Sonochemical Degradation of Phenol in the Presence of Inorganic Catalytic Materials

  • PankajEmail author
  • Mayank Verma


Degradation of phenol in its aqueous solutions, using various techniques, including ultrasound, have been examined and discussed to better understand the mechanisms involved therein and the advantages as well as the disadvantages associated with the use of inorganic catalytic materials.


Phenol Degradation Zero Valent Iron Percentage Degradation Trimethyl Ammonium Chloride Solid Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    (a) Kaur S and Singh V (2007) Visible light induced sonophotocatalytic degradation of reactive Red dye 198 using dye sensitized TiO2. Ultrason Sonochem 14: 531–537. (b) Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Salavati H (2008) Sonochemical and visible light induced photochemical and sonophotochemical degradation of dyes catalyzed by recoverable vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles. Ultrason Sonochem 15(5):815–822. (c) Song Y-L, Li J-T (2009) Degradation of C.I. Direct Black 168 from aqueous solution by fly ash/H2O2 combining ultrasound. Ultrason Sonochem 16(4):440–444Google Scholar
  2. 2.
    (a) Zourab SM, Ezzo EM, El-Aila HJ, Salem JKJ (2005) Study of kinetics of oxidation of amines by potassium ferricyanide in the presence of N,N-dimethyldodecylamine N-oxide. J Surfactants Detergents 8(1) 83–89. (b) Calza P, Pelizzetti E (2001) Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl Chem 73(12): 1839. (c) Kado Y, Atobe M and Nonaka T (2001) Ultrasonic effects on electroorganic processes – Part 20. Photocatalytic oxidation of aliphatic alcohols in aqueous suspension of TiO2 powder. Ultrason Sonochem 8(2):69Google Scholar
  3. 3.
    (a) Kim T-K, Kim M-K, Lim Y-J, Son Y-A (2005) Degradation of the disazo acid dye by the sulfur-containing amino acids of wool fibers. Dyes Pigments 67(2): 127–132. (b) Knoevenagel K, Himmelreich R (1976) Degradation of compounds containing carbon atoms by photooxidation in the presence of water. Arch Environ Contamin. Toxicol 4(1): 324–333. (c) Park S-H, Wei S, Mizaikoff B, Taylor AE, Favero C, and Huang C-H (2009) Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors. Environ Sci Technol 43 (5):1360–1366Google Scholar
  4. 4.
    Gardner W, Cooke EI, Cooke RWI (1978) Handbook of chemical synonyms and trade names. CRC Press, Boca Raton, FLGoogle Scholar
  5. 5.
    Budavari S, O’Neil MJ, Smith A, Heckelmen PE (1989) The Merck index. Merck, Whitehouse station, NJ, p 1150Google Scholar
  6. 6.
    HSDB (1998) Hazardous substances data bank. National Library of Medicine, National Toxicology Information Program, Bethesda, MDGoogle Scholar
  7. 7.
    Lide DR (1993) CRC handbook of chemistry and physics. CRC Press, Boca Raton, FLGoogle Scholar
  8. 8.
    Amoore JE, Hautala E (1983) Odors as an aid to chemical safety: odor threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. Appl Toxicol 3:272–290CrossRefGoogle Scholar
  9. 9.
    Baker EL, Landrigan PJ, Bertozzi PE, Field PH, Basteyns BJ, Skinner HG (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33:89–94Google Scholar
  10. 10.
    Swarts M, Verhage NF, Field J, Wijn Berg J (1998) Trichlorinated phenols from Hypholoma elongatum. Phytochemistry 49(1):203–206CrossRefGoogle Scholar
  11. 11.
    Kidak R, Ince NH (2006) Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason Sonochem 13:195–199CrossRefGoogle Scholar
  12. 12.
    Wu Z-L, Dondruschka B, Cravotto G (2008) Degradation of phenol under combined irradiation of microwaves and ultrasound. Environ Sci Technol 42:8083–8087CrossRefGoogle Scholar
  13. 13.
