Skip to main content

Photosensitizers in Solar Energy Conversion

  • Chapter
  • First Online:
Photosensitizers in Medicine, Environment, and Security

Abstract

Today’s energy problems arise from the predicted exhaustion of fossil energy resources and the negative aspects of climate change. Additionally, the increasing energy needs and the improved environmental awareness of people all over the world necessitate the utilization of environmental friendly energy sources. The most abundant energy source is the sun. The solar energy is largely available, surpassing our annual energy demand by the factor of 10,000. Each second the sun produces enough energy to cover the energy demand for the whole humanity for 1,000,000 years. The dye-sensitized solar cell (DSC) concept is an interesting alternative to conventional silicon based solar cells due to its advantages of easy and fast fabrication, low production costs, short energy payback time and high photoelectric conversion efficiencies. In the following pages an overview shall be given of the operation principle of DSCs and the dyes used as sensitizers for solar energy conversion. The aim is to give an outline of the evolution of the DSC concept, the advantages and drawbacks of dye-sensitized systems and the different dyes (metal-organic and organic) applied in liquid and solid-state DSCs. Furthermore, the state of the art performance of the different types of dyes will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becquerel E (1839) Mémoire sur les effects électriques produits sous línfluence des rayons solaires. Compt Rend 9:561–567

    Google Scholar 

  2. Hallwachs W (1888) Ueber die Elektrisierung von Metallplatten durch Bestrahlung mit elektrischem Licht. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen 1888:174–176

    Google Scholar 

  3. Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt. Ann Phys 17:132–148

    Article  CAS  Google Scholar 

  4. The nobel prize in physics 1921/Albert Einstein biography (1921) Available via database provider. http://nobelprize.org/nobel_prizes/physics/laureates/1921/einstein-bio.html. Accessed 16 Aug 2010

  5. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    Article  CAS  Google Scholar 

  6. Available via database provider. http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=1958-002B. Accessed 16 Aug 2010

  7. Moser J (1887) Notiz über die Verstärkung photoelektrischer Ströme durch optische Sensibilsierung. Monatsh Chem 8:373

    Article  Google Scholar 

  8. Gerischer H, Michel-Beyerle ME, Rebentrost F, Tributsch H (1968) Sensitization of charge injection into semiconductors with large band gap. Electrochim Acta 13(6):1509–1515

    Article  CAS  Google Scholar 

  9. Tributsch H, Calvin M (1971) Electrochemistry of excited molecules: photoelectrochemical reactions of chlorophylls. Photochem Photobiol 14(2):95–112

    Article  CAS  Google Scholar 

  10. Fujighima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  11. Gerischer H (1975) Electrochemical photo and solar cells principles and some experiments. J Electroanal Chem 58(1):263–274

    Article  CAS  Google Scholar 

  12. Moser J, Grätzel M (1984) Photosensitized electron injection in colloidal semiconductors. J Am Chem Soc 106(22):6557–6564

    Article  CAS  Google Scholar 

  13. Tennakone K, Hewaparakkrama KP, Dewasurendra M, Jayatissa AH, Weerasena LK (1988) Dye-sensitised solid-state photovoltaic cells. Semicond Sci Technol 3(4):382

    Article  CAS  Google Scholar 

  14. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  15. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X  =  Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  16. Nazeeruddin MK, Liska P, Moser J, Vlachopoulos N, Grätzel M (1990) Conversion of light into electricity with trinuclear ruthenium complexes adsorbed on textured TiO2 films. Helv Chim Acta 73(6):1788–1803

    Article  CAS  Google Scholar 

  17. Amadelli R, Argazzi R, Bignozzi CA, Scandola F (1990) Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2) 2−2 . J Am Chem Soc 112(20):7099–7103

    Article  CAS  Google Scholar 

  18. Tennakone K, Kumara GRRA, Kumarasinghe AR, Wijayantha KGU, Sirimanne PM (1995) A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol 10(12):1689–1693

    Article  Google Scholar 

  19. Hagen J, Schaffrath W, Otschik P, Fink R, Bacher A, Schmidt H-W, Haarer D (1997) Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth Met 89(3):215–220

    Article  CAS  Google Scholar 

  20. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585

    Article  CAS  Google Scholar 

  21. Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U (2001) High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett 79(13):2085–2087

    Article  CAS  Google Scholar 

  22. Cao F, Oskam G, Searson PC (1995) A solid state, dye sensitized photoelectrochemical cell. J Phys Chem 99(47):17071–17073

    Article  CAS  Google Scholar 

  23. Murakoshi K, Kogure R, Wada Y, Yanagida S (1998) Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole. Sol Energy Mater Sol Cells 55(1–2):113–125

    CAS  Google Scholar 

  24. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  CAS  Google Scholar 

  25. Ito S, Ha N-LC, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, Péchy P, Nazeeruddin MK, Grätzel M (2006) High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun 38:4004–4006

    Article  CAS  Google Scholar 

  26. Park JH, Jun Y, Yun H-G, Lee S-Y, Kang MG (2008) Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J Electrochem Soc 155(7):F145–F149

    Article  CAS  Google Scholar 

  27. Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91(17):1529–1598

    Article  CAS  Google Scholar 

  28. Weerasinghe HC, Sirimanne PM, Simon GP, Cheng YB (2009) Fabrication of efficient solar cells on plastic substrates using binder-free ball milled titania slurries. J Photochem Photobiol A 206(1):64–70

    Article  CAS  Google Scholar 

  29. Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H (2010) Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol Energy Mater Sol Cells 94(5):812–816

