Skip to main content

Exogenously Induced Endogenous Photosensitizers

  • Chapter
  • First Online:
  • 1209 Accesses

Abstract

The photosensitizing properties of endogenous porphyrins have been discovered about 100 years ago. Since then they have become an attractive means to detect and treat neoplastic tissue by fluorescence photodetection (PD) and photodynamic therapy (PDT). The probably most important endogenous photosensitizer is protoporphyrin IX (PPIX), the direct precursor of heme. It accumulates preferentially in neoplastic cells upon administration of 5-aminolevulinic acid (5-ALA). 5-ALA is an early precursor of heme. When applied exogenously it takes up the function of a prodrug, which is converted into PPIX by the enzymes of the heme biosynthetic pathway. Numerous approaches have been undertaken to improve the pharmacodynamics and pharmacokinetics of 5-ALA PDT with respect to tissue selectivity and biocompatibility. This chapter shall give an overview of the methods used to optimize 5-ALA PDT and PD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rimington C (1993) Was Hippocrates the 1st to describe a case of acute porphyria? Int J Biochem 25:1351–1352

    CAS  Google Scholar 

  2. Batlle AMD (1993) Porphyrins, porphyrias, cancer and photodynamic therapy – a model for carcinogenesis. J Photochem Photobiol B 20:5–22

    CAS  Google Scholar 

  3. Gazzaniga V (1999) Uroporphyria: some notes on its ancient historical background. Am J Nephrol 19:159–162

    CAS  Google Scholar 

  4. Norman RA (2005) Past and future: porphyria and porphyrins. Skinmed 4:287–292

    Google Scholar 

  5. Brooke J (1968) Historical implications of porphyria. Br Med J 1:109–111

    CAS  Google Scholar 

  6. Macalpine I, Hunter R, Rimington C (1968) Porphyria in the royal houses of Stuart Hanover and Prussia – a follow-up study of George 3rd illness. Br Med J 1:7–18

    CAS  Google Scholar 

  7. Illis L (1964) On porphyria and the aetiology of werwolves. Proc R Soc Med Lon 57:23–26

    CAS  Google Scholar 

  8. Cox AM (1995) Porphyria and vampirism – another myth in the making. Postgrad Med J 71:643–644

    CAS  Google Scholar 

  9. Scherer J (1841) Untersuchungen Liebigs. Ann Chem Pharm 40:1–64

    Google Scholar 

  10. Hoppe-Seyler F (1971) Das Hämatin. Tübinger Med Chem Untersuchungen 4:441–460

    Google Scholar 

  11. Meyer-Betz F (1913) Wirkung des Hämatoporphyrins und anderer Derivate des Blut- und Gallenfarbstoffs. Dtsch Arch Klin Med 112:476–503

    Google Scholar 

  12. Policard A (1924) Etudes sur les aspects offerts par des tumeurs experimentales examinées à la lumière de Wood. C R Soc Biol 91:1423–1428

    Google Scholar 

  13. Auler H, Banzer G (1942) Untersuchung über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren. Z Krebsforsch 53:65–68

    CAS  Google Scholar 

  14. Peck GC, Mack HP, Holbrook WA, Abels C (1955) Use of hematoporphyrin fluorescence in biliary and cancer surgery. Ann Surg 21:181–188

    CAS  Google Scholar 

  15. Figge FH, Weiland GS (1948) The affinity of neoplastic embryonic and traumatized tissue for porphyrins and metalloporphyrins. Anat Rec 100:659

    Google Scholar 

  16. Figge FH, Weiland GS, Manganiello LO (1948) Cancer detection and therapy. Affinity of neoplastic, embryonic and traumatized regenerating tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med 68:640–641

    CAS  Google Scholar 

  17. Schwartz SK, Absolon K, Vermund H (1955) Some relationships of porphyrins X-rays and tumours. Univ Minn Med Bull 27:7–8

    Google Scholar 

  18. Lipson RL, Baldes EJ (1960) The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 82:508–516

    CAS  Google Scholar 

  19. Lipson RL, Baldes EJ, Olsen AM (1961) Use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst 26:1–11

    CAS  Google Scholar 

  20. Diamond I, Jaenicke R, Wilson CB, Mcdonagh AF, Nielsen S, Granelli SG (1972) Photodynamic therapy of malignant tumors. Lancet 2:1175–1177

    CAS  Google Scholar 

  21. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55:115–121

    CAS  Google Scholar 

  22. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    CAS  Google Scholar 

  23. Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. BBA Mol Cell Res 1763:723–736

    CAS  Google Scholar 

  24. Battersby AR, Mcdonald E (1976) Biosynthesis of porphyrins and corrins. Philos Trans R Soc B 273:161–180

    CAS  Google Scholar 

  25. Moore MR (1998) The biochemistry of heme synthesis in porphyria and in the porphyrinurias. Clin Dermatol 16:203–223

    CAS  Google Scholar 

  26. Heinemann IU, Jahn M, Jahn D (2008) The biochemistry of heme biosynthesis. Arch Biochem Biophys 474:238–251

    CAS  Google Scholar 

  27. Ferreira GC, Zhang JS (2002) Mechanism of 5-aminolevulinate synthase and the role of the protein environment in controlling the cofactor chemistry. Cell Mol Biol 48:827–833

    CAS  Google Scholar 

  28. Emanuelli T, Pagel FW, Alves LB, Regner A, Souza DO (2001) 5-Aminolevulinic acid inhibits [H-3]muscimol binding to human and rat brain synaptic membranes. Neurochem Res 26:101–105

    CAS  Google Scholar 

  29. Bogorad L (1958) Enzymatic synthesis of porphyrins from porphobilinogen. 2. Uroporphyrin-III. J Biol Chem 233:510–515

    CAS  Google Scholar 

  30. Battersby AR (2000) Tetrapyrroles: the pigments of life. Nat Prod Rep 17:507–526

    CAS  Google Scholar 

  31. Sassa S (1996) Diagnosis and therapy of acute intermittent porphyria. Blood Rev 10:53–58

    CAS  Google Scholar 

  32. Freesemann AG, Gross U, Bensidhoum M, de Verneuil H, Doss MO (1998) Immunological, enzymatic and biochemical studies of uroporphyrinogen III synthase deficiency in 20 patients with congenital erythropoietic porphyria. Eur J Biochem 257:149–153

    CAS  Google Scholar 

  33. Mesenhöller M, Matthews EK (2000) A key role for the mitochondrial benzodiazepine receptor in cellular photosensitisation with d-aminolaevulinic acid. Eur J Pharmacol 406:171–180

    Google Scholar 

  34. Ratcliffe SL, Matthews EK (1995) Modification of the photodynamic-action of delta-aminolevulinic-acid (Ala) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands. Br J Cancer 71:300–305

    CAS  Google Scholar 

  35. Taketani S, Kohno H, Furukawa T, Tokunaga R (1995) Involvement of peripheral-type benzodiazepine receptors in the intracellular-transport of heme and porphyrins. J Biochem 117:875–880

    CAS  Google Scholar 

  36. Rebeiz N, Arkins S, Kelley KW, Rebeiz CA (1996) Enhancement of coproporphyrinogen III transport into isolated transformed leukocyte mitochondria by ATP. Arch Biochem Biophys 333:475–481

