Skip to main content

The Contribution of Theoretical Chemistry to the Drug Design in Photodynamic Therapy

  • Chapter
  • First Online:
Photosensitizers in Medicine, Environment, and Security
  • 1222 Accesses

Abstract

The possibility to design new photosensitizers active in photodynamic therapy starting from computed chemical physics electronic and geometrical properties by using the density functional theory is presented. In particular, we were concerned with the porphyrin-like systems able to activate the singlet O2 excited state (Type II reactions). The investigated properties include the energy gap between ground and excited states with different spin multiplicities (Singlet-Triplet) and the electronic excitation energies (Q band of the UV-Vis spectra).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacDonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  2. Van Tenten Y, Schuitmaker HJ, De Wolf A, Willekens B, Vrensen GFJM, Tassignon MJ (2001) The effect of photodynamic therapy with bacteriochlorin a on lens epithelial cells in a capsular bag model. Exp Eye Res 72:41–48

    Article  Google Scholar 

  3. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  Google Scholar 

  4. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  Google Scholar 

  5. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    Article  CAS  Google Scholar 

  6. O’Connor AE, William M, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85:1053–1074

    Article  Google Scholar 

  7. Sternberg ED, Dolphin D, Bruckner C (1998) Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202

    Article  CAS  Google Scholar 

  8. Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 73:1–28

    Article  CAS  Google Scholar 

  9. Gorman A, Killoran J, O’Shea C (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. J Am Chem Soc 126:10619–10631

    Article  CAS  Google Scholar 

  10. Ramaiah D, Eckert I, Arun KT, Weidenfeller L, Epe B (2002) Squaraine dyes for photodynamic therapy: study of their cytotoxicity and genotoxicity in bacteria and mammalian cells. Photochem Photobiol 76:672–677

    Article  CAS  Google Scholar 

  11. Blume JE, Oseroff AR (2007) Aminolevulinic acid photodynamic therapy for skin cancers. Dermatol Clin 25:5–14

    Article  CAS  Google Scholar 

  12. Dougherty TJ, Potter WR, Weishaupt KR (1984) The structure of the active component of hematoporphyrin derivative. Prog Clin Biol Res 170:301–314

    CAS  Google Scholar 

  13. Selman SH, Albrecht D, Keck RW, Brennan P, Kondo S (2001) Studies of tin ethyl etiopurpurin photodynamic therapy of the canine prostate. J Urol 165:1795–1801

    Article  CAS  Google Scholar 

  14. Renschler MF, Yuen AR, Panella TJ, Wieman TJ, Dougherty S, Esserman L, Panjehpour M, Taber SW, Fingar VH, Lowe E, Engel JS, Lum B, Woodburn KW, Cheong WF, Miller RA (1998) Photodynamic therapy trials with lutetium texaphyrin (Lu-Tex) in patients with locally recurrent breast cancer. Proc SPIE Int Opt Eng 3247:35–39

    Article  CAS  Google Scholar 

  15. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  CAS  Google Scholar 

  16. Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario JM (ed) Recent developments and applications in density-functional theory. Elsevier Science B. V, Amsterdam

    Google Scholar 

  17. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Assessment of functionals for TD-DFT calculations of singlet  −  triplet transitions. J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  19. Ahlrichs R, Bär M, Häser M, Horn M, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system Turbomole. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  20. Becke AD (1993) A new mixing of hartree-fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  21. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  22. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  23. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  24. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distribution of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  25. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  26. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  27. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805

    Google Scholar 

  28. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  29. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326–334

    Article  CAS  Google Scholar 

  30. Petit L, Quartarolo A, Adamo C, Russo N (2006) Spectroscopic properties of porphyrin-like photosensitizers: insights from theory. J Phys Chem B 110:2398–2404

    Article  CAS  Google Scholar 

  31. Lanzo I, Russo N, Sicilia E (2008) First-principle time-dependent study of magnesium-containing porphyrin-like compounds potentially useful for their application in photodynamic therapy. J Phys Chem B 112:4123–4130

    Article  CAS  Google Scholar 

  32. Quartarolo AD, Sicilia E, Russo N (2009) On the potential use of squaraine derivatives as photosensitizers in photodynamic therapy: a TDDFT and RICC2 survey. J Chem Theory Comput 5:1849–1857

    Article  CAS  Google Scholar 

  33. Perpète EA, Jacquemin D (2009) J Mol Struct THEOCHEM 914:100–105

    Article  Google Scholar 

  34. Herzberg G (1950) Spectra of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  35. Gouterman M, Wagnière G, Snyder L (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Università della Calabria and MIUR (PRIN 2008F5A3AF_005) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Quartarolo, A.D., Russo, N., Sicilia, E., Adamo, C. (2011). The Contribution of Theoretical Chemistry to the Drug Design in Photodynamic Therapy. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_3

Download citation

Publish with us

Policies and ethics