    Article  CAS  Google Scholar 

  30. Reed MA (1993) Quantum dots. Sci Am 268:118–123

    Article  CAS  Google Scholar 

  31. Nozik AJ (2002) Quantum dot solar cells. Physica E 14(1–2):115–120

    Article  CAS  Google Scholar 

  32. Sun W-T, Yu Y, Pan H-Y, Gao X-F, Chen Q, Peng L-M (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125

    Article  CAS  Google Scholar 

  33. Lin S-C, Lee Y-L, Chang C-H, Shen Y-J, Yang Y-M (2007) Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl Phys Lett 90(14):143517–143523

    Article  CAS  Google Scholar 

  34. Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857

    Article  CAS  Google Scholar 

  35. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18753

    CAS  Google Scholar 

  36. Edwards PP, Porch A, Jones MO, Morgan DV, Perks RM (2004) Basic materials physics of transparent conducting oxides. Dalton Trans 19:2995–3002

    Article  CAS  Google Scholar 

  37. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20(4):35–44

    Article  CAS  Google Scholar 

  38. Martínez A, Huerta L, Rueda de León JMO, Acosta D, Malik O, Aguilar M (2006) Physicochemical characteristics of fluorine doped tin oxide films. J Phys D Appl Phys 39(23):5091–5096

    Article  CAS  Google Scholar 

  39. Skupien K, Putyra P, Walter J, Kozlowski RH, Khelashvili G, Hinsch A, Würfel U (2009) Catalytic materials manufactured by the polyol process for monolithic dye-sensitized solar cells. Prog Photovolt 17(1):67–73

    Article  CAS  Google Scholar 

  40. Lee S-H, Han S-H, Jung HS, Shin H, Lee J, Noh J-H, Lee S, Cho I-S, Lee J-K, Kim J, Shin H (2010) Al-doped ZnO thin film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J Phys Chem C 114(15):7185–7189

    Article  CAS  Google Scholar 

  41. Horng R-H, Wuu D-S, Lien Y-C, Lan W-H (2001) Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Appl Phys Lett 79(18):2925–2927

    Article  CAS  Google Scholar 

  42. Dai S, Weng J, Sui Y, Chen S, Xiao S, Huang Y, Kong F, Pan X, Hu L, Zhang C, Wang K (2008) The design and outdoor application of dye-sensitized solar cells. Inorg Chim Acta 361(3):786–791

    Article  CAS  Google Scholar 

  43. Wearable solar technology (2010) Available via database provider. http://www.presseagentur.com/interactivewear/detail.php?pr_id=1391&lang=en. Accessed 20 Aug 2010

  44. Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G (2005) Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater 4(8):607–611

    Article  CAS  Google Scholar 

  45. Pichot F, Pitts JR, Gregg BA (2000) Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells. Langmuir 16(13):5626–5630

    Article  CAS  Google Scholar 

  46. Kavan L, Grätzel M (1995) Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochim Acta 40(5):643–652

    Article  CAS  Google Scholar 

  47. Duyar Ö, Placido F, Durusoy HZ (2008) Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5. J Phys D Appl Phys 41(9):095307

    Article  CAS  Google Scholar 

  48. Thelakkat M, Schmitz C, Schmidt H-W (2002) Fully vapor-deposited thin-layer titanium dioxide solar cells. Adv Mater 14(8):577–581

    Article  CAS  Google Scholar 

  49. Hardee KL, Bard AJ (1975) Semiconductor electrodes. I. Chemical vapor deposition and application of polycrystalline N-type titanium dioxide electrodes to the photosensitized electrolysis of water. J Electrochem Soc 122(6):739–742

    Article  CAS  Google Scholar 

  50. Hardee KL, Bard AJ (1977) Semiconductor electrodes. X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J Electrochem Soc 124(2):215–224

    Article  CAS  Google Scholar 

  51. Peng B, Jungmann G, Jäger C, Haarer D, Schmidt H-W, Thelakkat M (2004) Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord Chem Rev 248(13–14):1479–1489

    Article  CAS  Google Scholar 

  52. Cameron PJ, Peter LM (2003) Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. J Phys Chem B 107(51):14394–14400

    Article  CAS  Google Scholar 

  53. Zhu K, Schiff EA, Park NG, van de Lagemaat J, Frank AJ (2002) Determining the locus for photocarrier recombination in dye-sensitized solar cells. Appl Phys Lett 80(4):685–687

    Article  CAS  Google Scholar 

  54. Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin SM, Kay A, Nazeeruddin MK, Grätzel M (2005) Control of dark current in photoelectrochemical (TiO2/I–I3-) and dye-sensitized solar cells. Chem Commun 34:4351–4353

    Article  CAS  Google Scholar 

  55. Ito S, Ishikawa K, Wen C-J, Yoshida S, Watanabe T (2000) Dye-sensitized photocells with meso-macroporous TiO2 film electrodes. Bull Chem Soc Jpn 73(11):2609–2614

    Article  CAS  Google Scholar 

  56. Cameron PJ, Peter LM, Hore S (2004) How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? J Phys Chem B 109(2):930–936

    Article  CAS  Google Scholar 

  57. Cameron PJ, Peter LM (2005) How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? J Phys Chem B 109(15):7392–7398

    Article  CAS  Google Scholar 

  58. Jose R, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92(2):289–301

    Article  CAS  Google Scholar 

  59. Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H, Arakawa H (2000) Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol Energy Mater Sol Cells 64(2):115–134

    Article  CAS  Google Scholar 

  60. Sayama K, Sugihara H, Arakawa H (1998) Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater 10(12):3825–3832

    Article  CAS  Google Scholar 

  61. Nasr C, Hotchandani S, Kamat PV (1998) Role of iodide in photoelectrochemical solar cells. Electron transfer between iodide ions and ruthenium polypyridyl complex anchored on nanocrystalline SiO2 and SnO2 films. J Phys Chem B 102(25):4944–4951

    Article  CAS  Google Scholar 

  62. Snaith HJ, Ducati C (2010) SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett 10(4):1259–1265

    Article  CAS  Google Scholar 

  63. Burnside S, Moser J-E, Brooks K, Grätzel M, Cahen D (1999) Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B 103(43):9328–9332

    Article  CAS  Google Scholar 

  64. He J, Lindström H, Hagfeldt A, Lindquist S-E (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103(42):8940–8943

    Article  CAS  Google Scholar 

  65. Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L (2009) High incident photon-to-current conversion efficiency of π-type dye-sensitized solar cells based on NiO and organic chromophores. Adv Mater 21(29):2993–2996

    Article  CAS  Google Scholar 

  66. Karthikeyan CS, Thelakkat M (2008) Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance. Inorg Chim Acta 361(3):635–655

    Article  CAS  Google Scholar 

  67. Park N-G, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based iO2 solar cells. J Phys Chem B 104(38):8989–8994

    Article  CAS  Google Scholar 

  68. Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 177:347–414

    Article  CAS  Google Scholar 

  69. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Péchy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog Photovolt 15(7):603–612

    Article  CAS  Google Scholar 

  70. Schmidt-Mende L, Zakeeruddin SM, Grätzel M (2005) Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Appl Phys Lett 86(1):013504/1–013504/3

    Article  CAS  Google Scholar 

  71. Snaith HJ, Schmidt-Mende L (2007) Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv Mater 19(20):3187–3200

    Article  CAS  Google Scholar 

  72. Schmidt-Mende L, Grätzel M (2006) TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 500(1–2):296–301

    Article  CAS  Google Scholar 

  73. Kroeze J, Hirata N, Schmidt-Mende L, Orizu C, Ogier S, Carr K, Grätzel M, Durrant J (2006) Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors. Adv Funct Mater 16(14):1832–1838

    Article  CAS  Google Scholar 

  74. Krüger J, Plass R, Grätzel M, Cameron PJ, Peter LM (2003) Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J Phys Chem B 107(31):7536–7539

    Article  CAS  Google Scholar 

  75. Luque A, Hegedus S (2002) Handbook of photovoltaic science and engineering. Wiley, Chichester

    Google Scholar 

  76. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO structures. Chem Commun 20:2791–2808

    Article  CAS  Google Scholar 

  77. Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39(12):2498

    Article  CAS  Google Scholar 

  78. Liu Y, Zhou B, Xiong B, Bai J, Li L (2007) TiO2 nanotube arrays and TiO2-nanotube-array based dye-sensitized solar cell. Chin Sci Bull 52(12):1585–1589

    Article  CAS  Google Scholar 

  79. Zhu K, Neale NR, Miedaner A, Frank AJ (2006) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7(1):69–74

    Article  CAS  Google Scholar 

  80. Wang P, Klein C, Moser J-E, Humphry-Baker R, Cevey-Ha N-L, Charvet R, Comte P, Zakeeruddin SM, Grätzel M (2004) Amphiphilic ruthenium sensitizer with 4,4′-diphosphonic acid-2,2′-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells. J Phys Chem B 108(45):17553–17559

    Article  CAS  Google Scholar 

  81. McNamara WR, Snoeberger RC, Li G, Schleicher JM, Cady CW, Poyatos M, Schmuttenmaer CA, Crabtree RH, Brudvig GW, Batista VS (2008) Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)-terpyridine complexes. J Am Chem Soc 130(43):14329–14338

    Article  CAS  Google Scholar 

  82. Galoppini E (2004) Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord Chem Rev 248(13–14):1283–1297

    Article  CAS  Google Scholar 

  83. Kakiage K, Nakada Y, Kogure T, Yamamura M, Kyomen T, Unno M, Hanaya M (2008) Applicability of silanol to sensitizing dye for dye-sensitized solar cell. Silicon Chem 3(6):303–305

    Article  CAS  Google Scholar 

  84. Unno M, Kakiage K, Yamamura M, Kogure T, Kyomen T, Hanaya M (2010) Silanol dyes for solar cells: higher efficiency and significant durability. Appl Organomet Chem 24(3):247–250

    Article  CAS  Google Scholar 

  85. Baik C, Kim D, Kang M-S, Kang SO, Ko J, Nazeeruddin MK, Grätzel M (2009) Organic dyes with a novel anchoring group for dye-sensitized solar cell applications. J Photochem Photobiol A 201(2–3):168–174

    Article  CAS  Google Scholar 

  86. Zakeeruddin SM, Nazeeruddin MK, Humphry-Baker R, Péchy P, Quagliotto P, Barolo C, Viscardi G, Grätzel M (2002) Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films. Langmuir 18(3):952–954

    Article  CAS  Google Scholar 

  87. Haque SA, Park T, Holmes AB, Durrant JR (2003) Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitized inorganic/organic semiconductor heterojunctions. Chemphyschem 4(1):89–93

    Article  CAS  Google Scholar 

  88. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164(1–3):3–14

    Article  CAS  Google Scholar 

  89. Mishra A, Fischer M, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    Article  CAS  Google Scholar 

  90. Robertson N (2006) Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 45(15):2338–2345

    Article  CAS  Google Scholar 

  91. Ooyama Y, Harima Y (2009) Molecular designs and syntheses of organic dyes for dye-sensitized solar cells. Eur J Org Chem 2009(18):2903–2934