    CAS  Google Scholar 

  37. Hardwick M, Fertikh D, Culty M, Li H, Vidic B, Papadopoulos V (1999) Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. Cancer Res 59:831–842

    CAS  Google Scholar 

  38. Batra S, Iosif CS (2000) Peripheral benzodiazepine receptor in human endometrium and endometrial carcinomas. Anticancer Res 20:463–466

    CAS  Google Scholar 

  39. Batra S, Iosif CS (1998) Elevated concentrations of mitochondrial peripheral benzodiazepine receptors in ovarian tumors. Int J Oncol 12:1295–1298

    CAS  Google Scholar 

  40. Venturini I, Zeneroli ML, Corsi L, Avallone R, Farina F, Alho H, Baraldi C, Ferrarese C, Pecora N, Frigo M, Ardizzone G, Arrigo A, Pellicci R, Baraldi M (1998) Up-regulation of peripheral benzodiazepine receptor system in hepatocellular carcinoma. Life Sci 63:1269–1280

    CAS  Google Scholar 

  41. Black KL, Ikezaki K, Toga AW (1989) Imaging of brain-tumors using peripheral benzodiazepine receptor ligands. J Neurosurg 71:113–118

    CAS  Google Scholar 

  42. Katz Y, Eitan A, Amiri Z, Gavish M (1988) Dramatic increase in peripheral benzodiazepine binding-sites in human colonic adenocarcinoma as compared to normal colon. Eur J Pharmacol 148:483–484

    CAS  Google Scholar 

  43. Grandchamp B, Phung N, Nordmann Y (1978) Mitochondrial localization of coproporphyrinogen-III oxidase. Biochem J 176:97–102

    CAS  Google Scholar 

  44. Deybach JC, DaSilva V, Grandchamp B, Nordmann Y (1985) The mitochondrial location of protoporphyrinogen oxidase. Eur J Biochem 149:431–435

    CAS  Google Scholar 

  45. Dean G (1982) Porphyria variegata. Acta Derm Venereol 100:81–85

    CAS  Google Scholar 

  46. Mckay R, Druyan R, Getz GS, Rabinowi M (1969) Intramitochondrial localization of delta-aminolaevulate synthetase and ferrochelatase in rat liver. Biochem J 114:455–461

    CAS  Google Scholar 

  47. Gardner LC, Cox TM (1988) Biosynthesis of heme in immature erythroid-cells – the regulatory step for heme formation in the human erythron. J Biol Chem 263:6676–6682

    CAS  Google Scholar 

  48. Kondo M, Hirota N, Takaoka T, Kajiwara M (1993) Heme-biosynthetic enzyme-activities and porphyrin accumulation in normal liver and hepatoma-cell lines of rat. Cell Biol Toxicol 9:95–105

    CAS  Google Scholar 

  49. Navone NM, Polo CF, Frisardi AL, Andrade NE, Batlle AMD (1990) Heme-biosynthesis in human breast-cancer mimetic invitro studies and some heme enzymatic-activity levels. Int J Biochem 22:1407–1411

    CAS  Google Scholar 

  50. Gibson SL, Cupriks DJ, Havens JJ, Nguyen ML, Hilf R (1998) A regulatory role for porphobilinogen deaminase (PBGD) in delta-aminolaevulinic acid (delta-ALA)-induced photosensitization? Br J Cancer 77:235–242

    CAS  Google Scholar 

  51. Gibson SL, Nguyen ML, Havens JJ, Barbarin A, Hilf R (1999) Relationship of delta-aminolevulinic acid-induced protoporphyrin IX levels to mitochondrial content in neoplastic cells in vitro. Biochem Biophys Res Commun 265:315–321

    CAS  Google Scholar 

  52. Hilf R, Havens JJ, Gibson SL (1999) Effect of delta-aminolevulinic acid on protoporphyrin IX accumulation in tumor cells transfected with plasmids containing porphobilinogen deaminase DNA. Photochem Photobiol 70:334–340

    CAS  Google Scholar 

  53. Gibson SL, Havens JJ, Metz L, Hilf R (2001) Is delta-aminolevulinic acid dehydratase rate limiting in heme biosynthesis following exposure of cells to delta-aminolevulinic acid? Photochem Photobiol 73:312–317

    CAS  Google Scholar 

  54. Li G, Szewczuk MR, Pottier RH, Kennedy JC (1999) Effect of mammalian cell differentiation on response to exogenous 5-aminolevulinic acid. Photochem Photobiol 69:231–235

    CAS  Google Scholar 

  55. Schwartz DI, Gozlan Y, Greenbaum L, Babushkina T, Katcoff DJ, Malik Z (2004) Differentiation-dependent photodynamic therapy regulated by porphobilinogen deaminase in B16 melanoma. Br J Cancer 90:1833–1841

    Google Scholar 

  56. Krieg RC, Messmann H, Rauch J, Seeger S, Knuechel R (2002) Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells. Photochem Photobiol 76:518–525

    CAS  Google Scholar 

  57. Krieg RC, Fickweiler S, Wolfbeis OS, Knuechel R (2000) Cell-type specific protoporphyrin IX metabolism in human bladder cancer in vitro. Photochem Photobiol 72:226–233

    CAS  Google Scholar 

  58. Bartosova J, Hrkal Z (2000) Accumulation of protoporphyrin-IX (PpIX) in leukemic cell lines following induction by 5-aminolevulinic acid (ALA). Comp Biochem Phys C 126:245–252

    CAS  Google Scholar 

  59. Hinnen P, de Rooij FWM, Terlouw EM, Edixhoven A, van Dekken H, van Hillegersberg R, Tilanus HW, Wilson JHP, Siersema PD (2000) Porphyrin biosynthesis in human Barrett’s oesophagus and adenocarcinoma after ingestion of 5-aminolaevulinic acid. Br J Cancer 83:539–543

    CAS  Google Scholar 

  60. Morgan EH (1983) Effect of pH and iron content of transferrin on its binding to reticulocyte receptors. Biochim Biophys Acta 762:498–502

    CAS  Google Scholar 

  61. Morgan EH (1979) Studies on the mechanism of iron release from transferrin. Biochim Biophys Acta 580:312–326

    CAS  Google Scholar 

  62. Richardson DR, Ponka P (1997) The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. BBA Rev Biomembr 1331:1–40

    CAS  Google Scholar 

  63. Kearsley JH, Furlong KL, Cooke RA, Waters MJ (1990) An immunohistochemical assessment of cellular proliferation markers in head and neck squamous-cell cancers. Br J Cancer 61:821–827

    CAS  Google Scholar 

  64. Parodi MT, Tonini GP, Bologna R, Franchini E, Cornaglia-Ferraris P (1988) Cisplatin-induced erythroid differentiation in K562 cells: modulation of transferrin receptor. B I Sieroter Milan 67:142–148

    CAS  Google Scholar 

  65. Prutki M, Poljak-Blazi M, Jakopovic M, Tomas D, Stipancic I, Zarkovic N (2006) Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett 238:188–196

