Skip to main content

Sensitization of Singlet Oxygen Formation in Aqueous Media

  • Chapter
  • First Online:
  • 1399 Accesses

Abstract

Photosensitized oxidation, mediated by singlet molecular oxygen (1O2) in aqueous or biological media, is of great importance for number of environmental and medical applications. However, sensitization of 1O2 formation and its reactivity in aqueous media have certain limitations, first of all owing to the extremely low 1O2 lifetime and intermolecular interactions of different nature. Methodologies for the quantification of 1O2 production and sensitizers, applicable for aqueous media, are considered with particular focus on factors, affecting photosensitizer ability in aqueous and biological environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Faust B, Holgne J (1987) Sensitized photooxidation of phenols by fulvic acid in natural waters. Environ Sci Technol 21:957–964

    Article  CAS  Google Scholar 

  2. Momzikoff A, Santus R, Giraud M (1983) A study of the photosensitizing properties of seawater. Mar Chem 12:1–14

    Article  CAS  Google Scholar 

  3. Wohrle D, Suvorova O, Gerdes R et al (2004) Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts. J Porphyrins Phthalocyanines 8:1020–1041

    Article  Google Scholar 

  4. Skurlatov YI, Ernestova LS, Vichutinskaya EV et al (1997) Photochemical transformation of polychlorinated phenols. J Photochem Photobiol A Chem 107:207–213

    Article  CAS  Google Scholar 

  5. Ozoemena K, Kuznetsova N, Nyokong T (2001) Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthalocyanines. J Photochem Photobiol A Chem 139:217–224

    Article  CAS  Google Scholar 

  6. Amestica LA, Figueroa FR, Rojo JA (1999) US Patent 5,972,038

    Google Scholar 

  7. Ben-Hur E, Chan W (2003) Phthalocyanines in photobiology and their medical applications. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 19. Academic, San Diego, pp 1–35

    Google Scholar 

  8. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    Article  CAS  Google Scholar 

  9. Jori G, Fabris C, Soncin M et al (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38:468–481

    Article  Google Scholar 

  10. Ben-Hur E, Zuk M, Oetjen J et al (1999) Photochemical decontamination of red cell concentrates with the silicon phthalocyanine Pc4 and red light. J Biomed Opt 4:292–297

    Article  CAS  Google Scholar 

  11. Wilkinson FW, Helman WP, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 22:113–262

    Article  CAS  Google Scholar 

  12. Redmond R, Gamlin J (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70:391–475

    CAS  Google Scholar 

  13. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233, 234:351–371

    Article  Google Scholar 

  14. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722

    Article  CAS  Google Scholar 

  15. Idowu M, Ogunsipe A, Nyokong T (2007) Excited state dynamics of zinc and aluminum phthalocyanine carboxylates. Spectrochim Acta A 68:995–999

    Article  CAS  Google Scholar 

  16. Peng C, Lai P, Chang C (2010) The synthesis and photodynamic properties of meso-substituted, cationic porphyrin derivatives in HeLa cells. Dyes Pigm 84:140–147

    Article  CAS  Google Scholar 

  17. Schmidt R (2006) Potosensitized generation of singlet oxygen. Photochem Photobiol 82:1161–1177

    Article  CAS  Google Scholar 

  18. Krasnovsky A Jr (2007) Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research. Biochem (Moscow) 72:1065–1080

    Article  CAS  Google Scholar 

  19. Frederiksen P, Mcllroy S, Nielsen C et al (2005) Two-photon photosensitized production of singlet oxygen in water. J Am Chem Soc 127:255–269

    Article  CAS  Google Scholar 

  20. Nielsen CV, Johnsen M, Arnbjerg J et al (2005) Synthesis and characterization of water-soluble phenylene-vinylene-based singlet oxygen sensitizers for two-photon excitation. J Org Chem 70:7065–7079

    Article  CAS  Google Scholar 

  21. Spiller W, Kliesch H, Wohrle D et al (1998) Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyrins Phthalocyanines 2:145–158

    Article  CAS  Google Scholar 

  22. Egorov SY, Kamalov VF, Koroteev NI et al (1989) Rise and decay kinetics of photosensitized singlet oxygen luminescence in water. Measurements with nanosecond time-correlated single photon counting technique. Chem Phys Lett 163:421–424

    Article  CAS  Google Scholar 

  23. Redmond R (1991) Enhancement of the sensitivity of radiative and non-radiative detection techniques in the study of photosensitization by water soluble sensitizers using a reverse micelle system. Photochem Photobiol 54:547–556