    Article  CAS  Google Scholar 

  92. McEvoy AJ, Grätzel M (1994) Sensitisation in photochemistry and photovoltaics. Sol Energy Mater Sol Cells 32(3):221–227

    Article  CAS  Google Scholar 

  93. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Ruthenium(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  94. Karthikeyan CS, Peter K, Wietasch H, Thelakkat M (2007) Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Sol Energy Mater Sol Cells 91(5):432–439

    Article  Google Scholar 

  95. Renouard T, Fallahpour RA, Nazeeruddin MK, Humphry-Baker R, Gorelsky SI, Lever ABP, Grätzel M (2002) Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorg Chem 41(2):367–378

    Article  CAS  Google Scholar 

  96. Nazeeruddin MK, Péchy P, Grätzel M (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem Commun 18:1705–1706

    Article  Google Scholar 

  97. Kroeze JE, Hirata N, Koops S, Nazeeruddin MK, Schmidt-Mende L, Grätzel M, Durrant JR (2006) Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells. J Am Chem Soc 128(50):16376–16383

    Article  CAS  Google Scholar 

  98. Yum J-H, Chen P, Grätzel M, Nazeeruddin MK (2008) Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 1(8–9):699–707

    Article  CAS  Google Scholar 

  99. Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. Angew Chem Int Ed 44(35):5740–5744

    Article  CAS  Google Scholar 

  100. Bonhôte P, Moser J-E, Humphry-Baker R, Vlachopoulos N, Zakeeruddin SM, Walder L, Grätzel M (1999) Long-lived photoinduced charge separation and redox-type photochromism on mesoporous oxide films sensitized by molecular dyads. J Am Chem Soc 121(6):1324–1336

    Article  Google Scholar 

  101. Hirata N, Lagref J-J, Palomares EJ, Durrant JR, Nazeeruddin MK, Grätzel M, Di Censo D (2004) Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. Chem Eur J 10(3):595–602

    Article  CAS  Google Scholar 

  102. Chen P, Yum JH, Angelis FD, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett 9(6):2487–2492

    Article  CAS  Google Scholar 

  103. Krüger J, Bach U, Grätzel M (2000) Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices. Adv Mater 12(6):447–451

    Article  Google Scholar 

  104. Torimoto T, Tsuda T, K-i O, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22(11):1196–1221

    Article  CAS  Google Scholar 

  105. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93(8):1167–1175

    Article  CAS  Google Scholar 

  106. Kong F-T, Dai S-Y, Wang K-J (2007) Review of recent progress in dye-sensitized solar cells. Adv Opto Electron 2007(10):1–14, Article ID 75384

    Article  CAS  Google Scholar 

  107. Wang Z-S, Sayama K, Sugihara H (2005) Efficient eosin Y dye-sensitized solar cell containing Br/Br 3 electrolyte. J Phys Chem B 109(47):22449–22455

    Article  CAS  Google Scholar 

  108. Oskam G, Bergeron BV, Meyer GJ, Searson PC (2001) Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J Phys Chem B 105(29):6867–6873

    Article  CAS  Google Scholar 

  109. Bergeron BV, Marton A, Oskam G, Meyer GJ (2004) Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators. J Phys Chem B 109(2):937–943

    Article  CAS  Google Scholar 

  110. Li TC, Spokoyny AM, She C, Farha OK, Mirkin CA, Marks TJ, Hupp JT (2010) Ni(III)/(IV) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J Am Chem Soc 132(13):4580–4582

    Article  CAS  Google Scholar 

  111. Son KM, Kang M, Vittal R, Lee J, Kim K-J (2008) Effects of substituents of imidazolium cations on the performance of dye-sensitized TiO2 solar cells. J Appl Electrochem 38(12):1647–1652

    Article  CAS  Google Scholar 

  112. Boschloo G, Häggman L, Hagfeldt A (2006) Quantification of the effect of 4-tert-butylpyridine addition to I/I 3 redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B 110(26):13144–13150

    Article  CAS  Google Scholar 

  113. Zhang C, Huang Y, Huo Z, Chen S, Dai S (2009) Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability. J Phys Chem C 113(52):21779–21783

    Article  CAS  Google Scholar 

  114. Kay A, Grätzel M (1993) Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97(23):6272–6277

    Article  CAS  Google Scholar 

  115. Kuang D, Klein C, Zhang Z, Ito S, Moser J-E, Zakeeruddin SM, Grätzel M (2007) Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells. Small 3(12):2094–2102

    Article  CAS  Google Scholar 

  116. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925

    Article  CAS  Google Scholar 

  117. Shi D, Pootrakulchote N, Li R, Guo J, Wang Y, Zakeeruddin SM, Grätzel M, Wang P (2008) New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes. J Phys Chem C 112(44):17046–17050

    Article  CAS  Google Scholar 

  118. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42(11):1819–1826

    Article  CAS  Google Scholar 

  119. Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Grätzel M (2009) Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J Am Chem Soc 131(2):558–562

    Article  CAS  Google Scholar 

  120. Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M (2007) Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett 7(11):3372–3376

    Article  CAS  Google Scholar 

  121. Wang M, Moon S-J, Zhou D, Le Formal F, Cevey-Ha N-L, Humphry-Baker R, Grätzel C, Wang P, Zakeeruddin SM, Grätzel M (2010) Enhanced-light-harvesting amphiphilic ruthenium dye for efficient solid-state dye-sensitized solar cells. Adv Funct Mater 20(11):1821–1826

