Skip to main content

The Use of Phthalocyanines and Related Complexes in Photodynamic Therapy

  • Chapter
  • First Online:
Photosensitizers in Medicine, Environment, and Security

Abstract

The phthalocyanines and porphyrins are the most used compounds, called photosensitizers (PS) into photodynamic therapy, due to their NIR absorbing wavelenghts, non-toxicity and high photochemical efficiency. The aim of this chapter is to achieve a better understanding of the phthalocyanines and related compounds, like free bases and metallo-complexes and their sensitizer properties, especially. The photophysical properties (absorption, triplet state, singlet oxygen, photobleaching, and fluorescence quantum yields, and triplet lifetimes so on) are discussed well correlated with their photodynamic activity. Their photodynamic tests in vitro on different cells lines, is discussed properly, taking into account the huge number of existing publications. Some clinical results obtained by using phthalocyanines, porphyrins and related compounds are discussed, too, in order to provide initial data on how currently used PS differ regarding basic PDT-related properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ion RM (2003) Porphyrins and photodynamic therapy of cancer. FMR, Bucharest

    Google Scholar 

  2. Dalla Via L, Marciani Magno S (2001) Photochemotherapy in the treatment of cancer. Curr Med Chem 8:1405–1518

    CAS  Google Scholar 

  3. Kessel D (2004) Photodynamic therapy: from the beginning. Photodiagn Photodyn Ther 1:3–14

    Article  CAS  Google Scholar 

  4. Ion RM (2000) Porphyrins for tumor destruction in photodynamic therapy. Curr Top Biophys 24:21–34

    CAS  Google Scholar 

  5. Allison RR, Downie GH, Cuenca R et al (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–37

    Article  CAS  Google Scholar 

  6. Frakowiak D, Planner A et al (1998) Incorporation of dye in resting and stimulated leukocytes. In: Daechne S (ed) Near infrared dyes for high technology applications. Kluwer, Dordrecht/Boston/London

    Google Scholar 

  7. Plaetzer K, Kiesslich T, Oberdanner CB et al (2005) Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection. Curr Pharm Des 11(9):1151–1165

    Article  CAS  Google Scholar 

  8. Almeida RD, Manadas BJ, Carvalho AP et al (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86

    CAS  Google Scholar 

  9. Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21, 22–24

    Article  CAS  Google Scholar 

  10. Ion RM, Planner A, Wicktorowicz K et al (1998) The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim Pol 45:833–845

    CAS  Google Scholar 

  11. Ben-Hur E, Rosental I (1985) Phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy. Int J Radiat Biol Relat Stud Phys Chem Med 47:145–147

    Article  CAS  Google Scholar 

  12. Rosenthal I (1991) Phtalocyanines as photodynamic sensitizers. Photochem Photobiol 53:859–870

    CAS  Google Scholar 

  13. Allen C, Sharman W, Van Lier J (2001) Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyr Phthalocyanines 5:161–169

    Article  CAS  Google Scholar 

  14. Leznof CC, Lever ABP (1989) Phthalocyanines, properties and applications, vols 1–3, 9. VCH Publishers, New York

    Google Scholar 

  15. (a) Smith KM (1975) Synthesis and preparation of porphyrin compounds. Elsevier, Amsterdam; (b) Moser JG (1998) In: Moser JG (ed) Photodynamic tumor therapy. 2nd and 3rd generation. Harwood Academic Publishers, Amsterdam; (c) Moreira LM, dos Santos FV, Lyon JP et al (2008) Photodynamic therapy: porphyrins and phthalocyanines as photosensitizers. Aust J Chem 61(10):741–784

    Google Scholar 

  16. Marcus SL, McIntyre WR (2002) Photodynamic therapy systems and applications. Expert Opin Emerg Drugs 7(2):321–327

    Article  CAS  Google Scholar 

  17. Oleinick NL, Antunez A, Clay M et al (1993) New phthalocyanine photosensitizers for photodynamic therapy. Photochem Photobiol 57:242–247

    Article  CAS  Google Scholar 

  18. Dougherty TJ (1993) Photodynamic therapy. Photochem Photobiol 58:895–900

    Article  CAS  Google Scholar 

  19. Siejak A, Wróbel D, Siejak P et al (2009) Spectroscopic and photoelectric investigations of resonance effects in selected sulfonated phthalocyanines. Dyes Pigm 83(3):281–290

    Article  CAS  Google Scholar 

  20. Patterson MS, Wilson BC (1999) Photodynamic therapy. In: Dyh JV (ed) The modern technology of radiation oncology. Medical Physics Publishing, Madison

    Google Scholar 

  21. Foote CS (1999) Definition of type 1 and type II photosensitized oxidation. Photochem Photobiol 54:869–880

    Google Scholar 

  22. Frackowiak D, Planner A, Waszkowiak A et al (2001) Yield of ISC of Pc’s evaluated on the basis of a time-resolved photothermal method. J Photochem Photobiol A Chem 141:101–108

    Article  CAS  Google Scholar 

  23. Claessens GC, Blau WJ, Cook M et al (2001) Phthalocyanines and phthalocyanine analogues: the quest for applicable optical properties. Monat Chem 132:3–11

    Article  CAS  Google Scholar 

  24. Petrásek Z, Phillips D (2003) A time-resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence. Photochem Photobiol Sci 2:236–244

    Article  CAS  Google Scholar 

  25. (a) Berg K, Bommer JC, Moan J (1989) Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation. Photochem Photobiol 49(5):587–594; (b) Rodrigues MMA, Simioni AR, Primo FL et al. (2009) Preparation, characterization and in vitro cytotoxicity of BSA-based nanosphere containing nanosized magnetic particles and/or photosensitizer. J Mag Mag Mater 321(10):1600–1603

    Google Scholar 

  26. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722

    Article  CAS  Google Scholar 

  27. Chan VS, Marshall JF, Svensen R, Phillips D, Hart JR (1987) Photosensitising activity of phthalocyanine dyes screened against tissue culture cells. Photochem Photobiol 45:757–761

    Article  CAS  Google Scholar 

  28. Darwent JR, Douglas P, Harriman A et al (1982) Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord Chem Rev 44:83–126

    Article  CAS  Google Scholar 

  29. Vincett PS, Voigt EM, Rieckhoff KE (1971) Phosphorescence and fluorescence of phthalocyanines. J Chem Phys 55:4131–4140

    Article  CAS  Google Scholar 

  30. Dhami D, Phillips D (1996) Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanines. J Photochem Photobiol A Chem 100:77–84

    Article  CAS  Google Scholar 

  31. Edrei R, Gottfried V, Van Lier JE et al (1998) Sulfonated phthalocyanines: photophysical properties, in vitro cell uptake and structure-activity relationships. J Porphyr Phthalocyanines 2:191–199

    Article  CAS  Google Scholar 

  32. Ambroz M, Beeby A, MacRobert AJ, Simpson MSC et al (1991) Preparation, analytical and fluorescence spectroscopic studies – of sulphonated aluminium phthalocyanine photosensitizer. J Photochem Photobiol B Biol 9:87–95

    Article  CAS  Google Scholar 

  33. Weber J, Busch D (1965) Complexes of 4,4′.4″.4″-tetrasulfophthalocyanine. Inorg Chem 4:469–471

    Article  CAS  Google Scholar 

  34. Huang Y, Xu G, Peng Y et al (2007) Zinc phthalocyanine tetrasulfonate (ZnPcS4): a new photosensitizer for photodynamic therapy in choroidal neovascularization. J Ocul Pharmacol Ther 23(4):377–386

    Article  CAS  Google Scholar 

  35. Schmidt MH, Meyer GA, Reichert KW et al (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol 67:201–207

    Article  Google Scholar 

  36. Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitizers. Met Based Drugs 2008:276109

    Article  Google Scholar 

  37. Wagner JR, Ali H, Langlois R et al (1987) Biological activities of phthalocyanines VI. Photooxidation of l-tryptophan by selectively sulfonated gallium phthalocyanines: singlet oxygen yields and effect of aggregation. Photochem Photobiol 45:587–594

    Article  CAS  Google Scholar 

  38. Wohrle W, Iskander N, Graschew G (1990) Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells. Photochem Photobiol 51:351–356

    Article  CAS  Google Scholar 

  39. Ogunsipe A, Nyokong T (2005) Light-induced effects in sulfonated aluminum phthalocyanines – potential photosensitizers in the photodynamic therapy. Photochem Photobiol Sci 4:510–516

    Article  CAS  Google Scholar 

  40. Foley MS, Beeby A, Parker AW et al (1997) Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin. J Photochem Photobiol B 38(1):10–17

    Article  CAS  Google Scholar 

  41. Kuznetsova NA, Gretsova NS, Derkacheva VM et al (2003) Sulphonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions. J Porphyr Phthalocyanines 7:147–154

    Article  CAS  Google Scholar 

  42. Frackowiak D, Ion RM, Waszkowiak A (2002) Spectral properties of phthalocyanines oriented in stretched polymer films. J Phys Chem B 106:13154–13160

    Article  CAS  Google Scholar 

  43. Sharman WM, Allen CM, Van Lier JE (2000) Role of activated oxygen species in photodynamic therapy. Methods Enzymol 319:376–400

    Article  CAS  Google Scholar 

  44. (a) Spikes JK (1986) Phtalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol 43:691–699; (b) de Castro Pazos, Pacheco-Soares C, da Silva NS et al (2003) Ultrastructural effects of two phthalocyanines in CHO-K1 and HeLa cells after laser irradiation. Biocell 27(3):301–309; (c) Kessel D (1997) Subcellular localization of photosensitizing agents. Photochem Photobiol 65:387–388

    Google Scholar 

  45. Wrobel D, Boguta A, Wojcik A et al (2005) Time-resolved photocurrent generation in a photoelectrochemical cell with phthalocyanine. Spectrochim Acta Part A Mol Biomol Spectrosc 61(6):1127–1132

    Article  CAS  Google Scholar 

  46. Kim JS et al (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  CAS  Google Scholar 

  47. Oleinick NL, Evans HH (1998) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 150(5 Suppl):S146–S156

    Article  CAS  Google Scholar 

  48. Nowis D, Makowski M, Stokłosa T et al (2005) Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol 52(2):339–345

    CAS  Google Scholar 

  49. Triesscheijn M, Baas P, Schellens JHM et al (2006) Photodynamic therapy in oncology. Oncologist 11:1034–1044

    Article  CAS  Google Scholar 

  50. Abels C (2004) Targeting of the vascular system of solid tumors by photodynamic therapy (PDT). Lancet Oncol 5:497–508

    Article  CAS  Google Scholar 

  51. (a) Vancikova Z (1998) Principles of the photodynamic therapy and its impact on the immune system. Sb Lek 99:1–15; (b) Machado AHA, Soares CP, da Silva NS et al (2009) Cellular and molecular studies of the initial process of the photodynamic therapy in HEp-2 cells using LED light source and two different photosensitizers. Cell Biol Int 33(7):785–795

    Google Scholar 

  52. Sibata CH, Colussi VC, Oleinick NL et al (2001) Photodynamic therapy in oncology. Expert Opin Pharmacother 2:1–11

    Article  Google Scholar 

  53. Gad F, Zahra T, Francis KP et al (2004) Targeted photodynamic therapy of established soft tissue infections in mice. Photochem Photobiol Sci 3:451–458

    Article  CAS  Google Scholar 

  54. Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14:323–328

    CAS  Google Scholar 

  55. Ion RM, Grigorescu M, Scarlat F et al (2001) Porphyrin sensitization of DNA. Rom J Phys 46:637–646

    CAS  Google Scholar 

  56. Alexandrova R, Stoykova E, Ion RM (2004) Photodynamic therapy of cancer. Exp Pathol Parasitol 7(3):3–23

    Google Scholar 

  57. Ion RM (2010) Derivative UV-VIS spectrophotometry for porphyrins interactions in photodynamic therapy. Anal Lett 43(7 & 8):1277–1286

    Article  CAS  Google Scholar 

  58. Bown SG, Tralau CJ, Coleridge Smith PD et al (1986) Photodynamic therapy with porphyrin and phthalocyanine sensitisation: Quantitative studies in normal rat liver. Br J Cancer 54:43–52

    Google Scholar 

  59. Ion RM, Fierascu RC, Neagu M et al (2010) Porphyrin (TPP)-polyvinylpyrrolidone (PVP)-fullerene (C60) triad as novel sensitizer in photodynamic therapy. Sci Adv Mater 2(2):223–229(7)

    Article  CAS  Google Scholar 

  60. Wrobel D, Boguta A (2002) Study of the influence of substituents on spectroscopic and photoelectric properties of zinc phthalocyanines. J Photochem Photobiol A Chem 150:67–76

    Article  CAS  Google Scholar 

  61. Filip AG, Clichici S, Daicoviciu D et al (2011) Possible in vivo mechanisms involved in photodynamic tharapy using tetrapyrrolic macrocycles. Braf J Med Biol Res 44(1):13–61

    Google Scholar 

  62. Anbazhagan V, Asha Jhonsi M, Renganathan R (2009) Interaction of meso-tetrakis (p-sulfonatophenyl) porphyrin (TPPS4) with pyrimidines: a steady state and time-resolved fluorescence quenching study. J Mol Struct 919:79–82

    Article  CAS  Google Scholar 

  63. (a) Ion RM (1999) Spectral analysis of the porphyrins incorporation into human blood. J Biomed Optics 4:319-327; (b) Ferreira J, Kurachi C, Moriyama LT et al (2006) Correlation between the photostability and photodynamic efficacy for different photosensitizers. 3(2): 91–95

    Article  CAS  Google Scholar 

  64. (a) Ion RM, Boda D (2008) Supramolecular nanotubes porphyrin-based generated by aggregation process. Rev Chim (Bucharest) 59(2):205–207; (b) Bonnett R, Martinez G (2001) Photobleaching of sensitizers used in photodynamic therapy. Tetraedron 57:9513–9547; (c) Ion RM, Mandravel C (1997) Some aspects about the porphyrins photodegradation. South J Braz Chem Soc V:111–129

    Google Scholar 

  65. Ion RM, Ionita MA, Carstocea et al (2004) Clinical aspects of photodynamic therapy-Romanian experience. Oftalmologia 48(2):53–61

    Google Scholar 

  66. Wickens J, Blinder KJ (2006) A preliminary benefit-risk assessment of verteporfin in age-related macular degeneration. Drug Saf 29(3):189–199

    Article  CAS  Google Scholar 

  67. Petermeier K, Tatar O, Inhoffen W et al (2006) Verteporfin photodynamic therapy induced apoptosis in choroidal neovascular membranes. Br J Ophthalmol 90:1034–1039

    Article  Google Scholar 

  68. Ionita MA, Ion RM, Carstocea B (2003) Photochemical and photodynamic properties of vitamin B2-riboflavin in liposomes. Oftalmologia 58(3):29–34

    CAS  Google Scholar 

  69. Ionita MA, Ion RM, Carstocea B et al (2002) Photodynamic occlusion of ocular neovascularization with B2 vitamin. Oftalmologia XLXIV(3):82–86

    Google Scholar 

  70. Borgatti-Jeffreys A, Hooser SB, Miller MA et al (2007) Phase I clinical trial of the use of zinc phthalocyanine tetrasulfonate as a photosensitizer for photodynamic therapy in dogs. Am J Vet Res 68(4):399–404

    Article  CAS  Google Scholar 

  71. Huang Y, Xu G, Peng Y et al (2009) Photodynamic effects of ZnPcS4-BSA in human retinal pigment epithelium cells. J Ocul Pharmacol Ther 25(3):231–238

    Article  CAS  Google Scholar 

  72. Avetisov SE, Budzinskaia MV, Likhvantseva VG et al (2005) The first results of phase IIA of clinical studies of photodynamic therapy for subretinal neovascular membranes with photosense. Vestn Oftalmol 121(5):6–9

    CAS  Google Scholar 

  73. Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitizers. Met Based Drugs 2008:276109

    Article  Google Scholar 

  74. Miller JW, Stinson WG, Gregory WA et al (1991) Phthalocyanine photodynamic therapy of experimental iris neovascularization. Ophthalmology 98(11):1711–1719

    CAS  Google Scholar 

  75. Kliman GH, Puliafito CA, Grossman GA et al (1994) Retinal and choroidal vessel closure using phthalocyanine photodynamic therapy. Laser Surg Med 15(1):11–18

    Article  CAS  Google Scholar 

  76. Grant WE, Speight PM, MacRobert AJ et al (1994) Photodynamic therapy of normal rat arteries after photosensitisation using disulphonated aluminium phthalocyanine and 5-aminolaevulinic acid. Br J Cancer 70(1):72–78

    Article  CAS  Google Scholar 

  77. Lilge L, Portnoy M, Wilson BC (2000) Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue. Br J Cancer 83(8):1110–1117

    Article  CAS  Google Scholar 

  78. Muller PJ, Wilson BC (1996) Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 14:263–270

    CAS  Google Scholar 

  79. Muller PJ, Wilson BC (1992) Photodynamic therapy for brain tumors. In: McCaughan JS (ed) A clinical manual: photodynamic therapy of malignancies. RG Landes Co, Boca Raton, pp 201–211

    Google Scholar 

  80. Lilge L, Olivo MC, Schatz SW et al (1996) The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy. Br J Cancer 73:332–343

    Article  CAS  Google Scholar 

  81. Chen Q, Chopp M, Madigan L et al (1996) Damage threshold of normal rat brain in photo­dynamic therapy. Photochem Photobiol 64:163–167

    Article  CAS  Google Scholar 

  82. Farrell TJ, Wilson BC, Patterson MS et al (1998) Comparison of the in vivo photodynamic threshold dose for photofrin, mono- and tetrasulfonated aluminum phthalocyanine using a rat liver model. Photochem Photobiol 68:394–399

    Article  CAS  Google Scholar 

  83. Yoshida Y, Dereski MO, Garcia JH et al (1992) Neuronal injury after photoactivation of photofrin II. Am J Pathol 141:989–997

    CAS  Google Scholar 

  84. Majno G, Joris I (1995) Apoptosis, oncosis and necrosis: an overview of cell death. Am J Pathol 146:3–15

    CAS  Google Scholar 

  85. White E (1996) Pathway of regulation of apoptosis: overview of apoptosis. Calbiochem Novabiochem Int 1:8–15

    Google Scholar 

  86. Wong CS, Van Dyk J, Milosevic M et al (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30:575–581

    CAS  Google Scholar 

  87. Schultheiss TE, Kun LE, Ang KK et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    Article  CAS  Google Scholar 

  88. Laperriere NJ, Cerezo L, Milosevic MF et al (1997) Primary lymphoma of brain: results of management of a modern cohort with radiation therapy. Radiother Oncol 43:247–252

    Article  CAS  Google Scholar 

  89. Li YQ, Guo YP, Jay V et al (1996) Time course of radiation induced apoptosis in the adult rat spinal cord. Radiother Oncol 39:35–42

    Article  CAS  Google Scholar 

  90. Chan WS, Brasseur N, La Madeleine C et al (1996) Evidence for different mechanisms of EMT-6 tumor necrosis by photodynamic therapy with disulphonated aluminum phthalocyanine or photofrin: tumor cell survival and blood flow. Anticancer Res 16:1887–1892

    CAS  Google Scholar 

  91. (a) Margaron P, Madarnas P, Quellet R et al (1996) Biological activities of phthalocyanines. XVII histopathologic evidence for different mechanisms of EMT-6 tumor necrosis induced by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin. Anticancer Res 16:613–620; (b) Tyrrell RM (1996) Oxidant, antioxidant status and photocarcinogenesis: the role of gene activation. Photochem Photobiol 63:380–383

    Google Scholar 

  92. Medina WSG, dos Santos NAG, Curti C et al (2009) Effects of zinc phthalocyanine tetrasulfonate-based photodynamic therapy on rat brain isolated mitochondria. Chem Biol Interact 179(2–3):402–406

    Article  CAS  Google Scholar 

  93. Kostron H, Obwegeser A, Jakober R (1996) Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B Biol 36:157–168

    Article  CAS  Google Scholar 

  94. Lilge L, Ching E, Portnoy M, Molckovsky A, Wilson BC (2000) Photofrin mediated PDT in normal rat brain: assessment of apoptosis as a quantitative biological endpoint. Proc SPIE 3909:45–52

    Article  CAS  Google Scholar 

  95. Mahaley MS, Mettlin C, Matarajan N, Law ER, Peace B (1989) National survey of patterns of care for brain-tumour patients. J Neurosurg 71:826–836

    Article  Google Scholar 

  96. Muller P, Wilson B (1991) Photodynamic therapy of brain tumors: postoperative ‘field fractionation’. J Photochem Photobiol B Biol 9:117–119

    Article  CAS  Google Scholar 

  97. Origitano TC, Reichman OH (1993) Photodynamic therapy for intracranial neoplasms: development of an image-based computer-assisted protocol for photodynamic therapy of intracranial neoplasms. Neurosurgery 32:587–595

    Article  CAS  Google Scholar 

  98. Popovic EA, Kaye AH, Hill JS (1996) Photodynamic therapy of brain tumors. J Clin Laser Med Surg 14:251–261

    CAS  Google Scholar 

  99. Pascu ML, Popescu A, Carp N et al (2000) Photodynamic therapy studies on brain tumors using nitrogen pulsed lasers. Proc SPIE 4166:140–145

    Google Scholar 

  100. Van den Brink-de Vries NA, Beijnen JH et al (2006) Blood–brain barrier and chemotherapeutic treatment of brain tumors. Exp Rev Neurother 6:1199–1209

    Article  Google Scholar 

  101. (a) Danaila L, Pascu ML, Popescu A et al (2000) Spectrophotometric characterization of useful dyes in laser photodynamic therapy of cancer. Proc SPIE 4068:712–718; (b) Pascu ML, Danaila L, Popescu A et al (1999) Researches concerning the application of laser photo­dynamic therapy in neurosurgery. Rom Rep Phys 2:38–45

    Google Scholar 

  102. Butler JM, Rapp SR, Shaw EG (2006) Managing the cognitive effects of brain tumor radiation therapy. Curr Treat Options Oncol 7:517–523

    Article  Google Scholar 

  103. Zhang X, Jiang F, Kalkanis SN et al (2006) Combination of surgical resection and photo­dynamic therapy of 9L gliosarcoma in the nude rat. Photochem Photobiol 82:1704–1711

    CAS  Google Scholar 

  104. Lam M, Oleinick NL, Nieminen AL (2001) Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem 276:47379–47386

    Article  CAS  Google Scholar 

  105. Madsen SJ, Angell-Petersen E, Spetalen S et al (2006) Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg Med 38:540–548

    Article  Google Scholar 

  106. Liu W, Chen N, Jin H et al (2007) Intravenous repeated-dose toxicity study of ZnPcS2P2-based-photodynamic therapy in beagle dogs. Regul Toxicol Pharmacol 47:221–231

    Article  CAS  Google Scholar 

  107. (a) Schmidt MH, Meyer GA, Reichert KW et al (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol 67:201– 207; (b) Dereski MO, Madigan L, Chopp M (1995) Brain response to photodynamic therapy with Photofrin, nonsulfonated aluminum phthalocyanine and tin purpurin. Proc SPIE 2371:579–581

    Google Scholar 

  108. Hopper C, Kubler A, Lewis H et al (2004) mTHPC mediated photodynamic therapy for early oral squamous cell carcinoma. Int J Cancer 111:138–146

    Article  CAS  Google Scholar 

  109. (a) Allen CM, Langlois R, Sharman WM et al (2002) Photodynamic properties of amphiphilic derivates of aluminum tetrasulfophthalocyanine. Photochem Photobiol 76(2):208–216; (b) Ketabchi A, MacRobert A, Speight PM et al (1998) Induction of apoptotic cell death by photodynamic therapy in human keratinocytes. Arch Oral Biol 43(2):143–149; (c) Dilkes MG, Benjamin E, Ovaisi S et al (2003) Treatment of primary mucosal head and neck squamous cell carcinoma using photodynamic therapy: results after 25 treated cases. J Laryng Otol 117:713–717

    Google Scholar 

  110. Peng Q, Moan J, Nesland JM et al (1990) Aluminum phthalocyanines with asymmetrical lower sulfonation and with symmetrical higher sulfonation: a comparison of localizing and photosensitizing mechanism in human tumor LOX xenografts. Int J Cancer 46(4):719–726

    Article  CAS  Google Scholar 

  111. Inés Yslas E, Prucca C, Romanini S et al (2009) Biodistribution and phototherapeutic pro­perties of Zinc (II) 2,9,16,23-tetrakis (methoxy) phthalocyanine in vivo. Photodiagn Photodyn Ther 6:62–70

    Article  CAS  Google Scholar 

  112. (a) Spencer JM, Henry M. (2010) Actinic keratosis. eMedi cine: http://emedicine.medscape.com/23July; (b) Boda D, Neagu M, Constantin C et al (2009) New photosensitizers versus aminolevulinic acid (ALA) in experimental photodynamic therapy of actinic keratosis – A case report. Anal Sci Univ AI Cuza Gen Molec Biol X:61–69

  113. Kiesslich T, Krammer B, Plaetzer K (2006) Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr Med Chem 13:2189–2204

    Article  CAS  Google Scholar 

  114. Berlanda J, Kiesslich T, Oberdanner CB et al (2006) Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells. J Environ Pathol Toxicol Oncol 25:173–188

    CAS  Google Scholar 

  115. Berg K, Bommer JC, Moan J (1989) Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation. Photochem Photobiol 49:587–594

    Article  CAS  Google Scholar 

  116. Love WG, Havenaar EC, Lowe PJ et al (1994) Uptake of zinc(II)- phthalocyanine by HepG2 cells expressing the low density lipoprotein receptor: studies with the liposomal formulation CGP55847. Proc SPIE 2078:381–388

    Article  CAS  Google Scholar 

  117. Neagu M, Manda C, Constantin C et al (2007) Structural differences of porphyrins in photodynamic therapy induces distinct antineoplastic effects. J Porphyr Phthalocyanines 01:58–67

    Article  Google Scholar 

  118. Guery JC, Sette A, Dragomir A et al (1992) Selective immunosuppression by administration of major histocompatibility complex (MHC) class II-binding peptides. I evidence for in vivo MHC blocade preventing T cell activation. J Exp Med 175:1345–1354

    Article  CAS  Google Scholar 

  119. Vermes I, Haanen C, Steffens-Nakken H et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  Google Scholar 

  120. Fernandes-Alnemri T, Armstrong RC, Krebs J et al (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93:7464–7469

    Article  CAS  Google Scholar 

  121. Shapiro HM (2001) Optical measurement in cytometry: light scattering, extinction, absorption and fluorescence. Methods Cell Biol 63:107–129

    Article  CAS  Google Scholar 

  122. Weaver JL (2000) Introduction to flow cytometry. Methods 21:199–201

    Article  CAS  Google Scholar 

  123. Tănase C, Codorean E, ArdeleanuC et al (2004) Experimental Model of Antitumoral Photodynamic Therapy with Phthalocyanines – Pathological Evaluation. In: Soares F, Vassallo J, Bleggi Torres LF (eds) Proc. 2nd Intercontinental Congress of Pathology, pp 117–120

    Google Scholar 

  124. (a) Chan WS, Marshall JF, Svensen R et al (1987) Photosensitizing activity of phthalocyanine dyes screened against tissue culture cells. Photochem Photobiol 45:757–761; (b) van Bruggen N, Chan WS, Syha J et al (1992) Cell and tissue response of a murine tumour to phthalocyanine-mediated photodynamic therapy. Eur J Cancer 28:4246–4249; (c) Perrin Tamietti BF, Machado AHA, Maftoum-Costa M et al (2007) Analysis of mitochondrial activity related to cell death after PDT with AlPcS4. Photomed Laser Surg 25(3):175–179

    Google Scholar 

  125. Simstein R, Burow M, Parker A et al (2003) Apoptosis, chemoresistance, and breast cancer: insight from the MCF-7 cell model system. Exp Biol Med 228:995–1003

    CAS  Google Scholar 

  126. (a) Alexandrova R, Stoykova E, Ion RM et al (2005) In vitro cytotoxicity assessment of phthalocyanines on virus-transformed animal cells. Proc SPIE 5830:404–408; (b) Rumie Vittar NB, Awruch J, Azizuddin K et al (2010) Caspase-independent apoptosis, in human MCF-7c3 breast cancer cells, following PDT, with a novel water-soluble phthalocyanine. Int J Biochem Cell Biol 42:1123–1131

    Google Scholar 

  127. Yslas EI, Prucca C, Romanini S et al (2009) Biodistribution and phototherapeutic properties of Zinc (II) 2, 9, 16, 23-tetrakis (methoxy) phtalocyanine in vivo. Photodiagn Photodyn Ther 6(1):62–70

    Article  CAS  Google Scholar 

  128. Alexandrova R, Sabotinov O, Stoykova E et al (2004) In vitro cytotoxicity assessment of [5,10,15,20-tetra (4-sulfophenyl) porphyrin] on tumor and non-tumor cell lines. Proc SPIE 5449:227–234

    Article  CAS  Google Scholar 

  129. Perzelova A, Macicova I, Mraz P et al (1998) Characterization of two new permanent glioma cell lines 8-MG-BA and 42-MG-BA. Neoplasma 42:25–29

    Google Scholar 

  130. Pop SF, Ion RM, Neagu M et al (2010) Photodynamic therapy on B16 cells with tetrasulphonated porphyrin and different light sources. J Mater Sci Eng 4(3):10–16

    Google Scholar 

  131. Wang JC (2009) Untangling the double helix. DNA entanglement and the action of the DNA topoisomerases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  132. Spitzner JR, Muller MT (1988) A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res 16(12):5533–5556

    Article  CAS  Google Scholar 

  133. Muller MT, Spitzner JR, DiDonato JA et al (1988) Single-strand DNA cleavages by eukaryotic topoisomerase II. Biochemistry 27(22):8369–8379

    Article  CAS  Google Scholar 

  134. Brown WM (1980) Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. PNAS 77(6):3605–3609

    Article  CAS  Google Scholar 

  135. Chan WS, West CML, Moore JV et al (1991) Photocytotoxic efficacy of sulphonated species of aluminium phthalocyanine against cell monolayers, multicellular spheroids and in viva tumours. Br J Cancer 64:827–832

    Article  CAS  Google Scholar 

  136. van Lier JB (1990) Phthalocyanines as photodynamic sensitizers. In: Kessel D (ed) Photodynamic therapy of neoplastic disease, vol 1. CRC Press, Boca Raton, pp 279–291

    Google Scholar 

  137. Tralau CJ, MacRobert AJ, I’D C-S et al (1987) Photodynamic therapy with phthalo­cyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma. Br J Cancer 55:389–395

    Article  CAS  Google Scholar 

  138. Chan WS, Marshall JF, Hart IR (1987) Photodynamic therapy of a murine tumour following sensitization with chloro aluminum sulfonated phthalocyanine. Photochem Photobiol 46:867–871

    Article  CAS  Google Scholar 

  139. Brasseur N, Ali H, Langlois R et al (1987) Biological activities of phthalocyanines-V. Photodynamic therapy of EMT6 mammary tumours in mice with sulfonated phthalocyanines. Photochem Photobiol 45:581–586

    Article  CAS  Google Scholar 

  140. Milanesi C, Zhou C, Biolo R et al (1990) Zn(II)-phthalocyanine as a photodynamic agent for turnouts. II. Studies on the mechanism of photosensitised tumour necrosis. Br J Cancer 61:846–850

    Article  CAS  Google Scholar 

  141. Ben-Hur E, Rosenthal I (1986) Photosensitization of Chinese hamster cells by water-soluble phthalocyanines. Photochem Photobiol 43:615–619

    Article  CAS  Google Scholar 

  142. Canti G, France P, Marelli O et al (1990) Comparative study of the therapeutic effect of photoactivated hematoporphyrin derivative and aluminium disulfonated phthalocyanines on tumor bearing mice. Cancer Lett 53:123–127

    Article  CAS  Google Scholar 

  143. I’ M, Madarnas P, Ouellet R et al (1996) Biological activities of phthalocyanines XVII. Histopathological evidence for different mechanisms of EMT-6 tumor necrosis induced by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin. Anticancer Res 16:613–620

    Google Scholar 

  144. Ali H, Langlois R, Wagner JR et al (1988) Biological activities of phthalocyanines-X. Synthesis and analyses of sulfonated phthalocyanines. Photochem Photobiol 47:713–717

    Article  CAS  Google Scholar 

  145. Boyle RW, Leznoff CC, van Lier JE (1993) Biological activities of phthalocyanines–XVI. Tetrahydroxy- and tetraalkylhydroxy zinc phthalocyanines. Effect of alkyl chain length on in vitro and in vivo photodynamic activities. Br J Cancer 67(6):1177–1181

    Article  CAS  Google Scholar 

  146. Brasseur N, Ali H, Langlois R et al (1987) Biological activities of phthalocyanines-VII. Photoinactivation of V-79 Chinese hamster cells, by selectively sulfonated gallium phthalocyanines. Photochem Photobiol 46:739–745

    Article  CAS  Google Scholar 

  147. Brasseur N, Ali H, Langlois R et al (1987) Biological activities of ohthalocyanines-V. Phoiodynamic therapy of EMT-i mammary tumors in mice with sulfonated phthalocyanines. Photochem Photobiol 45:581–590

    Article  CAS  Google Scholar 

  148. Brasseur N, Ali H, Langlois R et al (1988) Biological activities of phthalocyanines-IX. Photosensitization of V-79 Chinese hamster cells and EMT-6 mouse mammary tumor by selectively sulfonated zinc phthalocyanines. Photochem Photobiol 41:705–712

    Article  Google Scholar 

  149. Rousseau J, Boyle RW, Maclennan AH et al (1991) Biodistribution and tumor uptake of [67Ga]chlorogallium-tetraoctadecyloxy phthalocyanine and its sulfonation products in tumor bearing C3H mice. 1991. Int J Radiat Appl Instrum Part B Nucl Med Biol 18(7):777–782

    CAS  Google Scholar 

  150. Langlois R, Ali H, Brasseur N et al (1986) Biological activities of phthalocyanines-IV. Type II sensitized photooxidation of L-tryptophan and cholesterol by sulfonated metallophthalocyanines. Photochem Photobiol 44:117–125

    Article  CAS  Google Scholar 

  151. Winkelman J, Spicer SS (1962) The metachromatic interaction of biebrich scarlet with histone and other cationic polymers. J Histochem Cytochem 11(4):489–492

    Article  Google Scholar 

  152. Kim HR, Luo Y, Li G et al (1999) Enhanced apoptotic response to photodynamic therapy with bcl-2 transfection. Cancer Res 59:3429–3432

    CAS  Google Scholar 

  153. Kessel D, Castelli M (2001) Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. Photochem Photobiol 74:318–322

    Article  CAS  Google Scholar 

  154. Morris RL, Azizuddin K, Lam M et al (2003) Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy. Cancer Res 63:5194–5197

    CAS  Google Scholar 

  155. Usuda J, Chiu SM, Azizuddin K et al (2002) Promotion of photodynamic therapy-induced apoptosis by the mitochondrial protein Smac/DIABLO: dependence on Bax. Photochem Photobiol 76:217–223

    Article  CAS  Google Scholar 

  156. Xue L, He J, Oleinick NL (1999) Promotion of photodynamic therapy-induced apoptosis by stress kinases. Cell Death Differ 6:855–864

    Article  CAS  Google Scholar 

  157. Xue LY, Chiu SM, Oleinick NL (2001) Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res 263:145–155

    Article  CAS  Google Scholar 

  158. Xue LY, Chiu SM, Oleinick NL (2001) Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 20:3420–3427

    Article  CAS  Google Scholar 

  159. Xue LY, Qiu Y, He J et al (1999) Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 18:3391–3398

    Article  CAS  Google Scholar 

  160. Furre IE, Shahzidi S, Luksiene Z et al (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65:11051–11060

    Article  CAS  Google Scholar 

  161. Ichinose S, Usuda J, Hirata T et al (2006) Lysosomal cathepsin initiates apoptosis, which is regulated by photodamage to Bcl-2 at mitochondria in photodynamic therapy using a novel photosensitizer, ATX-s10 (Na). Int J Oncol 29:349–355

    CAS  Google Scholar 

  162. Ji Z, Yang G, Vasovic V et al (2006) Subcellular localization pattern of protoporphyrin IX is an important determinant for its photodynamic efficiency of human carcinoma and normal cell lines. J Photochem Photobiol B Biol 84:213–220

    Article  CAS  Google Scholar 

  163. Kessel D (2002) Relocalization of a cationic porphyrin during photodynamic therapy. Photochem Photobiol Sci 1:837–840

    Article  CAS  Google Scholar 

  164. Kessel D, Luo Y (2005) Intracellular sites of photodamage as a factor in apoptotic cell death. J Porphyr Phthalocyanines 5:181–184

    Article  Google Scholar 

  165. Kriska T, Korytowski W, Girotti AW (2002) Hyperresistance to photosensitized lipid peroxidation and apoptotic killing in 5-aminolevulinate-treated tumor cells overexpressing mitochondrial GPX4. Free Radic Biol Med 33:1389–1402

    Article  CAS  Google Scholar 

  166. Zawacka-Pankau J, Issaeva N, Hossain S et al (2007) Protoporphyrin IX interacts with wild-type p53 protein in vitro and induces cell death of human colon cancer cells in a p53-dependent and independent manner. J Biol Chem 282:2466–2473

    Article  CAS  Google Scholar 

  167. Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  CAS  Google Scholar 

  168. Kessel D, Luo Y, Deng Y, Chang CK (1997) The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 65:422–426

    Article  CAS  Google Scholar 

  169. Xue LY, Chiu SM, Fiebig A et al (2003) Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 22:9197–9204

    Article  CAS  Google Scholar 

  170. Yslas EI, Prucca C, Romanini S et al (2009) Biodistribution and phototherapeutic properties of Zinc (II) 2, 9, 16, 23-tetrakis (methoxy) phtalocyanine in vivo. Photodiagn Photodyn Ther 6(1):62–70

    Article  CAS  Google Scholar 

  171. Krestyn E, Kolarova H, Bajgar R et al (2010) Photodynamic properties of ZnTPPS4, ClAlPcS2 and ALA in human melanoma G361 cells. Toxicol In Vitro 24:286–291

    Article  CAS  Google Scholar 

  172. (a) Liu MO, Tai CH, Sain MZ et al (2004) Photodynamic applications of phthalocyanines. J Photochem Photobiol A: Chem 165:131–136; (b) Machado AH, Braga FM, Soares CP et al (2007) Photodynamic therapy a new photosensitizing agent. Photomed Laser Surg 25(3):220–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica-Mariana Ion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ion, RM. (2011). The Use of Phthalocyanines and Related Complexes in Photodynamic Therapy. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_6

Download citation

Publish with us

Policies and ethics