    Article  CAS  Google Scholar 

  24. Moan J, Wold E (1979) Detection of singlet oxygen production by ESR. Nature 279:450–451

    Article  CAS  Google Scholar 

  25. Ando T, Yoshikazu T, Tanigawa T et al (1997) Quantification of singlet oxygen from hematoporphyrin derivative by electron spin resonance. Life Sci 61:1953–1959

    Article  CAS  Google Scholar 

  26. Nardello V, Brault D, Chavalle P, Aubry J (1997) Measurement of photogenerated singlet oxygen (1O2 (1Δg)) in aqueous solution by specific chemical trapping with sodium 1,3-cyclohexadiene-1,4-diethanoate. J Photochem Photobiol B Biol 39:146–155

    Article  CAS  Google Scholar 

  27. Kraljic I, Mohsni S (1978) A new method for the detection of singlet oxygen in aqueous solutions. Photochem Photobiol 28:577–581

    Article  CAS  Google Scholar 

  28. Gandin E, Lion Y, Van de Vorst A (1983) Quantum yield of singlet oxygen production by xanthene derivatives. Photochem Photobiol 37:271–278

    Article  CAS  Google Scholar 

  29. Rosenthal I, Krishna CM, Riesz P, Ben-Hur E (1986) The role of molecular oxygen in the photodynamic effect of phthalocyanines. Radiat Res 107:136–142

    Article  CAS  Google Scholar 

  30. Evans DF, Upton MW (1985) Studies on singlet oxygen in aqueous solution. I. Formation of singlet oxygen from hydrogen peroxide with two-electron oxidants. J Chem Soc Dalton Trans (6):1141–1145

    Google Scholar 

  31. Lindig BA, Rodgers M, Schaap AP (1980) Determination of the lifetime of singlet oxygen in D2O using 9,10-anthracenedipropionic acid, a water-soluble probe. J Am Chem Soc 102:5590–5593

    Article  CAS  Google Scholar 

  32. Kuznetsova NA, Gretsova NS, Yuzhakova OA et al (2001) New reagents for determination of the quantum efficiency of singlet oxygen generation in aqueous media. Russ J Gen Chem 71:36–41

    Article  CAS  Google Scholar 

  33. Kuznetsova NA, Gretsova NS, Derkacheva VM et al (2003) Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions. J Porphyrins Phthalocyanines 7:147–154

    Article  CAS  Google Scholar 

  34. Kuznetsova NA, Gretsova NS, Derkacheva VM et al (2002) Generation of singlet oxygen with anionic aluminum phthalocyanines in water. Russ J Gen Chem 72:300–306

    Article  CAS  Google Scholar 

  35. Masilela N, Idowu M, Nyokong T (2009) Photophysical, photochemical and electrochemical properties of water soluble silicon, titanium and zinc phthalocyanines. J Photochem Photobiol A Chem 201:91–97

    Article  CAS  Google Scholar 

  36. Pierlot C, Hajjam S, Barthelemy C, Aubry JM (1996) Water-soluble naphthalene derivatives as singlet oxygen (1O2, 1Δg) carriers for biological media. J Photochem Photobiol B Biol 36:31–39

    Article  CAS  Google Scholar 

  37. Amat-Guerri F, Lempe E, Lissi EA et al (1996) Water-soluble 1,3-diphenylisobenzofuran derivatives. Synthesis and evaluation as singlet molecular oxygen acceptors for biological systems. J Photochem Photobiol A Chem 93:49–56

    Article  CAS  Google Scholar 

  38. Nardello V, Aubry J-M (1997) Synthesis and properties of a new cationic water-soluble trap of singlet molecular oxygen. Tetrahedron Lett 38:7361–7364

    Article  CAS  Google Scholar 

  39. Ogilby PR, Foote CS (1982) Chemistry of singlet oxygen. 36. Singlet molecular oxygen (1Δg) luminescence in solution following pulsed laser excitation. Solvent deuterium isotope effects on the lifetime of singlet oxygen. J Am Chem Soc 104:2069–2070

    Article  CAS  Google Scholar 

  40. Kluson P, Drobek M, Kalaji A et al (2008) Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions. J Photochem Photobiol A Chem 199:267–273

    Article  CAS  Google Scholar 

  41. Krasnovsky AA Jr (2008) Luminescence and photochemical studies of singlet oxygen photonics. J Photochem Photobiol A Chem 196:210–218

    Article  CAS  Google Scholar 

  42. Krasnovsky AA Jr (2004) Photodynamic action and singlet oxygen. Biophysics 49:289–306

    Google Scholar 

  43. Hu Y, Jiang L (1996) Generation of semiquinone radical anion and reactive oxygen (1O2, O •−2 and OH) during the photosensitization of water-soluble perylenequinone derivative. J Photochem Photobiol B Biol 33:51–59