    CAS  Google Scholar 

  66. Page MA, Baker E, Morgan EH (1984) Transferrin and iron uptake by rat hepatocytes in culture. Am J Physiol 246:G26–G33

    CAS  Google Scholar 

  67. Vandewalle B, Hornez L, Revillion F, Lefebvre J (1989) Secretion of transferrin by human-breast cancer-cells. Biochem Biophys Res Commun 163:149–154

    CAS  Google Scholar 

  68. Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hematol 42:65–78

    Google Scholar 

  69. Hibbs JB, Taintor RR, Vavrin Z (1984) Iron depletion – possible cause of tumor-cell cyto-toxicity induced by activated macrophages. Biochem Biophys Res Commun 123:716–723

    CAS  Google Scholar 

  70. Rud E, Gederaas O, Hogset A, Berg K (2000) 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochem Photobiol 71:640–647

    CAS  Google Scholar 

  71. McGivan JD, Pastoranglada M (1994) Regulatory and molecular aspects of mammalian amino-acid-transport. Biochem J 299:321–334

    CAS  Google Scholar 

  72. Bermudez MM, Correa GS, Perotti C, Batlle AM, Casas A (2002) Delta-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by beta transporters. Br J Cancer 87:471–474

    Google Scholar 

  73. Brennan MJW, Cantrill RC (1979) Delta-aminolevulinic-acid is a potent agonist for gaba autoreceptors. Nature 280:514–515

    CAS  Google Scholar 

  74. Kasche A, Luderschmidt S, Ring J, Hein R (2006) PDT induces less pain in patients treated with MAL compared to ALA. JDD 5:353–356

    CAS  Google Scholar 

  75. Wiegell SR, Stender IM, Na R, Wulf HC (2003) Pain associated with photodynamic therapy using 5-aminolevulinic acid or 5-aminolevulinic acid methylester on tape-stripped normal skin. Arch Dermatol 139:1173–1177

    CAS  Google Scholar 

  76. Wiegell SR, Wulf HC (2006) Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid versus methyl aminolevulinate. J Am Acad Dermatol 54:647–651

    Google Scholar 

  77. Doring F, Walter J, Will J, Focking M, Boll M, Amasheh S, Clauss W, Daniel H (1998) Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest 101:2761–2767

    CAS  Google Scholar 

  78. Richards FF, Scott JJ (1961) Glycine metabolism in acute porphyria. Clin Sci 20:387–400

    CAS  Google Scholar 

  79. Prato V, Massaro AL, Mazza U, Bianco G, Accatino G (1965) Modificazioni del Metabolismo Porfirinico Dopo Doppio Carico di Glicina. I. in Uomini Apparentemente Sani. Boll Soc Ital Biol Sper 41:1074–1076

    CAS  Google Scholar 

  80. Langer S, Abels C, Botzlar A, Pahernik SA, Rick K, Szeimies RM, Goetz AE (1999) Active and higher intracellular uptake of 5-aminolevulinic acid in tumors may be inhibited by glycine. J Invest Dermatol 112:723–728

    CAS  Google Scholar 

  81. Frolund S, Marquez OC, Larsen M, Brodin B, Nielsen CU (2010) Delta-aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). Br J Pharmacol 159:1339–1353

    CAS  Google Scholar 

  82. Anderson CMH, Jevons M, Thangaraju M, Edwards N, Conlon NJ, Woods S, Ganapathy V, Thwaites DT (2010) Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+−coupled nutrient carriers coexpressed in the small intestine. J Pharmacol Exp Ther 332:220–228

    CAS  Google Scholar 

  83. Thwaites DT, Mcewan GTA, Hirst BH, Simmons NL (1995) H+−coupled alpha-methylaminoisobutyric acid transport in human intestinal caco-2 cells. BBA Biomembr 1234:111–118

    Google Scholar 

  84. Chen Z, Fei YJ, Anderson CMH, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V (2003) Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol Lon 546:349–361

    CAS  Google Scholar 

  85. Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, Smith DE, Keep RF (2003) Transport of 5-aminolevulinic acid between blood and brain. Brain Res 959:226–234

    CAS  Google Scholar 

  86. Novotny A, Xiang J, Stummer W, Teuscher NS, Smith DE, Keep RF (2000) Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J Neurochem 75:321–328

    CAS  Google Scholar 

  87. Hu YJ, Shen H, Keep RF, Smith DE (2007) Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J Neurochem 103:2058–2065

    CAS  Google Scholar 

  88. Garcia SC, Moretti MB, Garay MV, Batlle AM (1998) Delta-aminolevulinic acid transport through blood-brain barrier. Gen Pharmacol 31:579–582

    CAS  Google Scholar 

  89. Terr L, Weiner LP (1983) An autoradiographic study of delta-aminolevulinic-acid uptake by mouse-brain. Exp Neurol 79:564–568

    CAS  Google Scholar 

  90. Di Venosa G, Batlle AM, Fukuda H, MacRobert AJ, Casas A (2006) Distribution of 5-aminolevulinic acid derivatives and induced porphyrin kinetics in mice tissues. Cancer Chemother Pharmacol 58:478–486

    CAS  Google Scholar 

  91. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169

    CAS  Google Scholar 

  92. Lilge L, Olivo MC, Schatz SW, MaGuire JA, Patterson MS, Wilson BC (1996) The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy. Br J Cancer 73:332–343

    CAS  Google Scholar 

  93. Hebeda KM, Saarnak AE, Olivo MC, Sterenborg HJ, Wolbers JG (1998) 5-Aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain. Acta Neurochir (Wien) 140:503–512

    CAS  Google Scholar 

  94. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    CAS  Google Scholar 

  95. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    CAS  Google Scholar 

  96. Svastova E, Hulikova A, Rafajova M, Zat’ovicova M, Gibadulinova A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastorekova S (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445

    CAS  Google Scholar 

  97. Piot B, Rousset N, Lenz P, Eleouet S, Carre J, Vonarx V, Bourre L, Patrice T (2001) Enhancement of delta aminolevulinic acid-photodynamic therapy in vivo by decreasing tumor pH with glucose and amiloride. Laryngoscope 111:2205–2213

    CAS  Google Scholar 

  98. Wyld L, Reed MW, Brown NJ (1998) The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. Br J Cancer 77:1621–1627

    CAS  Google Scholar 

  99. Fuchs C, Riesenberg R, Siegert J, Baumgartner R (1997) pH-dependent formation of 5-aminolaevulinic acid-induced protoporphyrin IX in fibrosarcoma cells. J Photochem Photobiol B 40:49–54

    CAS  Google Scholar 

  100. Bech O, Berg K, Moan J (1997) The pH dependency of protoporphyria IX formation in cells incubated with 5-aminolevulinic acid. Cancer Lett 113:25–29

    CAS  Google Scholar 

  101. Krammer B, Uberriegler K (1996) In-vitro investigation of ALA-induced protoporphyrin IX. J Photochem Photobiol B 36:121–126

    CAS  Google Scholar 

  102. Kaliszewski M, Kwasny M, Juzeniene A, Juzenas P, Graczyk A, Ma LW, Iani V, Mikolajewska P, Moan J (2007) Biological activity of 5-aminolevulinic acid and its methyl ester after storage under different conditions. J Photochem Photobiol B 87:67–72

