Fundamentals of Acoustic Cavitation and Sonochemistry

  • Kyuichi YasuiEmail author


Acoustic cavitation is the formation and collapse of bubbles in liquid irradiated by intense ultrasound. The speed of the bubble collapse sometimes reaches the sound velocity in the liquid. Accordingly, the bubble collapse becomes a quasi-adiabatic process. The temperature and pressure inside a bubble increase to thousands of Kelvin and thousands of bars, respectively. As a result, water vapor and oxygen, if present, are dissociated inside a bubble and oxidants such as OH, O, and H2O2 are produced, which is called sonochemical reactions. The pulsation of active bubbles is intrinsically nonlinear. In the present review, fundamentals of acoustic cavitation, sonochemistry, and acoustic fields in sonochemical reactors have been discussed.


Cavitation Bubble Bubble Collapse Acoustic Cavitation Bubble Pulsation Acoustic Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank my coworkers T.Tuziuti, J.Lee, T.Kozuka, A.Towata, and Y.Iida for useful discussions. I would also like to thank H.Mitome for his encouragement.


  1. 1.
    Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics. Wiley, New YorkGoogle Scholar
  2. 2.
    Cheeke JDN (2002) Fundamentals and applications of ultrasonic waves. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Maris H, Balibar S (2000) Negative pressures and cavitation in liquid helium. Phys Today 53:29–34CrossRefGoogle Scholar
  4. 4.
    Yasui K, Tuziuti T, Sivakumar M, Iida Y (2004) Sonoluminescence. Appl Spectrosc Rev 39:399–436CrossRefGoogle Scholar
  5. 5.
    Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159–251CrossRefGoogle Scholar
  6. 6.
    Young FR (1999) Cavitation. Imperial College, LondonCrossRefGoogle Scholar
  7. 7.
    Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation. Ann Rev Phys Chem 59:659–683CrossRefGoogle Scholar
  8. 8.
    Pecha R, Gompf B (2000) Micoimplosions: cavitaion collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett 84:1328–1330CrossRefGoogle Scholar
  9. 9.
    Holzfuss J, Rüggeberg M, Billo A (1998) Shock wave emissions of a sonoluminescing bubble. Phys Rev Lett 81:5434–5437CrossRefGoogle Scholar
  10. 10.
    Weninger KR, Camara CG, Putterman SJ (2001) Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys Rev E 63:016310CrossRefGoogle Scholar
  11. 11.
    Fujikawa S, Akamatsu T (1980) Effects of the nonequilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid. J Fluid Mech 97:481–512CrossRefGoogle Scholar
  12. 12.
    Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in Sonochemistry, vol. 3:17–83, JAI Press, LondonGoogle Scholar
  13. 13.
    Riesz P, Kondo T (1992) Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 13:247–270CrossRefGoogle Scholar
  14. 14.
    Leighton TG (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  15. 15.
    Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2010) Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles. Ultrason Sonochem 17:460–472CrossRefGoogle Scholar
  16. 16.
    Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413CrossRefGoogle Scholar
  17. 17.
    Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A (2009) The detection and control of stable and transient acoustic cavitation bubbles. Phys Chem Chem Phys 11:10118–10121CrossRefGoogle Scholar
  18. 18.
    Ashokkumar M, Hodnett M, Zeqiri B, Grieser F, Price G (2007) Acoustic emission spectra from 515 kHz cavitation in aqueous solutions containing surface-active solutes. J Am Chem Soc 129:2250–2258CrossRefGoogle Scholar
  19. 19.
    Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811CrossRefGoogle Scholar
  20. 20.
    Guan J, Matula TJ (2003) Time scales for quenching single-bubble sonoluminescence in the presence of alcohols. J Phys Chem 107:8917–8921Google Scholar
  21. 21.
    Madanshetty SI, Apfel RE (1991) Acoustic microcavitation: Enhancement and applications. J Acoust Soc Am 90:1508–1514CrossRefGoogle Scholar
  22. 22.
    Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem A 109:4869–4872CrossRefGoogle Scholar
  23. 23.