    Article  CAS  Google Scholar 

  44. Roslaniec M, Weitman H, Freeman D et al (2000) Liposome binding constants and singlet oxygen quantum yields of hypericin, tetrahydroxy helianthrone and their derivatives: studies in organic solutions and in liposomes. J Photochem Photobiol B Biol 57:149–158

    Article  CAS  Google Scholar 

  45. Shea CR, Chen N, Hasan T (1989) Dynamic aspects of Rhodamine dye photosensitization in vitro with an argon-ion laser. Lasers Surg Med 9:83–89

    Article  CAS  Google Scholar 

  46. Butorina DN, Krasnovskii AA Jr, Savvina LP, Kuznetsova NA (2005) Bromorhodamines as efficient photosensitizers in the formation of singlet molecular oxygen in aqueous and ethanolic solutions. Russ J Phys Chem 79:791–794

    CAS  Google Scholar 

  47. Ricchelli F (1995) Photophysical properties of porphyrins in biological membranes. J Photochem Photobiol B Biol 29:109–118

    Article  CAS  Google Scholar 

  48. Tanielian C, Schweitzer C, Mechin R, Wolff C (2001) Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radic Biol Med 30:208–212

    Article  CAS  Google Scholar 

  49. Tovmasyan AG, Babayan NS, Sahakyan LA et al (2008) Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes. J Porphyrins Phthalocyanines 112:1100–1110

    Article  Google Scholar 

  50. Tanielian C, Wolff C, Esch M (1996) Singlet oxygen production in water: aggregation and charge-transfer effects. J Phys Chem 100:6555–6560

    Article  CAS  Google Scholar 

  51. Zebger I, Snider J, Andersen L et al (2004) Direct optical detection of singlet oxygen from a single cell. Photochem Photobiol 79:319–322

    Article  CAS  Google Scholar 

  52. Krasnovsky AA Jr, Egorov SY, Nasarova OV et al (1988) Photosensitized formation of singlet molecular oxygen in solutions of water soluble porphyrins. Direct luminescence measurements. Studia Biophysica 124:123–142

    Google Scholar 

  53. Zenkevich E, Sagun E, Knyukshto V et al (1996) Photophysical and photochemical properties of potential porphyrin and chlorine photosensitizers for PDT. J Photochem Photobiol B Biol 33:171–180

    Article  CAS  Google Scholar 

  54. Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 73:1–28

    Article  CAS  Google Scholar 

  55. Taima H, Okubo A, Yoshioka N, Inoue H (2005) Synthesis of cationic water-soluble esters of chlorin e6. Tetrahedron Lett 46:4161–4164

    Article  CAS  Google Scholar 

  56. Taima H, Okubo A, Yoshioka N, Inoue H (2006) DNA-binding properties and photocleavage activity of cationic water-soluble chlorophyll derivatives. Chem Eur J 12:6331–6340

    Article  CAS  Google Scholar 

  57. Hargus JA, Fronczek FR, Vicente MGH, Smith KM (2007) Mono-(L)-aspartylchlorin-e6. Photochem Photobiol 83:1006–1015

    Article  CAS  Google Scholar 

  58. Datta A, Dube A, Jain B et al (2002) The effect of pH and surfactant on the aggregation behavior of chlorin p6: a fluorescence spectroscopic study. Photochem Photobiol 75:488–494

    Article  CAS  Google Scholar 

  59. Fernandez JM, Bilgin MD, Grossweiner LI (1997) Singlet oxygen generation by photodynamic agents. J Photochem Photobiol B Biol 37:131–140

    Article  CAS  Google Scholar 

  60. Griffiths SJ, Heelis PF, Haylett AK, Moore JV (1998) Photodynamic therapy of ovarian tumours and normal cells using 5,10,15,20-tetra-(3-carboxymethoxyphenyl)-chlorin. Cancer Lett 125:177–184

    Article  CAS  Google Scholar 

  61. Zorlu Y, Ali Ermeydan M, Dumoulin F et al (2009) Glycerol and galactose substituted zinc phthalocyanines. Synthesis and photodynamic activity. Photochem Photobiol Sci 8:312–318

    Article  CAS  Google Scholar 

  62. Iqbal Z, Hanack M, Ziegler T (2009) Synthesis of an octasubstituted galactose zinc(II) phthalocyanine. Tetrahedron Lett 50:873–875

    Article  CAS  Google Scholar 

  63. Sharman W, Kudrevich S, van Lier J (1996) Novel water-soluble phthalocyanines substituted with phosphonate moieties on the benzo rings. Tetrahedron Lett 37:5831–5834

    Article  CAS  Google Scholar 

  64. Kroon JM, Koehorst RBM, van Dijk M et al (1997) Self-assembling properties of non-ionic tetraphenylporphyrins and discotic phthalocyanines carrying oligo(ethylene oxide) alkyl or alkoxy units. J Mater Chem 7:615–624

    Article  CAS  Google Scholar 

  65. Fernandes D, Awruch J, Dicelio L (1997) Synthesis and photophysical properties of a new cationic water-soluble Zn phthalocyanine. J Photochem Photobiol B Biol 41:227–232

    Article  Google Scholar 

  66. Makarov DA, Yuzhakova OA, Slivka LK et al (2007) Cationic Zn and Al phthalocyanines: synthesis, spectroscopy and photosensitizing properties. J Porphyrins Phthalocyanines 11:586–595

    Article  CAS  Google Scholar 

  67. Edrei R, Gottfried V, Van Lier JE, Kimel S (1998) Sulfonated phthalocyanines; photophysical properties, in vitro cell uptake and structure-activity relationships. J Porphyrins Phthalocyanines 2:191–199

    Article  CAS  Google Scholar 

  68. Boyle RW, Dolphin D (1996) Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 64:469–485

    Article  CAS  Google Scholar 

  69. Daraio M, Aramendia P, San Roman E, Braslavsky S (1991) Carboxilated zinc phthalocyanines II. Dimerization and singlet molecular oxygen sensitization in hexadecyltrimethylammonium bromide micelles. Photochem Photobiol 54:367–373

    Article  CAS  Google Scholar 

  70. Spikes J, Lier J, Bommer J (1995) A comparison of the photoproperties of zinc phthalocyanine and zinc naphthalocyanine tetrasulfonates: model sensitizers for the photodynamic therapy of tumors. J Photochem Photobiol A Chem 91:193–198

    Article  CAS  Google Scholar 

  71. Ogunsipe A, Nyokong T (2005) Photophysical and photochemical studies of sulfonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J Photochem Photobiol A Chem 173:211–220

    Article  CAS  Google Scholar 

  72. Suchan A, Nackiewicz J (2008) Copper octacarboxyphthalocyanine aggregation in buffered solutions. Pol J Chem 82:1489–1502

    CAS  Google Scholar 

  73. Idowu M, Nyokong T (2008) Photosensitizing properties of octacarboxy metallophthalocyanines in aqueous medium and their interaction with bovine serum albumin. J Photochem Photobiol A Chem 200:396–401

    Article  CAS  Google Scholar 

  74. Liu W, Jensen T, Fronczek F et al (2005) Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines. J Med Chem 48:1033–1041

    Article  CAS  Google Scholar 

  75. Lo PC, Chan CMH, Liu JY et al (2007) Highly photocytotoxic glucosylated silicon(IV) phthalocyanines. Effects of peripheral chloro substitution on the photophysical and photodynamic properties. J Med Chem 50:2100–2107

    Article  CAS  Google Scholar 

  76. Li H, Jensen TJ, Fronczek FR, Vicente MGH (2008) Synthesis and properties of series of cationic water-soluble phthalocyanines. J Med Chem 51:502–511

    Article  CAS  Google Scholar 

  77. Hu M, Brasseur N, Yildiz S et al (1998) Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy. J Med Chem 41:1789–1802

    Article  CAS  Google Scholar 

  78. Li H, Nguyen N, Fronczek FR, Vicente MGH (2009) Syntheses and properties of octa-, tetra- and di-hydroxy-substituted phthalocyanines. Tetrahedron 65:3357–3363

    Article  CAS  Google Scholar 

  79. Simon J, Vacus J (1995) Luminescence and anti-aggregative properties of polyoxyethylene-substituted phthalocyanine complexes. Adv Mater 7:797–800

    Article  Google Scholar 

  80. Segalla A, Borsarelli C, Braslavsky S et al (2002) Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci 1:641–648

    Article  CAS  Google Scholar 

  81. Scalise I, Durantini EN (2005) Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorg Med Chem 13:3037–3045

    Article  CAS  Google Scholar 

  82. Kuznetsova N, Makarov D, Yuzhakova O et al (2009) Photophysical properties and photodynamic activity of octacationic oxotitanium(IV) phthalocyanines. Photochem Photobiol Sci 8:1724–1733

    Article  CAS  Google Scholar 

  83. Durmus V, Niokong T (2007) Synthesis, photophysical and photochemical studies of new water-soluble indium(III) phthalocyanines. Photochem Photobiol Sci 6:659–668