    CAS  Google Scholar 

  103. Bech Gadmar O, Moan J, Scheie E, Ma LW, Peng Q (2002) The stability of 5-aminolevulinic acid in solution. J Photochem Photobiol B Biol 67:187–193

    Google Scholar 

  104. Stefanadis C, Chrysochoou C, Markou D, Petraki K, Panagiotakos DB, Fasoulakis C, Kyriakidis A, Papadimitriou C, Toutouzas PK (2001) Increased temperature of malignant urinary bladder tumors in vivo: the application of a new method based on a catheter technique. J Clin Oncol 19:676–681

    CAS  Google Scholar 

  105. Yahara T, Koga T, Yoshida S, Nakagawa S, Deguchi H, Shirouzu K (2003) Relationship between microvessel density and thermographic hot areas in breast cancer. Surg Today 33:243–248

    Google Scholar 

  106. Moan J, Berg K, Gadmar OB, Iani V, Ma LW, Juzenas P (1999) The temperature dependence of protoporphyrin IX production in cells and tissues. Photochem Photobiol 70:669–673

    CAS  Google Scholar 

  107. Juzenas P, Sorensen R, Iani V, Moan J (1999) Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature. Photochem Photobiol 69:478–481

    CAS  Google Scholar 

  108. Juzeniene A, Juzenas P, Kaalhus O, Iani V, Moan J (2002) Temperature effect on accumulation of protoporphyrin IX after topical application of 5-aminolevulinic acid and its methylester and hexylester derivatives in normal mouse skin. Photochem Photobiol 76:452–456

    CAS  Google Scholar 

  109. Shioi Y, Nagamine M, Kuroki M, Sasa T (1980) Purification by affinity-chromatography and properties of uroporphyrinogen-I synthetase from chlorella-regularis. Biochim Biophys Acta 616:300–309

    CAS  Google Scholar 

  110. van den Akker JT, Boot K, Vernon DI, Brown SB, Groenendijk L, van Rhoon GC, Sterenborg HJ (2004) Effect of elevating the skin temperature during topical ALA application on in vitro ALA penetration through mouse skin and in vivo PpIX production in human skin. Photochem Photobiol Sci 3:263–267

    Google Scholar 

  111. Walters KA (2002) Drug delivery – topical and transdermal routes. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York/Basel, pp 945–960

    Google Scholar 

  112. van den Akker JT, Holroyd JA, Vernon DI, Sterenborg HJ, Brown SB (2003) Comparative in vitro percutaneous penetration of 5-aminolevulinic acid and two of its esters through excised hairless mouse skin. Lasers Surg Med 33:173–181

    Google Scholar 

  113. van den Akker JT, Iani V, Star WM, Sterenborg HJ, Moan J (2002) Systemic component of protoporphyrin IX production in nude mouse skin upon topical application of aminolevulinic acid depends on the application conditions. Photochem Photobiol 75:172–177

    Google Scholar 

  114. Ibbotson SH, Jong C, Lesar A, Ferguson JS, Padgett M, O’Dwyer M, Barnetson R, Ferguson J (2006) Characteristics of 5-aminolaevulinic acid-induced protoporphyrin IX fluorescence in human skin in vivo. Photodermatol Photoimmunol Photomed 22:105–110

    CAS  Google Scholar 

  115. Goff BA, Bachor R, Kollias N, Hasan T (1992) Effects of photodynamic therapy with topical application of 5-aminolevulinic acid on normal skin of hairless guinea-pigs. J Photochem Photobiol B 15:239–251

    CAS  Google Scholar 

  116. Katz BK, Truong S, Maiwald DC, Frew KE, George D (2007) Efficacy of microdermabrasion preceding ALA application in reducing the incubation time of ALA in laser PDT. JDD 6:140–142

    Google Scholar 

  117. Tsai JC, Chen IH, Wong TW, Lo YL (2002) In vitro/in vivo correlations between transdermal delivery of 5-aminolaevulinic acid and cutaneous protoporphyrin IX accumulation and effect of formulation. Br J Dermatol 146:853–862

    CAS  Google Scholar 

  118. Kleinpenning MM, Smits T, Ewalds E, van Erp PEJ, van de Kerkhof PCM, Gerritsen MJP (2006) Heterogeneity of fluorescence in psoriasis after application of 5-aminolaevulinic acid: an immunohistochemical study. Br J Dermatol 155:539–545

    CAS  Google Scholar 

  119. Smits T, van Laarhoven AIM, Staassen A, van de Kerkhof PCM, van Erp PEJ, Gerritsen MJP (2009) Induction of protoporphyrin IX by aminolaevulinic acid in actinic keratosis, psoriasis and normal skin: preferential porphyrin enrichment in differentiated cells. Br J Dermatol 160:849–857

    CAS  Google Scholar 

  120. Gerritsen MJP, Smits T, Kleinpenning MM, van de Kerkhof PCM, van Erp PEJ (2009) Pretreatment to enhance protoporphyrin IX accumulation in photodynamic therapy. Dermatology 218:193–202

    CAS  Google Scholar 

  121. Lopez RF, Lange N, Guy R, Bentley MV (2004) Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters. Adv Drug Deliv Rev 56:77–94

    CAS  Google Scholar 

  122. Fritsch C, Goerz G, Ruzicka T (1998) Photodynamic therapy in dermatology. Arch Dermatol 134:207–214

    CAS  Google Scholar 

  123. Fotinos N, Campo MA, Popowycz F, Gurny R, Lange N (2006) 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol 82:994–1015

    CAS  Google Scholar 

  124. Fritsch C, Lang K, Neuse W, Ruzicka T, Lehmann P (1998) Photodynamic diagnosis and therapy in dermatology. Skin Pharmacol Appl Skin Physiol 11:358–373

    CAS  Google Scholar 

  125. Soler AM, Warloe T, Berner A, Giercksky KE (2001) A follow-up study of recurrence and cosmesis in completely responding superficial and nodular basal cell carcinomas treated with methyl 5-aminolaevulinate-based photodynamic therapy alone and with prior curettage. Br J Dermatol 145:467–471

    CAS  Google Scholar 

  126. Wennberg AM, Larko O, Lonnroth P, Larson G, Krogstad AL (2000) Delta-aminolevulinic acid in superficial basal cell carcinomas and normal skin-a microdialysis and perfusion study. Clin Exp Dermatol 25:317–322

    CAS  Google Scholar 

  127. Moseley H, Brancaleon L, Lesar AE, Ferguson J, Ibbotson SH (2008) Does surface preparation alter ALA uptake in superficial non-melanoma skin cancer in vivo? Photodermatol Photoimmunol Photomed 24:72–75

    CAS  Google Scholar 

  128. Soler AM, Warloe T, Tausjo J, Berner A (1999) Photodynamic therapy by topical aminolevulinic acid, dimethylsulphoxide and curettage in nodular basal cell carcinoma: a one-year follow-up study. Acta Derm Venereol 79:204–206