    Borkent BM, Arora M, Ohl CD, Jong ND, Versluis M, Lohse D, Morch KA, Klaseboer E, Khoo BC (2008) The acceleration of solid particles subjected to cavitation nucleation. J Fluid Mech 610:157–182CrossRefGoogle Scholar
  24. 24.
    Yount DE, Gillary EW, Hoffman DC (1984) A microscopic investigation of bubble formation nuclei. J Acoust Soc Am 76:1511–1521CrossRefGoogle Scholar
  25. 25.
    Bremond N, Arora M, Dammer SM, Lohse D (2006) Interaction of cavitation bubbles on a wall. Phys Fluids 18:121505 (10 pages)CrossRefGoogle Scholar
  26. 26.
    Calvisi ML, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101 (15 pages)CrossRefGoogle Scholar
  27. 27.
    Wang E, Chen W, Lu M, Wei R (2003) Bubble oscillations driven by aspherical ultrasound in liquid. J Acoust Soc Am 114:1898–1904CrossRefGoogle Scholar
  28. 28.
    Lee J, Tuziuti T, Yasui K, Kentish S, Grieser F, Ashokkumar M, Iida Y (2007) Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. J Phys Chem C 111:19015–19023CrossRefGoogle Scholar
  29. 29.
    Matula TJ, Cordry SM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527CrossRefGoogle Scholar
  30. 30.
    Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896CrossRefGoogle Scholar
  31. 31.
    Crum LA (1980) Measurements of the growth of air bubbles by rectified diffusion. J Acoust Soc Am 68:203–211CrossRefGoogle Scholar
  32. 32.
    Lee J, Kentish S, Ashokkumar M (2005) Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. J Phys Chem B 109:14595–14598CrossRefGoogle Scholar
  33. 33.
    Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610CrossRefGoogle Scholar
  34. 34.
    Iida Y, Ashokkumar M, Tuziuti T, Kozuka T, Yasui K, Towata A, Lee J (2010) Bubble population phenomena in sonochemical reactor: II Estimation of bubble size distribution and its number density by simple coalescence model calculation. Ultrason Sonochem 17:480–486CrossRefGoogle Scholar
  35. 35.
    Mettin R (2005) Bubble structures in acoustic cavitation. In Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications, pp. 1–36. Research Signpost, TrivandrumGoogle Scholar
  36. 36.
    Beyer RT (1997) Nonlinear acoustics. Acoustical Society of America, New YorkGoogle Scholar
  37. 37.
    Mitome H, Kozuka T, Tuziuti T, Wang L (1997) Quasi acoustic streaming induced by generation of cavitation bubbles. IEEE Ultrason Sympo Proc 1:533–536Google Scholar
  38. 38.
    Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931CrossRefGoogle Scholar
  39. 39.
    Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705CrossRefGoogle Scholar
  40. 40.
    Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484CrossRefGoogle Scholar
  41. 41.
    Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part I. First-order theory. J Fluid Mech 168:457–478CrossRefGoogle Scholar
  42. 42.
    Yasui K (2001) Effect of liquid temperature on sonoluminescence. Phys Rev E 64:016310CrossRefGoogle Scholar
  43. 43.
    Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonochemistry. J Chem Phys 122:224706CrossRefGoogle Scholar
  44. 44.
    Vanhille C, Campos-Pozuelo C (2008) Nonlinear ultrasonic propagation in bubbly liquids: A numerical model. Ultrasound Med Biol 34:792–808CrossRefGoogle Scholar
  45. 45.
    Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2009) Influence of surface active solute on ultrasonic waveform distortion in liquid containing air bubbles. J Phys Chem A 113:8893–8900CrossRefGoogle Scholar
  46. 46.
    Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature (London) 398:402–405CrossRefGoogle Scholar
  47. 47.
    Yasui K (1999) Mechanism of single-bubble sonoluminescence. Phys Rev E 60:1754–1758CrossRefGoogle Scholar
  48. 48.
    An Y (2006) Mechanism of single-bubble sonoluminescence. Phys Rev E 74:026304 (14 pages)CrossRefGoogle Scholar
  49. 49.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature (London) 434:52–55CrossRefGoogle Scholar
  50. 50.