    Article  CAS  Google Scholar 

  84. Seotsanyana-Mokhosi I, Kuznetsova N, Nyokong T (2001) Photochemical studies of tetra-2,3-pyridinoporphyrazines. J Photochem Photobiol A Chem 140:215–222

    Article  CAS  Google Scholar 

  85. Tempesti TC, Stockert JC, Durantini EN (2008) Photosensitization ability of a water-soluble zinc(II)tetramethyltetrapyridinoporphyrazinium salt in aqueous solution and biomimetic reverse micelles medium. J Phys Chem B 112:15701–15707

    Article  CAS  Google Scholar 

  86. Lapok L, Claessens CG, Wohrle D, Torres T (2009) Synthesis of water-soluble subphthalocyanines. Tetrahedron Lett 50:2041–2044

    Article  CAS  Google Scholar 

  87. Garcia-Fresnadillo D, Georgiadou Y, Orellana G et al (1996) Singlet-oxygen (1Δg) production by ruthenium(II) complexes containing polyazaheterocyclic ligands in methanol and in water. Helv Chem Acta 79:1222–1239

    Article  CAS  Google Scholar 

  88. Arborgast JW, Darmanyan AP, Foote CS et al (1991) Photophysical properties of C60. J Phys Chem 95:11–12

    Article  Google Scholar 

  89. Prat F, Stackow R, Bernstein R et al (1999) Triplet-state properties and singlet oxygen generation in a homologous series of functionalized fullerene derivatives. J Phys Chem A 103:7230–7235

    Article  CAS  Google Scholar 

  90. Takaguchi Y, Tajima T, Ohta K et al (2002) Reversible binding of C60 to an anthracene bearing a dendritic poly(amidoamine) substituent to give a water-soluble fullerodendrimer. Angew Chem Int Ed 41:817–819

    Article  CAS  Google Scholar 

  91. Blossey EC, Neckers DC, Thayer AL, Schaap AP (1973) Polymer-based sensitizers for photooxidations. J Am Chem Soc 95:5820–5822

    Article  CAS  Google Scholar 

  92. Schaap AP, Thayer AL, Zaklika KA, Valenti PC (1979) Photooxygenations in aqueous solution with a hydrophilic polymer-immobilized photosensitizer. J Am Chem Soc 101:4016–4017

    Article  CAS  Google Scholar 

  93. Mosinger J, Losinska K, Abrhamova T et al (2000) Determination of singlet oxygen production and antibacterial effect of nonpolar porphyrins in heterogeneous systems. Anal Lett 33:1091–1104

    Article  CAS  Google Scholar 

  94. van Laar FMPR, Holsteyns F, Vankelecom IFJ et al (2001) Singlet oxygen generation using PDMS occluded dyes. J Photochem Photobiol A Chem 144:141–151

    Article  Google Scholar 

  95. Bourdelande JL, Font J, Gonzalez-Moreno R (2001) Fullerene C60 bound to insoluble hydrophilic polymer: synthesis, photophysical behavior, and generation of singlet oxygen in water suspensions. Helv Chim Acta 84:3488–3494

    Article  CAS  Google Scholar 

  96. Iliev V, Ileva A, Bilyarska L (1997) Oxidation and photooxidation of sulfur-containing compounds in the presence of immobilized phthalocyanine complexes. J Mol Catal A Chem 126:99–108

    Article  CAS  Google Scholar 

  97. Pepe E, Abbas O, Rebufa C et al (2005) Supported photosensitizers for the visible light activation of phenols towards oxygen. J Photochem Photobiol A Chem 170:143–149

    Article  CAS  Google Scholar 

  98. Gerdes R, Bartels O, Schneider G et al (2001) Photooxidations of phenol, cyclopentadiene and citronellol with photosensitizers ionically bound at a polymeric ion exchanger. Polym Adv Technol 12:152–160

    Article  CAS  Google Scholar 

  99. Aebisher D, Azar NS, Zamadar M et al (2008) Singlet oxygen chemistry in water: a porous vycor glass-supported photosensitizer. J Phys Chem B 112:1913–1917

    Article  CAS  Google Scholar 

  100. Neckers DC, Blossey EC, Scharp AP (1982) US Patent 4,315,998

    Google Scholar 

  101. Nowakowska M, Kepcynski M, Szczubialka K (1995) Synthesis and photochemical properties of poly[(sodium p-styrenesulfonate)-co-(4-vinylbenzyl chloride)] containing rose Bengal chromophores. Macromol Chem 196:2073–2080

    Article  CAS  Google Scholar 

  102. Wu L, Li A, Gao G et al (2007) Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine. J Mol Catal A Chem 269:183–189