    Article  CAS  Google Scholar 

  122. Wang M, Moon S-J, Xu M, Chittibabu K, Wang P, Cevey-Ha N-L, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2010) Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. Small 6(2):319–324

    Article  CAS  Google Scholar 

  123. Chen C-Y, Wang M, Li J-Y, Pootrakulchote N, Alibabaei L, Ngoc-le C-h, Decoppet J-D, Tsai J-H, Grätzel C, Wu C-G, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10):3103–3109

    Article  CAS  Google Scholar 

  124. Wang M, Liu J, Cevey-Ha N-L, Moon S-J, Liska P, Humphry-Baker R, Moser J-E, Grätzel C, Wang P, Zakeeruddin SM, Grätzel M (2010) High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today 5(3):169–174

    Article  CAS  Google Scholar 

  125. Jagdish Bhongale C, Thelakkat M (2010) Efficient hybrid polymer/titania solar cells sensitized with carboxylated polymer dye. Sol Energy Mater Sol Cells 94(5):817–822

    Article  CAS  Google Scholar 

  126. Liu X, Zhang W, Uchida S, Cai L, Liu B, Ramakrishna S (2010) An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv Mater 22(20):E150–E155

    Article  CAS  Google Scholar 

  127. Lohwasser RH, Bandara J, Thelakkat M (2009) Tailor-made synthesis of poly(3-hexylthiophene) with carboxylic end groups and its application as a polymer sensitizer in solid-state dye-sensitized solar cells. J Mater Chem 19(24):4126–4130

    Article  CAS  Google Scholar 

  128. Yanagida S, Yu Y, Manseki K (2009) Iodine/iodide-free dye-sensitized solar cells. Acc Chem Res 42(11):1827–1838

    Article  CAS  Google Scholar 

  129. Imoto K, Takahashi K, Yamaguchi T, Komura T, J-i N, Murata K (2003) High-performance carbon counter electrode for dye-sensitized solar cells. Sol Energy Mater Sol Cells 79(4):459–469

    Article  CAS  Google Scholar 

  130. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153(12):A2255–A2261

    Article  CAS  Google Scholar 

  131. Koo B-K, Lee D-Y, Kim H-J, Lee W-J, Song J-S, Kim H-J (2006) Seasoning effect of dye-sensitized solar cells with different counter electrodes. J Electroceram 17(1):79–82

    Article  CAS  Google Scholar 

  132. Kusama H, Orita H, Sugihara H (2008) TiO2 Band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24(8):4411–4419

    Article  CAS  Google Scholar 

  133. Cahen D, Hodes G, Grätzel M, Guillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104(9):2053–2059

    Article  CAS  Google Scholar 

  134. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4(2):145–153

    Article  CAS  Google Scholar 

  135. Wedler G (2004) Lehrbuch der physikalischen Chemie. Wiley-VCH, Weinheim

    Google Scholar 

  136. Poplavskyy D, Nelson J (2003) Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J Appl Phys 93(1):341–346

    Article  CAS  Google Scholar 

  137. Snaith HJ, Grätzel M (2007) Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD. Adv Mater 19(21):3643–3647

    Article  CAS  Google Scholar 

  138. Kuang D, Klein C, Snaith HJ, Moser J-E, Humphry-Baker R, Comte P, Zakeeruddin SM, Grätzel M (2006) Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano Lett 6(4):769–773

    Article  CAS  Google Scholar 

  139. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells. Electrochem Commun 2(9):658–662

    Article  CAS  Google Scholar 

  140. Smestad GP, Krebs FC, Lampert CM, Granqvist CG, Chopra KL, Mathew X, Takakura H (2008) Reporting solar cell efficiencies in solar energy materials and solar cells. Sol Energy Mater Sol Cells 92(4):371–373

    Article  CAS  Google Scholar 

  141. AM1.5G Datensatz (2010) Available via database provider. http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed 20 Aug 2010

  142. Ito S, Nazeeruddin K, Liska P, Comte P, Charvet R, Péchy P, Jirousek M, Kay A, Zakeeruddin SM, Grätzel M (2006) Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog Photovolt 14(7):589–601

    Article  CAS  Google Scholar 

  143. Argazzi R, Larramona G, Contado C, Bignozzi CA (2004) Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine and cyanide ligands. J Photochem Photobiol A 164(1–3):15–21

    Article  CAS  Google Scholar 

  144. Sauvé G, Cass ME, Coia G, Doig SJ, Lauermann I, Pomykal KE, Lewis NS (2000) Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. J Phys Chem B 104(29):6821–6836

    Article  CAS  Google Scholar 

  145. Islam A, Sugihara H, Hara K, Singh LP, Katoh R, Yanagida M, Takahashi Y, Murata S, Arakawa H, Fujihashi G (2001) Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes. Inorg Chem 40(21):5371–5380

    Article  CAS  Google Scholar 

  146. Geary EAM, Yellowlees LJ, Jack LA, Oswald IDH, Parsons S, Hirata N, Durrant JR, Robertson N (2005) Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3′-, 4,4′-, and 5,5′-disubstituted bipyridyl: applications in dye-sensitized solar cells. Inorg Chem 44(2):242–250

    Article  CAS  Google Scholar 

  147. Ning Z, Zhang Q, Wu W, Tian H (2009) Novel iridium complex with carboxyl pyridyl ligand for dye-sensitized solar cells: high fluorescence intensity, high electron injection efficiency? J Organomet Chem 694(17):2705–2711

    Article  CAS  Google Scholar 

  148. Alonso-Vante N, Nierengarten J-F, Sauvage J-P (1994) Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex. J Chem Soc Dalton Trans 11:1649–1654

    Article  Google Scholar 

  149. Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42(11):1809–1818

    Article  CAS  Google Scholar 

  150. Wang X-F, Tamiaki H (2010) Cyclic tetrapyrrole based molecules for dye-sensitized solar cells. Energy Environ Sci 3(1):94–106

    Article  CAS  Google Scholar 

  151. Jayaweera PM, Palayangoda SS, Tennakone K (2001) Nanoporous TiO2 solar cells sensitized with iron(II) complexes of bromopyrogallol red ligand. J Photochem Photobiol A 140(2):173–177

    Article  CAS  Google Scholar 

  152. Cheng F, Tang N (2008) Synthesis, photophysical, and electrochemical properties of two novel trinuclear Ru(II) polypyridyl complexes. Inorg Chem Commun 11(3):243–245

    Article  CAS  Google Scholar 

  153. Rawling T, Austin C, Buchholz F, Colbran SB, McDonagh AM (2009) Ruthenium phthalocyanine-bipyridyl dyads as sensitizers for dye-sensitized solar cells: dye coverage versus molecular efficiency. Inorg Chem 48(7):3215–3227

    Article  CAS  Google Scholar 

  154. Fukuda S, Satake A, Kobuke Y (2006) Synthesis of hexazincporphyrin and hexaamine substituted Ru(bipy)3 complexes for alternate self-assembly by tritopic coordinations. Thin Solid Films 499(1–2):263–268

    Article  CAS  Google Scholar 

  155. Giribabu L, Kumar CV, Rao CS, Reddy VG, Reddy PY, Chandrasekharam M, Soujanya Y (2009) High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy Environ Sci 2(7):770–773

    Article  CAS  Google Scholar 

  156. Chen C-Y, Lu H-C, Wu C-G, Chen J-G, Ho K-C (2007) New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Adv Funct Mater 17(1):29–36

    Article  CAS  Google Scholar 

  157. Hinsch A, Kroon JM, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J (2001) Long-term stability of dye-sensitised solar cells. Prog Photovolt 9(6):425–438

    Article  CAS  Google Scholar 

  158. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127(48):16835–16847

    Article  CAS  Google Scholar 

  159. Krüger J, Plass R, Grätzel M, Matthieu H-J (2002) Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′-bipyridine)-bis(isothiocyanato) ruthenium(II). Appl Phys Lett 81(2):367–369

    Article  CAS  Google Scholar 

  160. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624

    Article  CAS  Google Scholar 

  161. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys Part 2 45(24-28):L638–L640

    Article  CAS  Google Scholar 

  162. Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shi D, Gao F, Wang P (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113(15):6290–6297

    Article  CAS  Google Scholar 

  163. Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2005) A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J Am Chem Soc 127(3):808–809

    Article  CAS  Google Scholar 

  164. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728

    Article  CAS  Google Scholar 

  165. Wu S-J, Chen C-Y, Chen J-G, Li J-Y, Tung Y-L, Ho K-C, Wu C-G (2010) An efficient light-harvesting ruthenium dye for solar cell application. Dyes Pigm 84(1):95–101

    Article  CAS  Google Scholar 

  166. Kim J-J, Choi H, Kim C, Kang M-S, Kang H-S, Ko J (2009) Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2′-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells. Chem Mater 21(24):5719–5726

    Article  CAS  Google Scholar 

  167. Gao F, Wang Y, Zhang J, Shi D, Wang M, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem Commun 23:2635–2637

    Article  CAS  Google Scholar 

  168. Yu Q, Liu S, Zhang M, Cai N, Wang Y, Wang P (2009) An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells: the effects of π-conjugation extension. J Phys Chem C 113(32):14559–14566

    Article  CAS  Google Scholar 

  169. Chen C-Y, Wu S-J, Li J-Y, Wu C-G, Chen J-G, Ho K-C (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19(22):3888–3891

    Article  CAS  Google Scholar 

  170. Lee K-M, Wu S-J, Chen C-Y, Wu C-G, Ikegami M, Miyoshi K, Miyasaka T, Ho K-C (2009) Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J Mater Chem 19(28):5009–5015

    Article  CAS  Google Scholar 

  171. Gao F, Cheng Y, Yu Q, Liu S, Shi D, Li Y, Wang P (2009) Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg Chem 48(6):2664–2669

    Article  CAS  Google Scholar 

  172. Snaith HJ (2010) Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv Funct Mater 20(1):13–19

    Article  CAS  Google Scholar 

  173. Nazeeruddin MK, Zakeeruddin SM, Lagref JJ, Liska P, Comte P, Barolo C, Viscardi G, Schenk K, Grätzel M (2004) Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord Chem Rev 248(13–14):1317–1328

    Article  CAS  Google Scholar 

  174. Schmidt-Mende L, Kroeze JE, Durrant JR, Nazeeruddin MK, Grätzel M (2005) Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics. Nano Lett 5(7):1315–1320

    Article  CAS  Google Scholar 

  175. Wang P, Zakeeruddin SM, Comte P, Charvet R, Humphry-Baker R, Grätzel M (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B 107(51):14336–14341

    Article  CAS  Google Scholar 

  176. Wang P, Zakeeruddin SM, Humphry-Baker R, Moser JE, Grätzel M (2003) Molecular-scale interface engineering of TiO2 nanocrystals: improving the efficiency and stability of dye-sensitized solar cells. Adv Mater 15(24):2101–2104

    Article  CAS  Google Scholar 

  177. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2(6):402–407

    Article  CAS  Google Scholar 

  178. Sahin C, Tozlu C, Ocakoglu K, Zafer C, Varlikli C, Icli S (2008) Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg Chim Acta 361(3):671–676