    Hatanaka S, Mitome H, Yasui K, Hayashi S (2002) Single-bubble sonochemiluminescence in aqueous luminol solutions. J Am Chem Soc 124:10250–10251CrossRefGoogle Scholar
  51. 51.
    Didenko YT, Suslick KS (2002) The energy efficiency and formation of photons, radicals and ions during single-bubble cavitation. Nature (London) 418:394–397CrossRefGoogle Scholar
  52. 52.
    Koda S, Tanaka K, Sakamoto H, Matsuoka T, Nomura H (2004) Sonochemical efficiency during single-bubble cavitation in water. J Phys Chem A 108:11609–11612CrossRefGoogle Scholar
  53. 53.
    Yasui K, Tuziuti T, Iida Y, Mitome H (2003) Theoretical study of the ambient-pressure dependence of sonochemical reactions. J Chem Phys 119:346–356CrossRefGoogle Scholar
  54. 54.
    Yasui K, Tuziuti T, Iida Y (2004) Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42:579–584CrossRefGoogle Scholar
  55. 55.
    Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102:084302 (4 pages)CrossRefGoogle Scholar
  56. 56.
    Mason TJ (1999) Sonochemistry. Oxford University Press, OxfordGoogle Scholar
  57. 57.
    Suslick KS, Hammerton DA, Cline RE, J (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642CrossRefGoogle Scholar
  58. 58.
    Yasui K (1996) Variation of liquid temperature at bubble wall near the sonoluminescence threshold. J Phys Soc Jpn 65:2830–2840CrossRefGoogle Scholar
  59. 59.
    Storey BD, Szeri AJ (2000) Water vapour, sonoluminescence and sonochemistry. Proc R Soc Lond A 456:1685–1709CrossRefGoogle Scholar
  60. 60.
    Hua I, Hochemer RH, Hoffmann MR (1995) Sonolytic hydrolysis of p-nitrophenyl acetate: The role of supercritical water. J Phys Chem 99:2335–2342CrossRefGoogle Scholar
  61. 61.
    Sostaric JZ (1999) Interfacial effects on aqueous sonochemistry and sonoluminescence. PhD thesis, University of Melbourne, AustraliaGoogle Scholar
  62. 62.
    Yasui K (2002) Effect of volatile solutes on sonoluminescence. J Chem Phys 116:2945–2954CrossRefGoogle Scholar
  63. 63.
    Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2007) Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J Chem Phys 127:154502CrossRefGoogle Scholar
  64. 64.
    Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W (1999) Spatio-temporal dynamics of acoustic cavitation bubble cloud. Philos Trans R Soc London A 357:313–334CrossRefGoogle Scholar
  65. 65.
    Oolman TO, Blanch HW (1986) Bubble coalescence in stagnant liquids. Chem Engnrg Commun 43:237–261CrossRefGoogle Scholar
  66. 66.
    Iida Y, Ashokkumar M, Tuziuti T, Kozuka T, Yasui K, Towata A, Lee J (2010) Bubble population phenomena in sonochemical reactor: I Estimation of bubble size distribution and its number density with pulsed sonocation – laser diffraction method. Ultrason Sonochem 17:473–479CrossRefGoogle Scholar
  67. 67.
    Lee J, Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2008) Spatial distribution enhancement of sonoluminescence activity by altering sonication and solution conditions. J Phys Chem B 112:15333–15341CrossRefGoogle Scholar
  68. 68.
    Ashokkumar M, Hall R, Mulvaney P, Grieser F (1997) Sonoluminescence from aqueous alcohol and surfactant solutions. J Phys Chem B 101:10845–10850CrossRefGoogle Scholar
  69. 69.
    Segebarth N, Eulaerts O, Reisse J, Crum LA, Matula TJ (2002) Correlation between acoustic cavitation noise, bubble population, and sonochemistry. J Phys Chem B 106:9181–9190CrossRefGoogle Scholar
  70. 70.
    Tuziuti T, Yasui K, Iida Y, Sivakumar M, Koda S (2004) Laser-light scattering from a multibubble system for sonochemistry. J Phys Chem A 108:9011–9013CrossRefGoogle Scholar
  71. 71.
    Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2008) Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound. J Phys Chem A 112:4875–4878CrossRefGoogle Scholar
  72. 72.
    Chow R, Blindt R, Chivers R, Povey M (2005) A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43:227–230CrossRefGoogle Scholar
  73. 73.
    Luque de Castro MD, Priego-Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14:717–724CrossRefGoogle Scholar
  74. 74.
    Kordylla A, Krawczyk T, Tumakaka F, Schembecker G (2009) Modeling ultrasound-induced nucleation during cooling crystallization. Chem Engnrg Sci 64:1635–1642CrossRefGoogle Scholar
  75. 75.
    Saclier M, Peczalski R, Andrieu J (2010) A theoretical model for ice primary nucleation induced by acoustic cavitation. Ultrason Sonochem 17:98–105CrossRefGoogle Scholar
  76. 76.
    Xu M, Lu Y, Liu Y, Shi S, Qian T, Lu D (2006) Sonochemical synthesis of monosized spherical BaTiO3 particles. Powder Technol 161:185–189CrossRefGoogle Scholar
  77. 77.
    Testinon A, Buscaglia MT, Viviani M, Buscaglia V, Nanni P (2004) Synthesis of BaTiO3 particles with tailored size by precipitation from aqueous solutions. J Am Ceram Soc 87:79–83CrossRefGoogle Scholar
  78. 78.
    Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31:54–64CrossRefGoogle Scholar
  79. 79.
    Walton DJ, Phull SS (1996) Sonoelectrochemistry. In: Mason TJ (ed) Advances in Sonochemistry, vol. 4:205–284, JAI Press, GreenwichCrossRefGoogle Scholar
  80. 80.
    Hacias KJ, Cormier GJ, Nourie SM, Kubel EJ (1997) Guide to acid, alkaline, emulsion, and ultrasonic cleaning. ASM International, Materials ParkGoogle Scholar
  81. 81.
    Lamminen MO, Walker HW, Weavers LK (2006) Cleaning of particle-fouled membranes during cross-flow filtration using an embedded ultrasonic transducer system. J Membrane Sci 283:225–232CrossRefGoogle Scholar
  82. 82.
    Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074102 (3 pages)CrossRefGoogle Scholar
  83. 83.
    Kim W, Kim TH, Choi J, Kim HY (2009) Mechanism of particle removal by megasonic waves. Appl Phys Lett 94:081908 (3 pages)CrossRefGoogle Scholar
  84. 84.
    Bakhtari K, Guldiken RO, Busnaina AA, Park JG (2006) Experimental and analytical study of semicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607CrossRefGoogle Scholar
  85. 85.
    Bakhtari K, Guldiken RO, Makaram P, Busnaina AA, Park JG (2006) Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. J Electrochem Soc 153:G846–G850CrossRefGoogle Scholar
  86. 86.
    Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P (2007) FEM calculation of an acoustic field in a sonochemical reactor. Ultrason Sonochem 14:605–614CrossRefGoogle Scholar
  87. 87.
    Dahnke S, Keil F (1998) Modeling of sound fields in liquids with a nonhomogeneous distribution of cavitation bubbles as a basis for the design of sonochemical reactors. Chem Eng Technol 21:873–877CrossRefGoogle Scholar
  88. 88.
    Wilson PS, Roy RA, Carey WM (2005) Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency. J Acoust Soc Am 117:1895–1910CrossRefGoogle Scholar
  89. 89.
    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A (2008) Strongly interacting bubbles under an ultrasonic horn. Phys Rev E 77:016609CrossRefGoogle Scholar
  90. 90.
    Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982CrossRefGoogle Scholar
  91. 91.
    Ida M, Naoe T, Futakawa M (2007) Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction. Phys Rev E 76:046309CrossRefGoogle Scholar
  92. 92.
    Gogate PR, Shirgaonkar IZ, Sivakumar M, Senthilkumar P, Vichare NP, Pandit AB (2001) Cavitation reactors: Efficiency assessment using a model reaction. AIChE J 47:2526–2538CrossRefGoogle Scholar
  93. 93.
    Wang X, Zhang Y (2009) Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. J Haz Mater 161:202–207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations