Skip to main content

Combination Therapy: Complexing of QDs with Tetrapyrrols and Other Dyes

  • Chapter
  • First Online:
Photosensitizers in Medicine, Environment, and Security

Abstract

Analysis of recent works on investigation of photophysical properties of the complexes formed by the colloidal semiconductor quantum dots (QDs) and tetrapyrrol substances in liquid solution as well as the mechanisms of the complex formation was performed with the aim of utilization of the complexes in the cancer photodynamic therapy as a new approach in the combination therapy. It is demonstrated that the use of QDs as the energy donor allows to substantially extend spectral range of the complexes absorption and, therefore, to widen the set of the appropriate light sources for activation of sensitizer molecule in the complex. Besides the efficient energy transfer from QD to the tetrapyrrol molecule, it was shown that the molecule retains the capability of singlet oxygen generating with high quantum yield. Two solutions of the problem of delivery of the exciting radiation to the cancer cells due to strong absorption of the visible light by biological tissues are considered: (1) Two-photon activation of the QD/photosensitizer complex by using light in the 700–1,200 nm spectral range where the biological tissues have a minimal absorption. (2) X-ray activation of the QD/photosensitizer complex. The results of the analysis of existing works demonstrate that the QD/tetrapyrrol complexes have a large potential for application in PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekimov AI, Onushchenko AA (1982) Quantum size effects in the optical spectra of ­semiconductor micro-crystals. Sov Phys Semicond 16:775–778

    Google Scholar 

  2. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E  =  S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  3. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  4. Bruchez M Jr, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  5. Pellegrino T, Manna L, Kudera S et al (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4:703–707

    Article  CAS  Google Scholar 

  6. Liu W, Howarth M, Greytak AB et al (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284

    Article  CAS  Google Scholar 

  7. Goldman ER, Balighian ED, Mattoussi H et al (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378–6382

    Article  CAS  Google Scholar 

  8. Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621

    Article  CAS  Google Scholar 

  9. Mahtab R, Rogers JP, Murphy CJ (1995) Protein-sized quantum dot luminescence can distinguish between “straight”, “bent”, and “kinked” oligonucleotides. J Am Chem Soc 117:9099–9100

    Article  CAS  Google Scholar 

  10. Osaki F, Kanamori T, Sando S et al (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    Article  CAS  Google Scholar 

  11. Chen Y, Ji T, Rosenzweig Z (2003) Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Lett 3:581–584

    Article  CAS  Google Scholar 

  12. Lingerfelt BM, Mattoussi H, Goldman ER et al (2003) Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal Chem 75:4043–4049

    Article  CAS  Google Scholar 

  13. Juzenas P, Chen W, Sun Y-P et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614

    Article  CAS  Google Scholar 

  14. Mazumder S, Dey R, Mitra MK et al (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater. doi:10.1155/2009/815734

  15. Norris DJ (2004) Electronic structure in semiconductor nanocrystals. In: Klimov VI (ed) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. Marcel Dekker, New York

    Google Scholar 

  16. Hollingsworth JA, Klimov VI (2004) “Soft” chemical synthesis and manipulation of semiconductor nanocrystals. In: Klimov VI (ed) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. Marcel Dekker, New York

    Google Scholar 

  17. Bawendi MG, Wilson WL, Rothberg L et al (1990) Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys Rev Lett 65:1623–1626

    Article  CAS  Google Scholar 

  18. Lakowicz JR (2006) Introduction to fluorescence, principles of fluorescence spectroscopy. Springer Science Business Media, LLC, New York

    Book  Google Scholar 

  19. Juzeniene A, Nielsen KP, Moan J (2006) Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol 25:7–28

    CAS  Google Scholar 

  20. Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. J Chem Phys 96:946–954

    Article  CAS  Google Scholar 

  21. Nirmal M, Norris DJ, Kuno M et al (1995) Observation of the “dark exciton” in CdSe quantum dots. Phys Rev Lett 75:3728–3731

    Article  CAS  Google Scholar 

  22. Samia AC, Chen X, Burda C et al (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    Article  CAS  Google Scholar 

  23. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  CAS  Google Scholar 

  24. Krasnovsky AA (2007) Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research. Biochemistry (Moscow) 72:1065–1080

    Article  CAS  Google Scholar 

  25. Bakalova R, Ohba H, Zhelev Z et al (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361

    Article  CAS  Google Scholar 

  26. Shi L, Hernandez B, Selke M (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc 128:6278–6279

    Article  CAS  Google Scholar 

  27. Wuister SF, Swart I, Driel F et al (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 3:503–507

    Article  CAS  Google Scholar 

  28. Ma J, Chen J-Y, Idowu M, Nyokong T (2008) Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots-sulfonated aluminum phthalocyanines. J Phys Chem B 112:4465–4469