    Article  CAS  Google Scholar 

  179. Jang S-R, Yum J-H, Klein C, Kim K-J, Wagner P, Officer D, Grätzel M, Nazeeruddin MK (2009) High molar extinction coefficient ruthenium sensitizers for thin film dye-sensitized solar cells. J Phys Chem C 113(5):1998–2003

    Article  CAS  Google Scholar 

  180. Nazeeruddin MK, Klein C, Liska P, Grätzel M (2005) Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coord Chem Rev 249(13–14):1460–1467

    Article  CAS  Google Scholar 

  181. Clifford JN, Palomares E, Nazeeruddin MK, Grätzel M, Nelson J, Li X, Long NJ, Durrant JR (2004) Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. J Am Chem Soc 126(16):5225–5233

    Article  CAS  Google Scholar 

  182. Peter K, Thelakkat M (2003) Synthesis and characterization of bifunctional polymers carrying tris(bipyridyl)ruthenium(II) and triphenylamine units. Macromolecules 36(6):1779–1785

    Article  CAS  Google Scholar 

  183. Handa S, Wietasch H, Thelakkat M, Durrant JR, Haque SA (2007) Reducing charge recombination losses in solid state dye sensitized solar cells: the use of donor-acceptor sensitizer dyes. Chem Commun 17:1725–1727

    Article  Google Scholar 

  184. Snaith HJ, Karthikeyan CS, Petrozza A, Teuscher J, Moser JE, Nazeeruddin MK, Thelakkat M, Grätzel M (2008) High extinction coefficient “antenna” dye in solid-state dye-sensitized solar cells: a photophysical and electronic study. J Phys Chem C 112(20):7562–7566

    Article  CAS  Google Scholar 

  185. Clifford JN, Yahioglu G, Milgrom LR, Durrant JR (2002) Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. Chem Commun 12:1260–1261

    Article  CAS  Google Scholar 

  186. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett 8(6):1654–1659

    Article  CAS  Google Scholar 

  187. (2010) results not yet published

    Google Scholar 

  188. Yum J-H, Jung I, Baik C, Ko J, Nazeeruddin MK, Grätzel M (2009) High efficient donor-acceptor ruthenium complex for dye-sensitized solar cell applications. Energy Environ Sci 2(1):100–102

    Article  CAS  Google Scholar 

  189. Willinger K, Fischer K, Kisselev R, Thelakkat M (2009) Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium(II) donor-antenna dyes. J Mater Chem 19(30):5364–5376

    Article  CAS  Google Scholar 

  190. Kuang D, Klein C, Ito S, Moser J-E, Humphry-Baker R, Evans N, Duriaux F, Grätzel C, Zakeeruddin S, Grätzel M (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19(8):1133–1137

    Article  CAS  Google Scholar 

  191. Wang P, Zakeeruddin SM, Moser JE, Humphry-Baker R, Comte P, Aranyos V, Hagfeldt A, Nazeeruddin MK, Grätzel M (2004) Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv Mater 16(20):1806–1811

    Article  CAS  Google Scholar 

  192. Nazeeruddin MK, Bessho T, Cevey L, Ito S, Klein C, De Angelis F, Fantacci S, Comte P, Liska P, Imai H, Grätzel M (2007) A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J Photochem Photobiol A 185(2–3):331–337

    Article  CAS  Google Scholar 

  193. Jiang K-J, J-b X, Masaki N, Noda S, Yanagida S (2008) Efficient sensitization of nanocrystalline TiO2 films with high molar extinction coefficient ruthenium complex. Inorg Chim Acta 361(3):783–785

    Article  CAS  Google Scholar 

  194. Karthikeyan CS, Wietasch H, Thelakkat M (2007) Highly efficient solid-state dye-sensitized TiO2 solar cells using donor-antenna dyes capable of multistep charge-transfer cascades. Adv Mater 19(8):1091–1095

    Article  CAS  Google Scholar 

  195. Kopidakis N, Neale NR, Frank AJ (2006) Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. J Phys Chem B 110(25):12485–12489

    Article  CAS  Google Scholar 

  196. Kuang D, Ito S, Wenger B, Klein C, Moser J-E, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2006) High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc 128(12):4146–4154

    Article  CAS  Google Scholar 

  197. Tovar JD, Rose A, Swager TM (2002) Functionalizable polycyclic aromatics through oxidative cyclization of pendant thiophenes. J Am Chem Soc 124(26):7762–7769

    Article  CAS  Google Scholar 

  198. Chen C-Y, Wu S-J, Wu C-G, Chen J-G, Ho K-C (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45(35):5822–5825

    Article  CAS  Google Scholar 

  199. Heeney M, Zhang W, Crouch DJ, Chabinyc ML, Gordeyev S, Hamilton R, Higgins SJ, McCulloch I, Skabara PJ, Sparrowe D, Tierney S (2007) Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer. Chem Commun 47:5061–5063

    Article  CAS  Google Scholar 

  200. Ballantyne A, Chen L, Nelson J, Bradley D, Astuti Y, Maurano A, Shuttle C, Durrant J, Heeney M, Duffy W, McCulloch I (2007) Studies of highly regioregular poly(3-hexylselenophene) for photovoltaic applications. Adv Mater 19(24):4544–4547

    Article  CAS  Google Scholar 

  201. Södergren S, Siegbahn H, Rensmo H, Lindström H, Hagfeldt A, Lindquist S-E (1997) Lithium intercalation in nanoporous anatase TiO2 studied with XPS. J Phys Chem B 101(16):3087–3090

