Advertisement

Sonochemical Study on Multivalent Cations (Fe, Cr, and Mn)

  • PankajEmail author
  • Manju Chauhan
Chapter
  • 1.2k Downloads

Abstract

The behaviour of many metal ions which are stable in more than one oxidation states in their aqueous solutions has been studied under sonochemical reaction conditions. Fe(II) is oxidized to Fe(III) and Fe(III) is reduced to Fe(II) with equal ease under sonochemical conditions. Besides, the oxidizing power of Cr2O 7 2− is found to be less than the MnO 4 ions, therefore, in a system containing both species, Cr3+ is susceptible to oxidation to Cr6+ and the MnO 4 to reduction to Mn2+.

Keywords

Prussian Blue Ultrasonic Field Zerovalent Iron Ferrous Ammonium Sulphate MnO2 Colloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Meciarova M, Toma S, Luche J-L (2001) The sonochemical arylation of malonic esters mediated by manganese triacetate. Ultrason Sonochem 8(2):119–122CrossRefGoogle Scholar
  2. 2.
    Kumar GV, Aurboch D, Gedanken A (2002) Influence of pH on the structure of the aqueous sonolysis products of manganese (III) acetylacetone. J Mater Res A 17(7):1706–1710CrossRefGoogle Scholar
  3. 3.
    Grieser F, Hobson R, Sostric J (1996) Sonochemical reduction processes in aqueous colloidal systems. Ultrasonics 34(2–5):547–550CrossRefGoogle Scholar
  4. 4.
    Ge J, Qu J (2003) Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation. J Hazard Mater 100:197–207CrossRefGoogle Scholar
  5. 5.
    Meciarova M, Toma S, Heribanova A (2000) Ultrasound assisted heterogeneous permanganate oxidation. Tetrahedron 56(43):8561–8566CrossRefGoogle Scholar
  6. 6.
    Sonochemical reduction of permanganate to manganese dioxide: the effect of H2O2 formed in the sonolysis of water on the rates of reduction: Kenji O, Masaki I, Ben Nishimura Rokura N, Yasuaki M (2009) Ultrason Sonochem 16(3):387–391Google Scholar
  7. 7.
    Mišík V, Riesz P (1996) Nitric oxide formation by ultrasound in aqueous solutions. J Phys Chem 100(45):17986–179948CrossRefGoogle Scholar
  8. 8.
    Liang F, Fan J, Guo Y, Fan M, Wang J, Yang H (2008) Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind Eng Chem Res 47(22):8550–8554CrossRefGoogle Scholar
  9. 9.
    Zboril R, Machala L, Mashlan M, Sharma V (2004) Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of prussian blue, Fe4[Fe(CN)6]3. Cryst Growth Design 4(6):1317–1325CrossRefGoogle Scholar
  10. 10.
    Xinglong Wu, Cao M, Changwen Hu, He X (2006) Sonochemical synthesis of prussian blue nanocubes from a single-source precursor. Cryst Growth Design 6(1):26–28CrossRefGoogle Scholar
  11. 11.
    Hung H-M, Hoffmann MR (1998) Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ Sci Technol 32(19):3011–3016CrossRefGoogle Scholar
  12. 12.
    Minero C, Lucchiari M, Vione D, Maurino V (2005) Fe(III)-enhanced sonochemical degradation of methylene blue in aqueous solution. Environ Sci Technol 39(22):8936–8942CrossRefGoogle Scholar
  13. 13.
    Liang J, Komarov S, Hayashi N, Kasai E (2007) Recent trends in the decomposition of chlorinated aromatic hydrocarbons by ultrasound irradiation and Fenton’s reagent. J Mat Cycles Waste Manage 9(1):47–55CrossRefGoogle Scholar
  14. 14.
    Torres RA, Pétrier C, Combet E, Moulet F, Pulgarin C (2007) Bisphenol a mineralization by integrated ultrasound-UV-iron (II) treatment. Environ Sci Technol 41(1):297–302CrossRefGoogle Scholar
  15. 15.
    Dorathi PJ, Ranjit KP, Lee C-S (2008) Degradation of 2, 4-dichlorophenol in aqueous solution by sono-Fenton method. Korean J Chem Engi 25(1):112–117CrossRefGoogle Scholar
  16. 16.
    Luo T, Ai Z, Zhang L (2008) Fe@Fe2O3 core-shell nanowires as iron reagent. 4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis. J Phys Chem C 112(23):8675–8681CrossRefGoogle Scholar
