetraacetic acid. Anal Chem 36(1):208–210CrossRefGoogle Scholar
  141. 141.
    Norwitz G, Kellher PN (1981) Spectrophotometric determination of aniline by the diazotation-coupling method with N-(1-napthyl) ethylenediamine as the coupling agent. Anal Chem 53:1238–1240CrossRefGoogle Scholar
  142. 142.
    DeAtley WW (1970) Spectrophotometric determination of diphenylamine, 2-nitrodiphenylamine, and 4-nitrodipheylamine by oxidation with ferric ion. Anal Chem 42(6):662–664CrossRefGoogle Scholar
  143. 143.
    Pandey OP, Bajpai DN, Giri S (2006) Practical chemistry, S. Chand & Company Ltd, New DelhiGoogle Scholar
  144. 144.
    Handrickson JB, Cram DJ, Hammond GS (1970) Organic chemistry,  Chap. 4: A survey of the class of compounds, Tosho Printing Company Ltd, Tokyo, Japan, pp 107–109
  145. 145.
    Finar IL (2000) Organic chemistry, vol. 1: The fundamental principles, 6th edn, Chap. 23: Aromatic amino-compounds. Wiley, New York, p 664Google Scholar
  146. 146.
    Finar IL (2000) Organic chemistry vol. 1: The fundamental principles, 6th ed., Chap 23; Aromatic amino-compounds, Wiley, New York, p 655Google Scholar
  147. 147.
    Premchandran RS, Banerjee S, Wu XK, John VT, McPherson GL, Ayyagari M, Kaplan D (1996) Enzymatic synthesis of fluorescent naphthol-based polymers. Macromolecules 29(20):6452–6460CrossRefGoogle Scholar
  148. 148.
    Cox PA (1992) Transition metal oxides: An introduction to their electronic structure and properties. Clarendon Press, OxfordGoogle Scholar
  149. 149.
    Yuhong Zhang,, Huaxing Zhang, Yongxi Xu, Yanguang Wang l (2004) Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2. J Solid State Chem 177(10):3490–3495Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceDayalbagh Educational InstituteAgraIndia

Personalised recommendations