    Article  CAS  Google Scholar 

  103. Tu H, Lin Y, Lin H et al (2009) In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater 21:172–177

    Article  CAS  Google Scholar 

  104. Ishii K, Shiine M, Kikukawa Y et al (2007) Silica gel-supported photofunctional silicon phthalocyanine complexes: photodesorption of molecular oxygen by singlet oxygen generation. Chem Phys Lett 448:264–267

    Article  CAS  Google Scholar 

  105. Wang S, Gao R, Zhou F, Selke M (2004) Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem 14:487–493

    Article  CAS  Google Scholar 

  106. Roy I, Ohulchanskyy TY, Pudavar HE et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125:7860–7865

    Article  CAS  Google Scholar 

  107. Rossi LM, Silva PR, Vono L et al (2008) Protoporphyrin IX nanoparticle carrier: preparation, optical properties, and singlet oxygen generation. Langmuir 24:12534–12538

    Article  CAS  Google Scholar 

  108. Xing C, Xu Q, Tang H et al (2009) Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc 131:13117–13124

    Article  CAS  Google Scholar 

  109. Snow AV (2003) Phthalocyanine aggregation. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 17. Academic, San Diego, pp 129–176

    Google Scholar 

  110. Chow YFA, Dolphin D, Paine JP III et al (1988) The excited states of covalently linked dimeric porphyrins. I: the excited singlet states. J Photochem Photobiol B Biol 2:253–263

    Article  CAS  Google Scholar 

  111. Elemans J, van Hameren R, Nolte R, Rowan A (2006) Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv Mater 18:1251–1266

    Article  CAS  Google Scholar 

  112. Iliev V, Alexiev V, Bilyarska L (1999) Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulphur containing compounds. J Mol Catal A Chem 137:15–22

    Article  CAS  Google Scholar 

  113. Ogunsipe A, Nyokong T (2005) Photophysicochemical consequences of bovin serum albumin binding to non-transition metal phthalocyanine sulfonates. Photochem Photobiol Sci 4:510–516

    Article  CAS  Google Scholar 

  114. Alarcon E, Edwards AM, Garcia AM et al (2009) Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts. Photochem Photobiol Sci 8:255–263

    Article  CAS  Google Scholar 

  115. Imai H, Misawa K, Munakata H, Uemori Y (2008) Water-soluble zinc porphyrins as artificial receptors for amino acids. Chem Pharm Bull 56:1470–1472

    Article  CAS  Google Scholar 

  116. Balaz M, Collins HA, Dahlstedt E, Anderson HL (2009) Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Org Biomol Chem 7:874–888

    Article  CAS  Google Scholar 

  117. Idowu M, Nyokong T (2009) Synthesis, photophysical and photochemical studies of water soluble cationic zinc phthalocyanine derivatives. Polyhedron 28:416–424

    Article  CAS  Google Scholar 

  118. Verdree V, Pakhomov S, Su G et al (2007) Water-soluble metallo-phthalocyanines: the role of the functional groups on the spectral and photophysical properties. J Fluoresc 17:547–563

    Article  CAS  Google Scholar 

  119. Zimcik P, Miletin M, Musil Z et al (2006) Cationic azaphthalocyanines bearing aliphatic tertiary amino substituents – synthesis, singlet oxygen production and spectroscopic studies. J Photochem Photobiol A 183:59–69

    Article  CAS  Google Scholar 

  120. Makarov DA, Kuznetsova NA, Yuzhakova OA et al (2009) Russ J Phys Chem A 83:1044–1050

    Article  CAS  Google Scholar 

  121. Kuznetsova N, Kaliya O (2002) Abstracts of the second international conference porphyrins and phthalocyanines, Kyoto, 270

    Google Scholar 

  122. Liu JY, Lo PC, Fong WP, Ng DKP (2009) Effects of the number and position of the substituents on the in vitro photodynamic activities of glucosylated zinc(II) phthalocyanines. Org Biomol Chem 7:1583–1591

    Article  CAS  Google Scholar 

  123. Lipstman S, Goldberg I (2009) Hydrogen-bonded assemblies of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin with dimethylformamide, dimethylacetamide and water. Acta Crystallogr C C65:o3–o7

    CAS  Google Scholar 

  124. Arnbjerg J, Johnsen M, Nielsen C et al (2007) Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media. J Phys Chem A 111:4573–4583

    Article  CAS  Google Scholar 

  125. Kubat P, Lang K, Anzenbacher P (2004) Modulation of porphyrin binding to serum albumin by pH. Biochim Biophys Acta 1670:40–48

    Article  CAS  Google Scholar 

  126. Gensch T, Viappiani C, Braslavsky SE (1999) Structural volume changes upon photo­excitation of porphyrins: role of the nitrogen-water interactions. J Am Chem Soc 121:10573–10582