    Meister JJ (ed) (2000) Polymer modification: principles techniques and applications. CRC Press, 936Google Scholar
  14. 14.
    Alnaizy R, Akgerman A (2000) Advanced oxidation of phenolic compounds. Adv Environ Res 4(3):233–244CrossRefGoogle Scholar
  15. 15.
    Lurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322CrossRefGoogle Scholar
  16. 16.
    Bu Davari S (2001) The Merck index, 13th edn. Merck, Whitehouse station, NJ, pp 1299–1367Google Scholar
  17. 17.
    Idris A, Saed K (2002) A precursor for nylon 6 and other manmade fibres. Global Nest Int J 4(2–3):139–144Google Scholar
  18. 18.
    Leonardo SA, Rocha-Filho RC, Bocchi N, Biaggio SR, Garcia-Garcia JIV, Montiel V (2008) Degradation of phenol using Co- and Co, F-doped PbO2 anodes in electrochemical filter-press cells. J Hazordous Mater 153:252–260CrossRefGoogle Scholar
  19. 19.
    Saravanan P, Pakshirajan K, Saha P (2009) Degradation of phenol by TiO2-based heterogeneous photocatalysts in presence of sunlight. J Hydroenviron Res 3:45–50CrossRefGoogle Scholar
  20. 20.
    International Programme on Chemical Safety (IPCS) (1994) Environmental Health Criteria 161. Phenol. World Health Organisation, GenevaGoogle Scholar
  21. 21.
    International Programme on Chemical Safety (IPCS) (1994) Phenol. Health and safety guide no 88. WHO, GenevaGoogle Scholar
  22. 22.
    Chaliha S, Bhattacharyya KG (2008) Using Mn(II) – MCM41 as an environment – friendly catalyst to oxidize phenol, 2-chlorophenol and 2-nitrophenol in aqueous solution. Ind Eng Chem Res 47:1370–1379CrossRefGoogle Scholar
  23. 23.
    Klibanov AM (1982) Enzymatic removal of hazardous pollutants from industrial aqueous effluents. Enzym Eng 6:319–323Google Scholar
  24. 24.
    Del Fino F, Dube D (1976) Persistent contamination of ground water by phenol. J Environ Sci Health 43:345Google Scholar
  25. 25.
    Jordan W, van Barneveld H, Gerlich O, Kleine-Boymann M, Ullrich J (2002) Phenol in: Ullmann’s encyclopedia of industrial chemistry. Weinheim, Wiley-VCH VerlagGoogle Scholar
  26. 26.
    Shailubhai K (1986) Treatment of Petroleum industry oil sludge in soil, Tibtech. Elsevier Science Publishers B.V., Amsterdam, pp 202–206Google Scholar
  27. 27.
    Salonen M, Middeldorp P, Briglia M, Valo R, Haggblom M and McBain A Kamely D, Chakrabarty A and Omenn, GS (eds) (1989) Cleanup of old industrial sites. In: Biotechnology and biodegradation. Portfolio Publishing, The Woodlands, TX, pp 347–365Google Scholar
  28. 28.
    Sharma H, Barber JT, Ensley HE, Polito MA (1997) A comparison of the toxicity of phenol and chlorinated phenols by Lemna gibba with reference to 2, 4, 5-trichloorophenol. Environ Toxicol Chem 16:346–350Google Scholar
  29. 29.
    Tuah PBM (2006) The performance of phenol biodegradation by candida tropicalis Retl-Cr-1 using batch and fed-batch fermentation techniques. Ph.D. Thesis, Universiti Teknologi MalaysiaGoogle Scholar
  30. 30.
    Bruce RN, Santodonato J, Neal MW (1987) Summary review of the health effects associated with phenol. Toxicol Ind Health 3:535–568Google Scholar
  31. 31.