    Article  CAS  Google Scholar 

  29. Brooks RA, Moiny F, Gillis P (2001) On T 2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 45:1014–1020

    Article  CAS  Google Scholar 

  30. Byrne SJ, Corr SA, Rakovich TY et al (2006) Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. J Mater Chem 16:2896–2902

    Article  CAS  Google Scholar 

  31. Byrne SJ, Williams Y, Davies A et al (2007) “Jelly dots”: synthesis and cytotoxicity studies of CdTe quantum dot – gelatin nanocomposites. Small 3:1152–1156

    Article  CAS  Google Scholar 

  32. Byrne SJ, le Bon B, Corr SA et al (2007) Synthesis, photophysical characterisation and biological investigation of CdTe quantum dot –naproxen conjugates. ChemMedChem 2:183–186

    Article  CAS  Google Scholar 

  33. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029

    Article  CAS  Google Scholar 

  34. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of mono­disperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  35. Nitin N, LaConte LEW, Zurkiya O et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9:706–712

    Article  CAS  Google Scholar 

  36. Jan E, Byrne SJ, Cuddihy M et al (2008) High content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2:928–938

    Article  CAS  Google Scholar 

  37. Peng CW, Li Y (2010) Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater 676839:1–11. doi:10.1155/2010/676839

    Google Scholar 

  38. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxisity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  39. Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520A–526A

    Article  CAS  Google Scholar 

  40. Britton J, Antunes E, Nyokong T (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J Photochem Photobiol A Chem 210:1–7

    Article  CAS  Google Scholar 

  41. Tsay JM, Trzoss M, Shi LX et al (2007) Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 129:6865–6871

    Article  CAS  Google Scholar 

  42. Wargnier R, Baranov AV, Maslov VG et al (2004) Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett 4:451–457

    Article  CAS  Google Scholar 

  43. Orlova AO, Maslov VG, Baranov AV et al (2008) Spectral-luminescence study of the formation of QD–sulfophthalocyanine molecule complexes in an aqueous solution. Opt Spectrosc 105:726–731

    Article  CAS  Google Scholar 

  44. Orlova AO, Maslov VG, Stepanov AA et al (2008) Formation of QD–porphyrin molecule complexes in aqueous solutions. Opt Spectrosc 105:889–895

    Article  CAS  Google Scholar 

  45. Moeno S, Idowu M, Nyokong T (2008) Spontaneous charge transfer between zinc tetramethyl-tetra-2,3-pyridinoporphyrazine and CdTe and ZnS quantum dots. Inorg Chim Acta 361:2950–2956

    Article  CAS  Google Scholar 

  46. Schmelz O, Mews A, Basche T et al (2001) Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir Am Chem Soc 17:2861–2865

    CAS  Google Scholar 

  47. Orlova AO, Adrianov VE, Maslov VG et al (2010) Photophysical manifestations of ­interactions of quantum dots with ortho-phenanthroline molecules. Opt Spectrosc 108:934–940

    Article  CAS  Google Scholar 

  48. Orlova AO, Maslov VG, Toropova YuA et al (2010) A film luminescent nanosensor based on a quantum dot–organic molecule complex. Nanotechnol Russ 5:49–57

    Article  Google Scholar 

  49. Zenkevich E, Cichos F, Shulga A et al (2005) Nanoassemblies designed from semiconductor quantum dots and molecular arrays. J Phys Chem B 109:8679–8692

    Article  CAS  Google Scholar 

  50. Zenkevich EI, Blaudeck T, Shulga AM et al (2007) Identification and assignment of porphyrin–CdSe hetero-nanoassemblies. J Luminescence 122–123:784–788

    Article  Google Scholar 

  51. Zenkevich E, Blaudeck T, Abdel-Mottaleb M et al (2006) Photophysical properties of self-aggregated porphyrin: semiconductor nanoassemblies. Int J Photoenergy. doi:10.1155/IJP/2006/90242

  52. Frasco MF, Vamvakaki V, Chaniotakis N (2010) Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions. J Nanopart Res 12:1449–1458

    Article  CAS  Google Scholar 

  53. Orlova AO, Maslov VG, Skaletskaya IE, Baranov AV (2006) Energy transfer in associates of semiconductor quantum dots with tetrapyridinoporphyrazine molecules. Opt Spectrosc 101:582–589