    CAS  Google Scholar 

  129. Christensen E, Skogvoll E, Viset T, Warloe T, Sundstrom S (2009) Photodynamic therapy with 5-aminolaevulinic acid, dimethylsulfoxide and curettage in basal cell carcinoma: a 6-year clinical and histological follow-up. J Eur Acad Dermatol 23:58–66

    CAS  Google Scholar 

  130. Itoh Y, Henta T, Ninomiya Y, Tajima S, Ishibashi A (2000) Repeated 5-aminolevulinic acid-based photodynamic therapy following electro-curettage for pigmented basal cell carcinoma. J Dermatol 27:10–15

    CAS  Google Scholar 

  131. Shen S, Lee W, Fang Y, Hu C, Fang J (2006) In vitro percutaneous absorption and in vivo protoporphyrin IX accumulation in skin and tumours after topical 5-aminolevulinic acid application with enhancement using erbium: YAG Laser. J Pharm Sci 95:929–938

    CAS  Google Scholar 

  132. Kalia YN, Bachhav YG, Bragagna T, Boehler C (2008) Intraepidermal delivery – P.L.E.A.S.E. A new laser microporation technology. Drug Deliv Tech 8:26–31

    Google Scholar 

  133. Smucler R, Vlk M (2008) Combination of Er: YAG laser and photodynamic therapy in the treatment of nodular basal cell carcinoma. Lasers Surg Med 40:153–158

    Google Scholar 

  134. Fukui T, Watanabe D, Tamada Y, Matsumoto Y (2009) Photodynamic therapy following carbon dioxide laser enhances efficacy in the treatment of extramammary Paget’s disease. Acta Derm Venereol 89:150–154

    CAS  Google Scholar 

  135. Fabbrocini G, Di Costanzo MP, Riccardo AM, Quarto M, Colasanti A, Roberti G, Monfrecola G (2001) Photodynamic therapy with topical delta-aminolaevulinic acid for the treatment of plantar warts. J Photochem Photobiol B 61:30–34

    CAS  Google Scholar 

  136. Radakovic-Fijan S, Blecha-Thathammer U, Schleyer V, Szeimies RM, Zwingers T, Honigsmann H, Tanew A (2005) Topical aminolaevulinic acid-based photodynamic therapy as a treatment option for psoriasis? Results of a randomized, observer-blinded study. Br J Dermatol 152:279–283

    CAS  Google Scholar 

  137. Donnelly RF, Morrow DIJ, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, Juzeniene A, Iani V, McCarthy HO, Moan J (2008) Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release 129:154–162

    CAS  Google Scholar 

  138. Donnelly RF, Morrow DIJ, McCarron PA, Garland MJ, Woolfson AD (2007) Influence of solution viscosity and injection protocol on distribution patterns of jet injectors: application to photodynamic tumour targeting. J Photochem Photobiol B 89:98–109

    CAS  Google Scholar 

  139. Campbell SM, Pye A, Horton S, Matthew J, Helliwell P, Curnow A (2007) A clinical investigation to determine the effect of pressure injection on the penetration of topical methyl aminolevulinate into nodular basal cell carcinoma of the skin. J Environ Pathol Toxicol 26:295–303

    CAS  Google Scholar 

  140. Kalia YN, Naik A, Garrison J, Guy RH (2004) Iontophoretic drug delivery. Adv Drug Deliv Rev 56:619–658

    CAS  Google Scholar 

  141. Lopez RF, Bentley MV, Delgado-Charro BM, Guy RH (2003) Optimization of aminolevulinic acid delivery by iontophoresis. J Control Release 88:65–70

    CAS  Google Scholar 

  142. Rhodes LE, Tsoukas MM, Anderson RR, Kollias N (1997) Iontophoretic delivery of ALA provides a quantitative model for ALA pharmacokinetics and PpIX phototoxicity in human skin. J Invest Dermatol 108:87–91

    CAS  Google Scholar 

  143. Lopez RFV, Vitoria M, Bentley LB, Delgado-Charro MB, Guy RH (2001) Iontophoretic delivery of 5-aminolevulinic acid (ALA): effect of pH. Pharm Res 18:311–315

    CAS  Google Scholar 

  144. Gerscher S, Connelly JP, Beijersbergen van Henegouwen MJ, MacRobert AJ, Watt P, Rhodes LE (2001) A quantitative assessment of protoporphyrin IX metabolism and phototoxicity in human skin following dose-controlled delivery of the prodrugs 5-aminolaevulinic acid and 5-aminolaevulinic acid-n-pentylester. Br J Dermatol 144:983–990

    CAS  Google Scholar 

  145. Mizutani K, Watanabe D, Akita Y, Akimoto M, Tamada Y, Matsumoto Y (2009) Photodynamic therapy using direct-current pulsed iontophoresis for 5-aminolevulinic acid application. Photodermatol Photoimmunol Photomed 25:280–282

    CAS  Google Scholar 

  146. Merclin N, Bender J, Sparr E, Guy RH, Ehrsson H, Engstrom S (2004) Transdermal delivery from a lipid sponge phase–iontophoretic and passive transport in vitro of 5-aminolevulinic acid and its methyl ester. J Control Release 100:191–198

    CAS  Google Scholar 

  147. Ma LW, Moan J, Peng Q, Iani V (1998) Production of protoporphyrin IX induced by 5-aminolevulinic acid in transplanted human colon adenocarcinoma of nude mice can be increased by ultrasound. Int J Cancer 78:464–469

    CAS  Google Scholar 

  148. Charoenbanpachon S, Krasieva T, Ebihara A, Osann K, Wilder-Smith P (2003) Acceleration of ALA-induced PpIX fluorescence development in the oral mucosa. Lasers Surg Med 32:185–188

    Google Scholar 

  149. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    CAS  Google Scholar 

  150. Uehlinger P, Zellweger M, Wagnieres G, Juillerat-Jeanneret L, van den BH, Lange N (2000) 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B 54:72–80

    CAS  Google Scholar 

  151. Kloek J, Beijersbergen van Henegouwen MJ (1996) Prodrugs of 5-aminolevulinic acid for photodynamic therapy. Photochem Photobiol 64:994–1000

    CAS  Google Scholar 

  152. Peng Q, Moan J, Warloe T, Iani V, Steen HB, Bjorseth A, Nesland JM (1996) Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin. J Photochem Photobiol B 34:95–96

    CAS  Google Scholar 

  153. Casas A, Fukuda H, Di Venosa G, Batlle AM (2000) The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinc acid. Implication in cutaneous photodynamic sensitization. Br J Dermatol 143:564–572

    CAS  Google Scholar 

  154. Moan J, Ma LW, Iani V (2001) On the pharmacokinetics of topically applied 5-aminolevulinic acid and two of its esters. Int J Cancer 92:139–143

    CAS  Google Scholar 

  155. Casas A, Batlle AM, Butler AR, Robertson D, Brown EH, MacRoberts A, Riley PA (1999) Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures. Br J Cancer 80:1525–1532

    CAS  Google Scholar 

  156. Moan J, Ma LW, Juzeniene A, Iani V, Juzenas P, Apricena F, Peng Q (2003) Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters. Int J Cancer 103:132–135