    Gosslin RE, Smith RP, Hodge HC, Braddock JE (1984) Phenol in: clinical toxicology of commercial products, vol 3. Williams and Wilkins, Baltimore, MD, pp 345–346Google Scholar
  32. 32.
    Merliss RR (1972) Phenol marasmus. J Occu Environ Med 14:55–56CrossRefGoogle Scholar
  33. 33.
    Keith H, Telliard WA (1979) Priority pollutants I. A perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  34. 34.
    World Health Organization (WHO) (1994) Phenol, environmental health criteria-EHC 161. WHO, GenevaGoogle Scholar
  35. 35.
    International Programme on Chemical Safety (IPCS) (1999) Phenol poisons information monograph. PIM 412. (
  36. 36.
    International Programme on Chemical Safety (IPCS) (1994) Phenol. Health and safety guide no 88. WHO. Geneva. Printed by Wissenschsftliche Verlagsgesellschaft, Stuttgart.
  37. 37.
    Barker EL, Peter EB, Petrecia HF, Grant SK (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33:89–94Google Scholar
  38. 38.
    Agency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological Profile for Phenol. US Department of Health and Human Services. Atlanta, US.
  39. 39.
    Kim JH, Oh KK, Lee ST, Kim SW, Hong SI (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed-bed reactor. Process Biochem 37(12):1367–1373CrossRefGoogle Scholar
  40. 40.
    US Environmental Protection Agency (2002) Toxicological review of phenol (CAS No. 108-95-2) EPA/635/R-02/006, In support of summary information on the integrated risk information system (IRIS), Washington DCGoogle Scholar
  41. 41.
    Iurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322CrossRefGoogle Scholar
  42. 42.
    American conference of Governmental Industrial Hygienists standards (ACGIH) Manual, 2005, and United States Environmental Protection Agency, EPA, 816-F-01-007, 2006Google Scholar
  43. 43.
    Warner MA, Harper JV (1985) Cardiac dysrhythmias associated with chemical peeling with phenol. Anesthesiology 62:366–7CrossRefGoogle Scholar
  44. 44.
    Budavari S (ed) (1996) The Merck index: an encyclopedia of chemical, drugs, and biologicals. Merck, Whitehouse Station, NJGoogle Scholar
  45. 45.
    Gupta S, Ashrith G, Chandra D, Gupta AK, Finkel KW, Guntupalli JS (2008) Acute phenol poisoning: a life – threatening hazard of chronic pain relief. Clin Toxicol 46:250–253CrossRefGoogle Scholar
  46. 46.
    Lathasree S, Nageswara Rao A, Sivasankar B, Sadasivam V, Rengaraj K (2004) Heterogeneous photocatalytic mineralization of phenols in aqueous solutions. J Mol Cat A Chem 223:101–105CrossRefGoogle Scholar
  47. 47.
    Sato K, Takimoto K, Tsuda S (1978) Degradation of aqueous phenol solution by gamma irradiation. J Am Chem Soc 12(9):1043–1046Google Scholar
  48. 48.
    Lai T-L, Lee C-C, Wu K-S, Shu Y-Y, Wang C-B (2006) Microwave-enhanced catalytic degradation of phenol over nickel oxide. Appl Catal B 68:147–153CrossRefGoogle Scholar
  49. 49.
    Gondal MA, Seddiqi Z (2006) Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst. Chem Phys Lett 417:124–127CrossRefGoogle Scholar
  50. 50.
    Gondal MA, Sayeed MN, Seddiqi Z (2008) Laser enhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst. J Hazard Mater 155:83–89CrossRefGoogle Scholar
  51. 51.
    Matthews RW, McEvoy SR (1992) Destruction of phenol in water with sun, sand and photocatalysis. Sol Energy 49(6):507–513CrossRefGoogle Scholar
  52. 52.
    Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO2 in wastewater. Chem Eng J 119:55–59CrossRefGoogle Scholar
  53. 53.