    Article  CAS  Google Scholar 

  127. Ostler RB, Scully AD, Taylor AG et al (2000) The effect of pH on the photophysics and photochemistry of di-sulphonated aluminum phthalocyanine. Photochem Photobiol 71:397–404

    Article  CAS  Google Scholar 

  128. Dairou J, Vever-Bizet C, Brault D (2002) Self-association of disulfonated deuteroporphyrin and its esters in aqueous solution and photosensitized production of singlet oxygen by the dimers. Photochem Photobiol 75:229–236

    Article  CAS  Google Scholar 

  129. Ben-Hur E, Dubbelman TM, Van Steveninck J (1992) Effect of fluoride on inhibition of plasma membrane functions in Chinese hamster ovary cells photosensitized by aluminum phthalocyanine. Radiat Res 131:47–52

    Article  CAS  Google Scholar 

  130. De Silva AP, Gunaratne HQN, Gunnlaugsson T et al (1997) Signaling recognition events with fluorescent sensors and switchers. Chem Rev 97:1515–1566

    Article  Google Scholar 

  131. Ozlem S, Akkaya EU (2009) Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. J Am Chem Soc 131:48–49

    Article  CAS  Google Scholar 

  132. Bonnett R, Martinez G (2001) Photobleaching of sensitizers, used in photodynamic therapy. Tetrahedron 57:9513–9547

    Article  CAS  Google Scholar 

  133. McCubbin I, Phillips D (1986) The photophysics and photostability of zinc(II) and aluminium(III) sulphonated naphthalocyanines. J Photochem 34:187–195

    Article  CAS  Google Scholar 

  134. Spikes JD (1992) Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin. Photochem Photobiol 55:797–808

    Article  CAS  Google Scholar 

  135. Spikes JD, Bommer JS (1993) Photobleaching of mono-L-aspartyl chlorine e6 (NPc6): a candidate sensitizer for the photodynamic therapy of tumors. Photochem Photobiol 58:346–350

    Article  CAS  Google Scholar 

  136. Kuznetsova N, Kaliya O, Lukyanets E (1995) Photochemistry of laser dyes for visible region. “Atomic and molecular pulsed lasers”. Proc SPIE 2619:161–165

    Article  CAS  Google Scholar 

  137. Darwent J, McCubbin I, Phillips D (1982) Exited singlet and triplet state electron-transfer reactions of aluminium(III) sulphonated phthalocyanine. J Chem Soc Faraday Trans 2(78):347–357

    Google Scholar 

  138. Linden SM, Neckers DC (1988) Type I and type II sensitizers based on rose Bengal onium salts. Photochem Photobiol 47:543–550

    Article  CAS  Google Scholar 

  139. Jori G, Brown SB (2004) Photosensitized inactivation of microorganisms. Photochem Photobiol Sci 3:403–405

    Article  CAS  Google Scholar 

  140. Kuznetsova N, Kaliya O, Vorozhtsov G (2006) Solar photodynamic oxidative disinfection of ponds. European conference “Environmental applications of advanced oxidation processes”, Chania, Book of Abstracts

    Google Scholar 

  141. Kuznetsova NA, Kaliya OL, Vorozhtsov GN (2007) Photosensitized oxidation by dioxygen as the base for drinking water disinfection. J Haz Mater 146:487–491

    Article  CAS  Google Scholar 

  142. Strakhovskaya MG, Antonenko YN, Pashkovskaya AA et al (2009) Electrostatic binding of substituted metal phthalocyanines to enterobacterial cells: it’s role in photodynamic inactivation. Biochem (Moscow) 74:1305–1314

    Article  CAS  Google Scholar 

  143. Mantareva V, Kussovski V, Angelov I et al (2007) Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem 15:4829–4835

    Article  CAS  Google Scholar 

  144. Kussovski V, Mantareva V, Angelov I et al (2009) Photodynamic inactivation of aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett 294:133–140

    Article  CAS  Google Scholar 

  145. Ikawa Y, Moriyama S, Harada H, Furuta H (2008) Acid-base properties and DNA-binding of water-soluble N-confused porphyrins with cationic side-armes. Org Biomol Chem 6:4157–4166

    Article  CAS  Google Scholar 

  146. Da Silva A, Jr TO (2003) Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochim Biophys Acta 1643:95–103

    Article  CAS  Google Scholar 

  147. Lambrechts S, Aalders M, Langeveld-Klerks D et al (2004) Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins. Photochem Photobiol 79:297–302