    Article  CAS  Google Scholar 

  54. Idowu M, Chen J-Y, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32:290–296

    Article  CAS  Google Scholar 

  55. Orlova AO, Gubanova MS, Maslov VG et al (2010) Spectral_luminescence properties of the complexes formed by similarly charged CdTe quantum dots and tetrasulfophthalocyanine molecules. Opt Spectrosc 108:927–933

    Article  CAS  Google Scholar 

  56. Clapp AR, Medintz IL, Mauro JM et al (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310

    Article  CAS  Google Scholar 

  57. Chong EZ, Matthews DR, Summers HD et al (2007) Development of FRET-based assays in the far-red using CdTe quantum dots. J Biomed Biotechnol. doi:10.1155/2007/54169

  58. Grecco HE, Lidke KA, Heintzmann R et al (2004) Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc Res Tech 65:169–179

    Article  CAS  Google Scholar 

  59. Hildebrandt N, Charbonnière LJ, Löhmannsröben H-G (2007) Time-resolved analysis of a highly sensitive Förster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. J Biomed Biotechnol. doi:10.1155/2007/79169

  60. Moeno S, Nyokong T (2008) The photophysical studies of a mixture of CdTe quantum dots and negatively charged zinc phthalocyanines. Polyhedron 27:1953–1958

    Article  CAS  Google Scholar 

  61. Jhonsi MA, Renganathan R (2010) Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J Colloid Interface Sci 344:596–602

    Article  CAS  Google Scholar 

  62. Dayal S, Lou Y, Samia ACS, Berlin JC et al (2006) Observation of non-Forster-type energy-transfer behavior in quantum dot-phthalocyanine conjugates. J Am Chem Soc 128:13974–13975

    Article  CAS  Google Scholar 

  63. Dayal S (2008) Femtosecond time-resolved studies of quantum dots-based energy transfer. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Chemistry, Case Western Reserve University. http://etd.ohiolink.edu/send-pdf.cgi/Dayal%20Smita.pdf?case1207086676. Accessed 13 Aug 2010

  64. Dayal S, Burda C (2007) Surface effects on quantum dot-based energy transfer. J Am Chem Soc 129:7977–7981

    Article  CAS  Google Scholar 

  65. Wen Y, Song W-s, Li-min An et al (2009) Activation of porphyrin photosensitizers by semiconductor quantum dots via two-photon excitation. Appl Phys Lett 95:143702

    Article  Google Scholar 

  66. Zenkevich EI, Blaudeck Th, Heidernätsch M, Cichos F, von Borczyskowski C (2009) Electron tunneling effects and non-resonant photoluminescence quenching of semiconductor nanocrystals CdSe/ZnS and CdSe by porphyrin molecules in joint complexes. Theor Exp Chem 45:23–34. doi:10.1007/s11237-009-9058-9

    Article  CAS  Google Scholar 

  67. Yarovoi AA, Zenkevich EI, Sagun EI et al (2007) Photoinduced electron transfer in CdSe nanocrystals passivated by quinone derivatives. In: Proceedings of SPIE 6728 (Novel photonics materials. Optics and optical diagnostics of nanostructures) 67282K. doi:10.1117/12.752450

  68. Narayanan SS, Sinha SS, Pal SK (2008) Sensitized emission from a chemotherapeutic drug conjugated to CdSe/ZnS QDs. J Phys Chem C 112:12716–12720

    Article  CAS  Google Scholar 

  69. Yingli Qu, Wei J (2009) Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence. J Opt Soc Am B 26:1897–1904

    Google Scholar 

  70. Dayal S, Burda C (2008) Semiconductor quantum dots as two-photon sensitizers. J Am Chem Soc 130:2890–2891

    Article  CAS  Google Scholar 

  71. Takahashi J, Misawa M (2007) Analysis of potential radiosensitizing materials for x-ray-induced photodynamic therapy. Nanobiotechnology. doi:10.1007/s12030-008-9009-x

  72. Liu C-J, Wang C-H, Chien C-C et al (2008) Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology. doi:10.1088/0957-4484/19/29/295104

  73. Jeong SY, Park SJ, Yoon SM et al (2009) Systemic delivery and preclinical evaluation of Au nanoparticle containing β-lapachone for radiosensitization. J Control Release 139:239–245

    Article  CAS  Google Scholar 

  74. Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6:1159–1166

    Article  CAS  Google Scholar 

  75. Liu Y, Chen W, Wang Sh, Joly AG (2008) Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92:0439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Maslov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maslov, V., Orlova, A., Baranov, A. (2011). Combination Therapy: Complexing of QDs with Tetrapyrrols and Other Dyes. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_7

Download citation

Publish with us

Policies and ethics