    Karunakaran C, Dhanalakshmi R (2008) Semiconductor-catalyzed degradation of phenols with sunlight. Sol Energy Mater Sol Cells 92:1315–1321CrossRefGoogle Scholar
  54. 54.
    Karunakaran C, Dhanalakshmi R (2009) Phenol degradation on Pr6O11 surface under UV-A light. Synergistic photocatalysis by semiconductors. Radiat Phys Chem 78:8–12CrossRefGoogle Scholar
  55. 55.
    Cotto MC, Emiliano A, Nieto S, Duconge J, Roque-Malherbe R (2009) Degradation of phenol by mechanical activation of a rutile catalyst. J Colloid Interface Sci 339:133–139CrossRefGoogle Scholar
  56. 56.
    (a) Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Water Res 37:2399–2407. (b) Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S (2005) Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res 39: 1601–1613. (c) Li XY, Cui YH, Feng YJ, Xie ZM Dong JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39: 1972–1981Google Scholar
  57. 57.
    Wang Y-Q, Gu B, Xu W-L (2009) Electro-catalytic degradation of phenol on several metal-oxide anodes. J Hazard Mater 162:1159–1164CrossRefGoogle Scholar
  58. 58.
    Torres RA, Torres W, Peringer P, Pulgarin C (2003) Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure–reactivity relationship assessment. Chemosphere 50:97–104CrossRefGoogle Scholar
  59. 59.
    Trabelsi F, Ait-Lyazidi H, Ratsimba B, Wilhelm AM, Delmas H, Fabre P-L, Berlan J (1996) Oxidation of phenol in waste water by sonoelectrochemistry. Chem Eng Sci 51(10):1857–1865CrossRefGoogle Scholar
  60. 60.
    Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259CrossRefGoogle Scholar
  61. 61.
    Kryst K, Karamanev DG (2001) Aerobic phenol biodegradation in an inverse fluidized-bed biofilm reactor. Ind Eng Chem Res 40:5436–5439CrossRefGoogle Scholar
  62. 62.
    Jiang H-L, Tay J-H, Maszenan AM, Tay ST-L (2006) Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 40:6137–6142CrossRefGoogle Scholar
  63. 63.
    Mordocco A, Jenkins CKR (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb Technol 25:530–536CrossRefGoogle Scholar
  64. 64.
    Pai S-L, Hsu Y-L, Chong N-M, Sheu C-S, Chen C-H (1995) Continuous degradation of phenol by Rhodococcus SR immobilized on granular activated carbon and in calcium alginate. Biores Technol 51:37–42CrossRefGoogle Scholar
  65. 65.
    Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents – identification and degradation potential. Process Biochem 39:1001–1006CrossRefGoogle Scholar
  66. 66.
    Perron N, Welander U (2004) Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process. Chemosphere 55:45–50CrossRefGoogle Scholar
  67. 67.
    Fanga HHP, Lianga DW, Zhanga T, Liu Y (2006) Anaerobic treatment of phenol in wastewater under thermophilic condition. Water Res 40:427–434CrossRefGoogle Scholar
  68. 68.
    Karlsson A, Ejlertsson J, Nezirevic D, Svensson BH (1999) Degradation of phenol under meso- and thermophillic, anaerobic conditions. Anaerobe 5(1):25–35CrossRefGoogle Scholar
  69. 69.
    Akaya G, Erhan E, Keskinler B, Algur OF (2002) Removal of phenol from wastewater using membrane-immobilized enzymes Part II. Cross-flow filtration. J Membr Sci 206:61–68CrossRefGoogle Scholar
  70. 70.
    Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264CrossRefGoogle Scholar
  71. 71.
    Moussavi G, Mahmoudi M, Barikbin B (2009) Biological removal of phenol from strong wastewaters using a novel MSBR. Water Res 43:1295–1302CrossRefGoogle Scholar
  72. 72.
    Esplugas S, Gim!enez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042CrossRefGoogle Scholar
  73. 73.
    Sano N, Yamamoto T, Takemori I, Kim S-I, Eiad-ua A, Yamamoto D, Nakaiwa M (2006) Degradation of phenol by simultaneous use of gas-phase corona discharge and catalyst-supported mesoporous carbon gels. Ind Eng Chem Res 45:2897–2900CrossRefGoogle Scholar
  74. 74.
    Li J, Sato M, Ohshima T (2007) Degradation of phenol in water using a gas–liquid phase pulsed discharge plasma reactor. Thin Solid Films 515:4283–4288CrossRefGoogle Scholar
  75. 75.
    Liu YJ, Xuan Zhen Jian G (2005) Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution. Environ Sci Technol 39:8512–8517CrossRefGoogle Scholar
  76. 76.
    Li P, Takahashi M, Chiba K (2009) Degradation of phenol by the collapse of microbubbles. Chemosphere 75:1371–1375CrossRefGoogle Scholar
  77. 77.
    Petrier C, Lamy M-F, Francony A, Benahcene A, David B (1994) Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520CrossRefGoogle Scholar
  78. 78.
    Petrier C, Francony A (1997) Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason Sonochem 4(4):295–300CrossRefGoogle Scholar
  79. 79.
    Gogate PR, Mujumdar S, Thampi J, Wilhelm AM, Pandit AB (2004) Destruction of phenol using sonochemical reactors: scale up aspects and comparison of novel configuration with conventional reactors. Sep Purif Technol 34:25–34CrossRefGoogle Scholar
  80. 80.
    Chen Y-C, Smirniotis P (2002) Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Ind Eng Chem Res 41:5958–5965CrossRefGoogle Scholar
  81. 81.
    Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water. Water Res 35(16):3927–3933CrossRefGoogle Scholar
  82. 82.
    Kubo M, Matsuoka K, Takahashi A, Shibasaki-Kitakawa N, Yonemoto T (2005) Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles. Ultrason Sonochem 12:263–269CrossRefGoogle Scholar
  83. 83.
    Papadaki M, Emery RJ, Abu-Hassan MA, Bustos AD, Metcalfe IS (2004) Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents. Sep Purif Technol 34(1–3):35–42CrossRefGoogle Scholar
  84. 84.
    Entezari MH, Petrier C, Devidal P (2003) Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason Sonochem 10:103–108CrossRefGoogle Scholar
  85. 85.
    Molina R, Martinez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B Environ 66:198–207CrossRefGoogle Scholar
  86. 86.
    Bremner DH, Molina R, Martınez F, Melero JA, Segura Y (2009) Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US–Fe2O3/SBA-15–H2O2). Appl Catal B 90:380–388CrossRefGoogle Scholar
  87. 87.
    Segura Y, Molina R, Martínez F, Melero JA (2009) Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrason Sonochem 16:417–424CrossRefGoogle Scholar
  88. 88.
    Chand R, Ince NH, Gogate PR, Bremner DH (2009) Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Sep Purif Technol 67:103–109CrossRefGoogle Scholar
  89. 89.
    Entezari MH, Petrier C (2003) A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols. Ultrason Sonochem 10:241–246CrossRefGoogle Scholar
  90. 90.
    Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason Sonochem 15:1033–1037CrossRefGoogle Scholar
  91. 91.
    Sivasankar T, Moholkar VS (2009) Mechanistic approach to intensification of sonochemical degradation of phenol. Chem Eng J 149:57–69CrossRefGoogle Scholar
  92. 92.
    Zheng W, Maurin M, Tarr MA (2005) Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrason Sonochem 12:313–317CrossRefGoogle Scholar
  93. 93.
    Bapat PS, Gogate PR, Pandit AB (2008) Theoretical analysis of sonochemical degradation of phenol and its chloro-derivatives. Ultrason Sonochem 15:564–570CrossRefGoogle Scholar
  94. 94.
    Wang Y, Yin L, Gedanken A (2002) Sonochemical synthesis of mesoporous transition metal and rare earth oxides. Ultrason Sonochem 9(6):285–290CrossRefGoogle Scholar
  95. 95.