    CAS  Google Scholar 

  157. Gederaas O, Holroyd A, Brown SB, Vernon DI, Moan J, Berg K (2001) 5-Aminolaevulinic acid methyl ester transport on amino acid carriers in a human colon adenocarcinoma cell line. Photochem Photobiol 73:164–169

    CAS  Google Scholar 

  158. De Rosa FS, Lopez RF, Thomazini JA, Tedesco AC, Lange N, Bentley MV (2004) In vitro metabolism of 5-ALA esters derivatives in hairless mice skin homogenate and in vivo PpIX accumulation studies. Pharm Res 21:2247–2252

    Google Scholar 

  159. De Rosa FS, Tedesco AC, Lopez RF, Riemma Pierre MB, Lange N, Marchetti JM, Gomes Rotta JC, Bentley MV (2003) In vitro skin permeation and retention of 5-aminolevulinic acid ester derivatives for photodynamic therapy. J Control Release 89:261–269

    Google Scholar 

  160. Chen JY, Peng Q, Jodl HJ (2003) Infrared spectral comparison of 5-aminolevulinic acid and its hexyl ester. Spectrochim Acta A Mol Biomol Spectrosc 59:2571–2576

    CAS  Google Scholar 

  161. Berkovitch G, Doron D, Nudelman A, Malik Z, Rephaeli A (2008) Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity independent and dependent on photoactivation. J Med Chem 51:7356–7369

    CAS  Google Scholar 

  162. Bourre L, Giuntini F, Eggleston IM, Wilson M, MacRobert AJ (2009) Protoporphyrin IX enhancement by 5-aminolaevulinic acid peptide derivatives and the effect of RNA silencing on intracellular metabolism. Br J Cancer 100:723–731

    CAS  Google Scholar 

  163. Berger Y, Ingrassia L, Neier R, Juillerat-Jeanneret L (2003) Evaluation of dipeptide-derivatives of 5-aminolevulinic acid as precursors for photosensitizers in photodynamic therapy. Bioorg Med Chem 11:1343–1351

    CAS  Google Scholar 

  164. Dixon MJ, Bourre L, MacRobert AJ, Eggleston IM (2007) Novel prodrug approach to photodynamic therapy: fmoc solid-phase synthesis of a cell permeable peptide incorporating 5-aminolaevulinic acid. Bioorg Med Chem Lett 17:4518–4522

    CAS  Google Scholar 

  165. Battah SH, Chee CE, Nakanishi H, Gerscher S, MacRobert AJ, Edwards C (2001) Synthesis and biological studies of 5-aminolevulinic acid-containing dendrimers for photodynamic therapy. Bioconjug Chem 12:980–988

    CAS  Google Scholar 

  166. Battah SH, O’neill S, Edwards C, Balaratnam S, Dobbin P, MacRobert AJ (2006) Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int J Biochem Cell Biol 38:1382–1392

    CAS  Google Scholar 

  167. Battah SH, Balaratnam S, Casas A, O’neill S, Edwards C, Batlle AM, Dobbin P, MacRobert AJ (2007) Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol Cancer Ther 6:876–885

    CAS  Google Scholar 

  168. Brunner H, Hausmann F, Knuechel R (2003) New 5-aminolevulinic acid esters – efficient protoporphyrin precursors for photodetection and photodynamic therapy. Photochem Photobiol 78:481–486

    CAS  Google Scholar 

  169. Di Venosa G, Casas A, Battah SH, Dobbin P, Fukuda H, MacRobert AJ, Batlle AM (2006) Investigation of a novel dendritic derivative of 5-aminolaevulinic acid for photodynamic therapy. Int J Biochem Cell Biol 38:82–91

    Google Scholar 

  170. Casas A, Battah S, Di Venosa G, Dobbin P, Rodriguez L, Fukuda H, Batlle A, MacRobert AJ (2009) Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. J Control Release 135:136–143

    CAS  Google Scholar 

  171. Vallinayagam R, Weber J, Neier R (2008) Novel bioconjugates of aminolevulinic acid with vitamins. Org Lett 10:4453–4455

    CAS  Google Scholar 

  172. Vallinayagam R, Schmitt F, Barge J, Wagnieres G, Wenger V, Neier R, Juillerat-Jeanneret L (2008) Glycoside esters of 5-aminolevulinic acid for photodynamic therapy of cancer. Bioconjug Chem 19:821–839

    CAS  Google Scholar 

  173. Gurba P, Vallinayagam R, Schmitt F, Furrer J, Juillerat-Jeanneret L, Neier R (2008) Novel bioconjugates of aminolevulinic acid with nucleosides. Synthesis-Stuttgart 24:3957–3962

    Google Scholar 

  174. Berger Y, Greppi A, Siri O, Neier R, Juillerat-Jeanneret L (2000) Ethylene glycol and amino acid derivatives of 5-aminolevulinic acid as new photosensitizing precursors of protoporphyrin IX in cells. J Med Chem 43:4738–4746

    CAS  Google Scholar 

  175. Bourre L, Giuntini F, Eggleston IM, Wilson M, MacRobert AJ (2008) 5-aminolaevulinic acid peptide prodrugs enhance photosensitization for photodynamic therapy. Mol Cancer Ther 7:1720–1729

    CAS  Google Scholar 

  176. Giuntini F, Bourre L, MacRobert AJ, Wilson M, Eggleston IM (2009) Improved peptide prodrugs of 5-ALA for PDT: rationalization of cellular accumulation and protoporphyrin IX production by direct determination of cellular prodrug uptake and prodrug metabolization. J Med Chem 52:4026–4037

    CAS  Google Scholar 

  177. Collaud S, Peng QA, Gurny R, Lange N (2008) Thermosetting gel for the delivery of 5-aminolevulinic acid esters to the cervix. J Pharm Sci 97:2680–2690

    CAS  Google Scholar 

  178. Casas A, Fukuda H, Batlle AMD (1999) Tissue distribution and kinetics of endogenous porphyrins synthesized after topical application of ALA in different vehicles. Br J Cancer 81:13–18

    CAS  Google Scholar 

  179. van den Akker JT, de Bruijn HS, Beijersbergen van Henegouwen MJ, Star WM, Sterenborg HJ (2000) Protoporphyrin IX fluorescence kinetics and localization after topical application of ALA pentyl ester and ALA on hairless mouse skin with UVB-induced early skin cancer. Photochem Photobiol 72:399–406

    Google Scholar 

  180. Morrow DIJ, McCarron PA, Woolfson AD, Donnelly RF (2009) Practical considerations in the pharmaceutical analysis of methyl and hexyl ester derivatives of 5-amionolevulinic acid. Open Anal Chem J 3:6–15

    CAS  Google Scholar 

  181. Ackermann G, Abels C, Baumler W, Langer S, Landthaler M, Lang EW, Szeimies RM (1998) Simulations on the selectivity of 5-aminolaevulinic acid-induced fluorescence in vivo. J Photochem Photobiol B 47:121–128

    CAS  Google Scholar 

  182. Novo M, Hüttmann G, Diddens H (1996) Chemical instability of 5-aminolevulinic acid used in fluorescence diagnosis of bladder tumours. J Photochem Photobiol B 34:143–148