    Article  CAS  Google Scholar 

  148. Wessels JM, Strauss W, Seidlitz HK et al (1992) Intracellular localization of meso-tetraphenylporphyrin tetrasulphonate probed by time-resolved and microscopic fluorescence spectroscopy. J Photochem Photobiol B Biol 12:275–284

    Article  CAS  Google Scholar 

  149. Villanueva A (1993) The cationic meso-substituted porphyrins: an interesting group of photosensitizers. J Photochem Photobiol B Biol 18:295–298

    Article  CAS  Google Scholar 

  150. Demidova TN, Hamblin MR (2005) Photodynamic inactivation of Bacillus spores mediated by phenothiazinium dyes. Appl Environ Microbiol 71:6918–6925

    Article  CAS  Google Scholar 

  151. Wainwright M (2004) Photoinactivation of viruses. Photochem Photobiol Sci 3:406–411

    Article  CAS  Google Scholar 

  152. Kuznetsova N, Kaliya O, Strakhovskaya M, Zubairov M (2009) Photodynamic inactivation of avian influenza virus in aqueous media. First international workshop on application of Redox technologies in the environment, Istambul, pp 145–147

    Google Scholar 

  153. Costa L, Alves E, Carvalho C et al (2008) Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochem Photobiol Sci 7:415–422

    Article  CAS  Google Scholar 

  154. Silva EMP, Giuntini F, Faustino MAF et al (2005) Synthesis of cationic beta-vinyl substituted mesotetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorg Med Chem Lett 15:3333–3337

    Article  CAS  Google Scholar 

  155. Casteel MJ, Jayaraj K, Gold A et al (2004) Photoinactivation of hepatitis a virus by synthetic porphyrins. Photochem Photobiol 80:294–300

    Article  CAS  Google Scholar 

  156. Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  157. Lukyanets EA (1999) Phthalocyanines as photosensitizers in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines 3:424–432

    Article  CAS  Google Scholar 

  158. Ben-Dror S, Bronshtein I, Wiehe A et al (2006) On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers. Photochem Photobiol 82:695–701

    Article  CAS  Google Scholar 

  159. Rousseau J, Langlois R, Ali H, van Lier JE (1990) Biological activities of phthalocyanines. XII: synthesis, tumor uptake and biodistribution of 14C-labled disulfonated and trisulfonated gallium phthalocyanine in C3H mice. J Photochem Photobiol B 6:121–132

    Article  CAS  Google Scholar 

  160. Chan W, Marshall J, Svensen R et al (1990) Effect of sulfonation on the cell and tissue distribution of the photosensirizer aluminum phthalocyanine. Cancer Res 50:4533–4538

    CAS  Google Scholar 

  161. Wood SR, Holroyd JA, Brawn SB (1997) The subcellular localization of Zn(II) phthalocyanines and their redistribution on exposure to light. Photochem Photobiol 65:397–402

    Article  CAS  Google Scholar 

  162. Agarwal ML, Clay ME, Harvey EJ et al (1991) Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 51:5993–5996

    CAS  Google Scholar 

  163. Villanueva A, Dominguez V, Polo S et al (1999) Photokilling mechanisms induced by zinc(II)-phthalocyanine on cultured tumor cells. Oncol Res 11:447–453

    CAS  Google Scholar 

  164. Hirohara S, Obata M, Alitomo H et al (2009) Synthesis and photocytotoxicity of S-glucosylated 5,10,15,20-tetrakis(tetrafluorophenyl)porphyrin metal complexes as efficient 1O2-generating glycoconjugates. Bioconjug Chem 20:944–952

    Article  CAS  Google Scholar 

  165. Cai J-H, Huang J-W, Zhao P et al (2008) Photodegradation of 1,5-dihydroxynaphthalene catalyzed by meso-tetra(4-sulfonatophenyl)porphyrin in aerated aqueous solution. J Mol Catal A Chem 292:49–53

    Article  CAS  Google Scholar 

  166. Iliev V, Prahov L, Bilyarska L et al (2000) Oxidation and photooxidation of sulfide and thiosulfate ions catalyzed by transition metal chalcogenides and phthalocyanine complexes. J Mol Catal A Chem 151:161–169

    Article  CAS  Google Scholar 

  167. Spiller W, Wohrle D, Schulz-Ekloff G et al (1996) Photo-oxidation of sodium sulfide by sulfonated phthalocyanines in oxygen-saturated aqueous solutions containing detergents or latexes. J Photochem Photobiol A Chem 95:161–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. O. L. Kaliya for encouragement and fruitful discussion. Financial support by the Moscow City Government is also deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kuznetsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kuznetsova, N. (2011). Sensitization of Singlet Oxygen Formation in Aqueous Media. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_5

Download citation

Publish with us

Policies and ethics