    Rozenberg E, Gorodetsky G, Felner I, Sominski E, Gedanken A, Mukovskii YM (2006) Magnetic properties of crystalline La0.9Ca0.1MnO3: Comparison of bulk and nanometer-sized samples. J Appl Phys 99:08Q305CrossRefGoogle Scholar
  96. 96.
    Raebiger J, Miller W (2002) Magnetic ordering in the rare earth molecule-based magnets, Ln(TCNE)3 (Ln = Gd, Dy; TCNE = tetracyanoethylene). J S Inorg Chem 41(12):3308–3312CrossRefGoogle Scholar
  97. 97.
    Weang ZC, Wang LS (1997) Thermodynamic properties of the rare earth element vapor complexes LnAl3Cl12 from Ln = La to Lu. Inorg Chem 36(8):1536–1540CrossRefGoogle Scholar
  98. 98.
    Viswanathan B (1984) Solid state and catalytic properties of rare earth orthocobaltites – a new generation catalysts. J Sci Ind Res 44:66–74Google Scholar
  99. 99.
    Zou Z, Ye J, Arakawa H (2002) Role of R in Bi2RNbO7 (R = Y, Rare earths); Effect on band structure and photocatalytic properties. J Phys Chem B 106(3):517–520CrossRefGoogle Scholar
  100. 100.
    Cussen EJ, Lynham DR, Rogers J (2006) Magnetic order arising from structural distortion: structure and magnetic properties of Ba2LnMoO6. J Chem Mater 18:2855–2866CrossRefGoogle Scholar
  101. 101.
    Huang YH, Fjellvag H, Karppinen M, Hauback BC, Yamuchi H, Goodenough JB (2006) Crystal and magnetic structure of the orthorhombic perovskite YbMnO3. Chem Mater 18:2130–2134CrossRefGoogle Scholar
  102. 102.
    Ryaznov M, Keinle L, Simon A, Mattausch HU (2005) New synthesis route to and physical properties of lanthanum monoiodide. Inorg Chem 45:2068–2074CrossRefGoogle Scholar
  103. 103.
    Mills AM, Ruck M (2005) Ce53Fe12S90X3 (X = Cl, Br, I): The first rare-earth transition-metal sulphide halides. Inorg Chem 45:5172–5178CrossRefGoogle Scholar
  104. 104.
    Colina JZ, Nix RM, Weiss H (2005) Growth, structure, and stability of ceria films on Si (111) and the application of CaF2 buffer layers. J Phys Chem B 109:10978–10985CrossRefGoogle Scholar
  105. 105.
    Gauthier G, Jobic S, Evain M, Koo HJ, Whangbo MH, Fouassier C, Brec R (2003) Synthesis, structures and optical properties of yellow Ce2SiS5, Ce6Si4S17, and Ce4Si3S12 materials. Chem Mater 15:828–837CrossRefGoogle Scholar
  106. 106.
    Bernot K, Bogani L, Caneschi A, Gatteschi D, Sessoli R (2006) A family of rare-earth based single chain magnets: playing with anisotropy. J Am Chem Soc 128:7947–7956CrossRefGoogle Scholar
  107. 107.
    Lin-hai Y, Miao S, Wang-Liang Z, Zhu-De X (2001) Photocatalytic activity of lanthanum doping TiO2. J Zhejiang University (Sci) 2(3):271–274CrossRefGoogle Scholar
  108. 108.
    O’Connell M, Norman AK, Huttermann CF, Morris MA (1999) Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal Today 47:123–132CrossRefGoogle Scholar
  109. 109.
    Sakatani Y, Nunoshige J, Ando H, Okusako K, Koike H, Takata T, Kondo JN, Hara M, Domen K (2003) Photocatalytic decomposition of acetaldhyde under visible light irradiation over La3+ and N Co-doped TiO2. Chem Lett 32(12):1156–1157CrossRefGoogle Scholar
  110. 110.