    CAS  Google Scholar 

  183. Butler AR, George S (1992) The nonenzymatic cyclic dimerization of 5-aminolevulinic acid. Tetrahedron 48:7879–7886

    CAS  Google Scholar 

  184. Bunke A, Zerbe O, Burmeister G, Merkle HP, Gander B (2000) Degradation mechanism and stability of 5-aminolevulinic acid. J Pharm Sci 89:1335–1341

    CAS  Google Scholar 

  185. Elfsson I, Wallin I, Eksborg S, Rudaeus K, Ros AM, Ehrsson H (1998) Stability of 5-aminolevulinic acid in aqueous solution. Eur J Pharm Sci 7:87–91

    Google Scholar 

  186. Juzeniene A, Ma LW, Juzenas P, Iani V, Lange N, Moan J (2002) Production of protoporphyrin IX from 5-aminolevulinic acid and two of its esters in cells in vitro and tissues in vivo. Cell Mol Biol 48:911–916

    CAS  Google Scholar 

  187. Tunstall RG, Barnett AA, Schofield J, Griffiths J, Vernon DI, Brown SB, Roberts DJH (2002) Porphyrin accumulation induced by 5-aminolaevulinic acid esters in tumour cells growing in vitro and in vivo. Br J Cancer 87:246–250

    CAS  Google Scholar 

  188. Casas A, Perotti C, Fukuda H, Rogers L, Butler AR, Batlle AM (2001) ALA and ALA hexyl ester-induced porphyrin synthesis in chemically induced skin tumours: the role of different vehicles on improving photosensitization. Br J Cancer 85:1794–1800

    CAS  Google Scholar 

  189. Hurlimann AF, Hanggi G, Panizzon RG (1998) Photodynamic therapy of superficial basal cell carcinomas using topical 5-aminolevulinic acid in a nanocolloid lotion. Dermatology 197:248–254

    CAS  Google Scholar 

  190. Casas A, Perotti C, Saccoliti M, Sacca P, Fukuda H, Batlle AM (2002) ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures. Br J Cancer 86:837–842

    CAS  Google Scholar 

  191. Fukuda H, Paredes S, Batlle AM (1989) Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms. Drug Des Deliv 5:133–139

    CAS  Google Scholar 

  192. Fukuda H, Paredes S, Batlle AM (1992) Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid. Comp Biochem Physiol B 102:433–436

    CAS  Google Scholar 

  193. Di Venosa G, Hermida L, Batlle A, Fukuda H, Defain MV, Mamone L, Rodriguez L, MacRobert A, Casas A (2008) Characterisation of liposomes containing aminolevulinic acid and derived esters. J Photochem Photobiol B 92:1–9

    Google Scholar 

  194. Casas A, Batlle A (2006) Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy. Curr Med Chem 13:1157–1168

    CAS  Google Scholar 

  195. Di Venosa G, Hermida L, Fukuda H, Defain MV, Rodriguez L, Mamone L, MacRobert A, Casas A, Batlle A (2009) Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy. J Photochem Photobiol B 96:152–158

    Google Scholar 

  196. Han I, Jun MS, Kim SK, Kim M, Kim JC (2005) Expression pattern and intensity of protoporphyrin IX induced by liposomal 5-aminolevulinic acid in rat pilosebaceous unit throughout hair cycle. Arch Dermatol Res 297:210–217

    CAS  Google Scholar 

  197. Al Kassas R, Donnelly RF, McCarron PA (2009) Aminolevulinic acid-loaded Witepsol microparticles manufactured using a spray congealing procedure: implications for topical photodynamic therapy. J Pharm Pharmacol 61:1125–1135

    CAS  Google Scholar 

  198. Donnelly RF, McCarron PA, Al Kassas R, Juzeniene A, Juzenas P, Iani V, Woolfson AD, Moan J (2009) Influence of formulation factors on PpIX production and photodynamic action of novel ALA-loaded microparticles. Biopharm Drug Dispos 30:55–70

    CAS  Google Scholar 

  199. Bourre L, Thibaut S, Briffaud A, Lajat Y, Patrice T (2002) Potential efficacy of a delta 5-aminolevulinic acid thermosetting gel formulation for use in photodynamic therapy of lesions of the gastrointestinal tract. Pharmacol Res 45:159–165

    CAS  Google Scholar 

  200. Gruning N, Muller-Goymann CC (2008) Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid. J Pharm Sci 97:2311–2323

    Google Scholar 

  201. McCarron PA, Donnelly RF, Zawislak A, Woolfson AD, Price JH, McClelland R (2005) Evaluation of a water-soluble bioadhesive patch for photodynamic therapy of vulval lesions. Int J Pharm 293:11–23

    CAS  Google Scholar 

  202. McCarron PA, Donnelly RF, Andrews GP, Woolfson AD (2005) Stability of 5-aminolevulinic acid in novel non-aqueous gel and patch-type systems intended for topical application. J Pharm Sci 94:1756–1771

    CAS  Google Scholar 

  203. McCarron PA, Donnelly RF, Zawislak A, Woolfson AD (2006) Design and evaluation of a water-soluble bioadhesive patch formulation for cutaneous delivery of 5-aminolevulinic acid to superficial neoplastic lesions. Eur J Pharm Sci 27:268–279

    CAS  Google Scholar 

  204. Zawislak A, Donnelly RF, McCluggage WG, Price JH, McClelland HR, Woolfson AD, Dobbs S, Maxwell P, McCarron PA (2009) Clinical and immunohistochemical assessment of vulval intraepithelial neoplasia following photodynamic therapy using a novel bioadhesive patch-type system loaded with 5-aminolevulinic acid. Photodiagnosis Photodyn Ther 6:28–40

    CAS  Google Scholar 

  205. Donnelly RF, Ma LW, Juzenas P, Iani V, McCarron PA, Woolfson AD, Moan J (2006) Topical bioadhesive patch systems enhance selectivity of protoporphyrin IX accumulation. Photochem Photobiol 82:670–675

    CAS  Google Scholar 

  206. Lee G, Szeimies RM (2005) Dermal for aminolaevulinic acid. 10/332547[PCT/EP01/08131]. United states. 13-7-2001. Ref Type: Patent

    Google Scholar 

  207. Public Assessment Report, Decentralised Procedure, Alacare 8 mg Medicated Plaster. UK/H/1533/001/DC. 2009. Medicines and Healthcare Products Regulatory Agency. Ref Type: Report

    Google Scholar 

  208. Hauschild A, Stockfleth E, Popp G, Borrosch F, Bruning H, Dominicus R, Mensing H, Reinhold U, Reich K, Moor ACE, Stocker M, Ortland C, Brunnert M, Szeimies RM (2009) Optimization of photodynamic therapy with a novel self-adhesive 5-aminolaevulinic acid patch: results of two randomized controlled phase III studies. Br J Dermatol 160:1066–1074

    CAS  Google Scholar 

  209. Szeimies RM, Stockfleth E, Popp G, Borrosch F, Bruning H, Dominicus R, Mensing H, Reinhold U, Reich K, Moor ACE, Stocker M, Ortland C, Brunnert M, Hauschild A (2010) Long-term follow-up of photodynamic therapy with a self-adhesive 5-aminolaevulinic acid patch: 12 months data. Br J Dermatol 162:410–414