  17. 17.
    Cravotto G, Binello A, Di Carlo S, Orio L, Zhi-Lin Wu, Ondruschka B (2010) Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environ Sci Poll Res 17(3):674–687CrossRefGoogle Scholar
  18. 18.
    Tai Li Ji, Ya-Li S (2009) Degradation of AR 97 aqueous solution by combining ultrasound and Fenton reagent. Environ Prog Sustain Energy 29(1):101–106Google Scholar
  19. 19.
    Arul Dhas N, Koltypin Y, Gedanken A (1997) Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders. Chem Mater 9(12):3159–3163CrossRefGoogle Scholar
  20. 20.
    Gonsalves KE, Rangarajan SP, Law CC, Feng CR, Chow G.-M, Garcia-Ruiz A (1998) In: Chow G.-M, Gonsalves KE (eds) Nanotechnology: molecularly designed materials. In ACS symposium series, vol 622, chap 15, pp 220–236. Oxford University Press, USAGoogle Scholar
  21. 21.
    Franco DV, Da Silva LM, Jardim WF (2009) Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions. Water Air Soil Poll 197(4):49–60CrossRefGoogle Scholar
  22. 22.
    Kathiravan MN, Karthick R, Muthu N, Muthukumar K, Velan M (2010) Sonoassisted microbial reduction of chromium. Biochem Biotechnol 160(7):2000–2013CrossRefGoogle Scholar
  23. 23.
    Ultrasonics: Rooney JA (1981) In Edmonds PD (ed) Methods of Experimental Physics, vol 19, pp 299–353. Academic Press, New YorkGoogle Scholar
  24. 24.
    Lauterborn W (1982) Cavitation bubble dynamics – new tools for an intricate problem. Appl Sci Res 38:165CrossRefGoogle Scholar
  25. 25.
    Apfel RE (1981) In Edmonds PD (ed) Methods in Experimental Physics, vol 19, pp 356–413. Academic Press, New York.Google Scholar
  26. 26.
    Neppiras EA (1980) Acoustic cavitation. Phys Rep 61(3):159–251CrossRefGoogle Scholar
  27. 27.
    Suslick KS, Johnson RE (1984) Sonochemical activation of transition metals. J Am Chem Soc 106:6856–6858CrossRefGoogle Scholar
  28. 28.
    Enomoto N, Akagi JI, Z-l N (1996) Sonochemical powder processing of iron hydroxides. Ultrason Sonochem 3:S97–S103CrossRefGoogle Scholar
  29. 29.
    Gasgnier M, Beaury L, Derout J (2000) Ultrasound effects on metallic (Fe and Cr); iron sesquioxides (α-, γ-Fe2O3); calcite; copper, lead and manganese oxides as powders. Ultrason Sonochem 7:25–33CrossRefGoogle Scholar
  30. 30.
    Sostaric JZ, Mulvaney P, Grieser F (1995) Sonochemical dissolution of MnO2 colloids. J Chem Soc Faraday Trans 91:2843–2846CrossRefGoogle Scholar
  31. 31.
    Kruss P, Robertson DA, Mcmillen LA (1991) Effects of ultrasound on the cementation of cobalt on zinc. Ultrasonics 29:370–375CrossRefGoogle Scholar
  32. 32.
    Farmer AD, Collings AF, Jameson GJ (2000) The application of power ultrasound to the surface cleaning of silica and heavy mineral sands. Ultrason Sonochem 7(4):243–247CrossRefGoogle Scholar
  33. 33.
    Kuznetsov VM, Baranov AN, Oleinikov NN (1997) Sonochemical synthesis of Magnesium Ferrite. Dokl Akad Nauk 352(3):355–357Google Scholar
  34. 34.
    Belostotskii VF, Bemkin VM (1988) Ordre dans les solutions solides au cours de la déformation par les ultrasons aux températures de l’hélium liquide Ordering in solid solution during ultrasonic deformation at liquid helium temperatures. Metallokfizika 10(6):99–101Google Scholar
  35. 35.
    Pankaj, Manju C (2004) Effect of ultrasound on the redox reactions of iron (II) and (III). Ind J Chem 43(A):2098–2101Google Scholar
  36. 36.
    Pankaj, Chauhan (2004) Sonochemical studies of aqueous solutions of chromium and manganese in their cationic and oxoanionic states. Ind J Chem 43(A):1206–1209Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ChemistryDayalbagh Educational InstituteAgraIndia

Personalised recommendations