    Xiao Q, Si Z, Zhang J, Xiao C, Yu Z, Qiu G (2007) Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation. J Mater Sci 42:9194–9199CrossRefGoogle Scholar
  111. 111.
    Page RH, Schaffers KI, Payne SA, Krupke WF (1997) Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers. J Lightwave Technol 15(5):786–793CrossRefGoogle Scholar
  112. 112.
    Behrendt DR, Legvold S, Spedding FHC (1958) Magnetic properties of dysprosium single crystals. Phys Rev 109:1544–1547CrossRefGoogle Scholar
  113. 113.
    Qi M-H, Liu G-F (2004) Synthesis and photoelectronic properties on a series of lanthanide dysprosium(III) complexes with acetylacetonate and meso-tetraalkyltetrabenzoporphyrin. Solid State Sci 6(3):287–294CrossRefGoogle Scholar
  114. 114.
    Perkas N, Roffer H, Vradman L, Landau MV, Gedanken A (2006) Sonochemically prepared Pt/CeO2 and its application as a catalyst in ethyl acetate combustion. Langmuir 22:7072–7077CrossRefGoogle Scholar
  115. 115.
    Fu Q, Deng W, Saltsburg H, Flytzani-Stephanopoulos M (2005) Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl Catal B 56:57–68CrossRefGoogle Scholar
  116. 116.
    Thammachart M, Meeyoo V, Risksomboon T, Osuwan S (2001) Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation. Catal Today 68(1):53–61CrossRefGoogle Scholar
  117. 117.
    Scire S, Minico S, Crisafulli C, Satriano C, Pistone (2003) Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl Catal B Environ 40(1–8):43–49CrossRefGoogle Scholar
  118. 118.
    Zheng X-C, Wu S-H, Wang S-P, Wang S-R, Zheng S-M, Huang W-P (2005) The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon monoxide oxidation. Appl Catal A 283(1–2):217–223Google Scholar
  119. 119.
    Park PW, Ledford JS (1998) The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina: oxidation of carbon monoxide and methane. Catal Lett 50(1–2):41–48CrossRefGoogle Scholar
  120. 120.
    Thevenin PO, Pettersson AALJ, Jaras SG, Fierro JLG (2003) Catalytic combustion of methane over cerium-doped palladium catalysts. J Catal 215:78–86CrossRefGoogle Scholar
  121. 121.
    Zarraga-Colina J, Nix RM, Weiss H (2005) Growth, structure, and stability of ceria films on Si(111) and the application of CaF2 buffer layers. J Phys Chem B 109(21):10978–10985CrossRefGoogle Scholar
  122. 122.
    Gauthier G, Jobic S, Evain M, Koo H-J, Whangbo M-H, Fouassier C, Brec R (2003) Syntheses, structures, and optical properties of yellow Ce2SiS5, Ce6Si4S17, and Ce4Si3S12 materials. Chem Mater 15(4):828–837CrossRefGoogle Scholar
  123. 123.
    Pankaj, Verma M (2009) Sonophotocatalytic behavior of cerium doped salts of Cu(II), Co(II) and Mn(II) in the degradation of phenol. Ind J Chem 48A:367–371Google Scholar
  124. 124.
    Juengsuwattananon K, Jaroenworaluck A, Panyathanmaporn T, Jinawath S, Supothina S (2007) Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method. Physica status solidi a 204(6):1751–1756CrossRefGoogle Scholar
  125. 125.
    Ali Z, Zuhri A (1984) Spectrophotometric studies and analytical application of Ce(III) chelates with1-(2-Pyridylazo)-2-naphthol (PAN). Monatsh Chem 115(1):57–58CrossRefGoogle Scholar
  126. 126.
    Franson MAH (1985) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC, pp 560–561Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ChemistryDayalbagh Educational InstituteAgraIndia

Personalised recommendations