    CAS  Google Scholar 

  210. Morton CA, Brown SB, Collins S, Ibbotson S, Jenkinson H, Kurwa H, Langmack K, McKenna K, Moseley H, Pearse AD, Stringer M, Taylor DK, Wong G, Rhodes LE (2002) Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. Br J Dermatol 146:552–567

    CAS  Google Scholar 

  211. Walker RB, Smith EW (1996) The role of percutaneous penetration enhancers. Adv Drug Deliv Rev 18:295–301

    CAS  Google Scholar 

  212. Conder LH, Woodard SI, Dailey HA (1991) Multiple mechanisms for the regulation of heme-synthesis during erythroid cell-differentiation – possible role for coproporphyrinogen oxidase. Biochem J 275:321–326

    CAS  Google Scholar 

  213. Chang SC, McRobert AJ, Porter JB, Bown SG (1997) The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study. J Photochem Photobiol B 38:114–122

    CAS  Google Scholar 

  214. Juzeniene A, Juzenas P, Iani V, Moan J (2007) Topical applications of iron chelators in photosensitization. Photochem Photobiol Sci 6:1268–1274

    CAS  Google Scholar 

  215. Curnow A, McIlroy BW, Postle-Hacon MJ, Porter JB, MacRobert AJ, Bown SG (1998) Enhancement of 5-aminolaevulinic acid-induced photodynamic therapy in normal rat colon using hydroxypyridinone iron-chelating agents. Br J Cancer 78:1278–1282

    CAS  Google Scholar 

  216. Bech O, Phillips D, Moan J, McRobert AJ (1997) A hydroxypyridinone (CP94) enhances protoporphyrin IX formation in 5-aminolaevulinic acid treated cells. J Photochem Photobiol B 41:136–144

    CAS  Google Scholar 

  217. Pye A, Campbell S, Curnow A (2008) Enhancement of methyl-aminolevulinate photodynamic therapy by iron chelation with CP94: an in vitro investigation and clinical dose-escalating safety study for the treatment of nodular basal cell carcinoma. J Cancer Res Clin 134:841–849

    CAS  Google Scholar 

  218. Hanania J, Malik Z (1992) The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic-cells. Cancer Lett 65:127–131

    CAS  Google Scholar 

  219. Harth Y, Hirshowitz B, Kaplan B (1998) Modified topical photodynamic therapy of superficial skin tumors, utilizing aminolevulinic acid, penetration enhancers, red light, and hyperthermia. Dermatol Surg 24:723–726

    CAS  Google Scholar 

  220. Miller MJ (1989) Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogues. Chem Rev 89:1563–1579

    CAS  Google Scholar 

  221. Malik Z, Kostenich G, Roitman L, Ehrenberg B, Orenstein A (1995) Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice. J Photochem Photobiol B 28:213–218

    CAS  Google Scholar 

  222. Peng Q, Warloe T, Moan J, Heyerdahl H, Steen HB, Nesland JM, Giercksky KE (1995) Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma. Photochem Photobiol 62:906–913

    CAS  Google Scholar 

  223. De Rosa FS, Marchetti JM, Thomazini JA, Tedesco AC, Bentley MV (2000) A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy. J Control Release 65:359–366

    Google Scholar 

  224. Copovi A, Diez-Sales O, Herraez-Dominguez JV, Herraez-Dominguez M (2006) Enhancing effect of alpha-hydroxyacids on “in vitro” permeation across the human skin of compounds with different lipophilicity. Int J Pharm 314:31–36

    CAS  Google Scholar 

  225. Kraeling MEK, Bronaugh RL (1997) In vitro percutaneous absorption of alpha hydroxy acids in human skin. J Soc Cosmet Chem 48:187–197

    CAS  Google Scholar 

  226. Ziolkowski P, Osiecka BJ, Oremeck G, Siewinski M, Symonowicz K, Saleh Y, Bronowicz A (2004) Enhancement of photodynamic therapy by use of aminolevulinic acid/glycolic acid drug mixture. J Exp Ther Oncol 4:121–129

    CAS  Google Scholar 

  227. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH (2001) Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 52:103–112

    CAS  Google Scholar 

  228. Pierre MBR, Ricci E, Tedesco AC, Bentley MVLB (2006) Oleic acid as optimizer of the skin delivery of 5-aminolevulinic acid in photodynamic therapy. Pharm Res §23:360–366

    Google Scholar 

  229. Steluti R, De Rosa FS, Collett J, Tedesco AC, Bentley MVLB (2005) Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin. Eur J Pharm Biopharm 60:439–444

    CAS  Google Scholar 

  230. Turchiello RF, Vena FC, Maillard P, Souza CS, Bentley MV, Tedesco AC (2003) Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy (PDT). J Photochem Photobiol B 70:1–6

    CAS  Google Scholar 

  231. Bender J, Ericson MB, Merclin N, Iani V, Rosen A, Engstrom S, Moan J (2005) Lipid cubic phases for improved topical drug delivery in photodynamic therapy. J Control Release 106:350–360

    CAS  Google Scholar 

  232. Hadgraft J, Peck J, Williams DG, Pugh WJ, Allan G (1996) Mechanisms of action of skin penetration enhancers retarders: azone and analogues. Int J Pharm 141:17–25

    CAS  Google Scholar 

  233. Ziolkowski P, Osiecka BJ, Siewinski M, Bronowicz A, Ziolkowska J, Gerber-Leszczyszyn H (2006) Pretreatment of plantar warts with azone enhances the effect of 5-aminolevulinic acid photodynamic therapy. J Environ Pathol Toxicol 25:403–409

    CAS  Google Scholar 

  234. Maisch T, Worlicek C, Babilas P, Landthaler M, Szeimies RM (2008) A HCl/alcohol formulation increased 5-aminolevulinic acid skin distribution using an ex vivo full thickness porcine skin model. Exp Dermatol 17:813–820

    CAS  Google Scholar 

  235. Perotti C, Casas A, Fukuda H, Sacca P, Batlle AM (2002) ALA and ALA hexyl ester induction of porphyrins after their systemic administration to tumour bearing mice. Br J Cancer 87:790–795

    CAS  Google Scholar 

  236. Konan YN, Gurny R, Allemann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106

    CAS  Google Scholar 

  237. Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles – preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    CAS  Google Scholar 

  238. Park SI, Lim JH, Kim JH, Yun HI, Kim CO (2005) In vivo and in vitro investigation of photosensitizer-adsorbed superparamagnetic nanoparticles for photodynamic therapy. IEEE Trans Magn 41:4111–4113

    CAS  Google Scholar 

  239. Oo MKK, Yang X, Du H, Wang H (2008) 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine 3:777–786

    CAS  Google Scholar 

  240. Letoffe S, Heuck G, Delepelaire P, Lange N, Wandersman C (2009) Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. PNAS 106:11719–11724

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesine Heuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heuck, G., Lange, N. (2011). Exogenously Induced Endogenous Photosensitizers. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_8

Download citation

Publish with us

Policies and ethics