    Article  Google Scholar 

  202. Koudriachova MV, Harrison NM, de Leeuw SW (2002) Open circuit voltage profile for Li-intercalation in rutile and anatase from first principles. Solid State Ionics 152–153:189–194

    Article  Google Scholar 

  203. Kavan L, Kratochvilova K, Grätzel M (1995) Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J Electroanal Chem 394(1–2):93–102

    Google Scholar 

  204. Frank JA, Kopidakis N, Lagemaat Jvd (2004) Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev 248(13-14):1165–1179

    Article  CAS  Google Scholar 

  205. Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S (2005) Role of electrolytes on charge recombination in eye-sensitized TiO2 solar cell (1): the case of solar cells using the I/I 3 redox couple. J Phys Chem B 109(8):3480–3487

    Article  CAS  Google Scholar 

  206. Park N-G, Chang S-H, Van de Lagemaat J, Kim K-J, Frank AJ (2000) Effect of cations on the open-circuit photovoltage and the charge-injection efficiency of dye-sensitized nanocrystalline rutile TiO2 films. Bull Korean Chem Soc 21(10):985–988

    CAS  Google Scholar 

  207. Jennings JR, Wang Q (2009) Influence of lithium ion concentration on electron injection, transport, and recombination in dye-sensitized solar cells. J Phys Chem C 114(3):1715–1724

    Article  CAS  Google Scholar 

  208. Kopidakis N, Benkstein KD, van de Lagemaat J, Frank AJ (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107(41):11307–11315

    Article  CAS  Google Scholar 

  209. Koops SE, O’Regan BC, Barnes PRF, Durrant JR (2009) Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J Am Chem Soc 131(13):4808–4818

    Article  CAS  Google Scholar 

  210. Haque SA, Palomares E, Cho BM, Green ANM, Hirata N, Klug DR, Durrant JR (2005) Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J Am Chem Soc 127(10):3456–3462

    Article  CAS  Google Scholar 

  211. Heimer TA, Heilweil EJ, Bignozzi CA, Meyer GJ (2000) Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces. J Phys Chem A 104(18):4256–4262

    Article  CAS  Google Scholar 

  212. Barnes PRF, Anderson AY, Koops SE, Durrant JR, O’Regan BC (2008) Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements. J Phys Chem C 113(3):1126–1136

    Article  CAS  Google Scholar 

  213. Schlichthörl G, Huang SY, Sprague J, Frank AJ (1997) Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J Phys Chem B 101(41):8141–8155

    Article  Google Scholar 

  214. Iwamoto S, Sazanami Y, Inoue M, Inoue T, Hoshi T, Shigaki K, Kaneko M, Maenosono A (2008) Fabrication of dye-sensitized solar cells with an open-circuit photovoltage of 1 V. ChemSusChem 1(5):401–403

    Article  CAS  Google Scholar 

  215. Yang Y, Zhang J, Zhou C, Wu S, Xu S, Liu W, Han H, Chen B, X-z Z (2008) Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. J Phys Chem B 112(21):6594–6602

    Article  CAS  Google Scholar 

  216. O’Regan B, Lenzmann F, Muis R, Wienke J (2002) A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem Mater 14(12):5023–5029

    Article  CAS  Google Scholar 

  217. Hara K, Horiguchi T, Kinoshita T, Sayama K, Arakawa H (2001) Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Sol Energy Mater Sol Cells 70(2):151–161

    Article  CAS  Google Scholar 

  218. Snaith HJ, Grätzel M (2006) Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: implication to dye-sensitized solar cells. Appl Phys Lett 89(26):262114–262114-3

    Article  CAS  Google Scholar 

  219. Park T, Haque SA, Potter RJ, Holmes AB, Durrant JR (2003) A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctions. Chem Commun 23:2878–2879

    Article  CAS  Google Scholar 

  220. Haque S, Park T, Xu C, Koops S, Schulte N, Potter R, Holmes A, Durrant J (2004) Interface engineering for solid-state dye-sensitized nanocrystalline solar cells: the use of ion-solvating hole-transporting polymers. Adv Funct Mater 14(5):435–440

    Article  CAS  Google Scholar 

  221. Snaith HJ, Zakeeruddin SM, Schmidt-Mende L, Klein C, Grätzel M (2005) Ion-coordinating sensitizer in solid-state hybrid solar cells. Angew Chem 117(39):6571–6575

    Article  Google Scholar 

  222. Kuang D, Klein C, Snaith HJ, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2008) A new ion-coordinating ruthenium sensitizer for mesoscopic dye-sensitized solar cells. Inorg Chim Acta 361(3):699–706

    Article  CAS  Google Scholar 

  223. Kuang D, Klein C, Ito S, Moser J-E, Humphry-Baker R, Zakeeruddin S, Grätzel M (2007) High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Adv Funct Mater 17(1):154–160

    Article  CAS  Google Scholar 

  224. Yum J-H, Moon S-J, Karthikeyan CS, Wietasch H, Thelakkat M, Zakeeruddin S, Nazeeruddin MK, Grätzel M (2010) submitted

    Google Scholar 

  225. Zaban A, Meier A, Gregg BA (1997) Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. J Phys Chem B 101(40):7985–7990

    Article  CAS  Google Scholar 

  226. Li X, Wang H, Wu H (2010) Phthalocyanines and their analogs applied in dye-sensitized solar cell. In: Functional phthalocyanine molecular materials, vol 135. Springer, Berlin/Heidelberg. doi:Electronic Resource

    Chapter  Google Scholar 

  227. Martinez-Diaz MV, de la Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46(38):7090–7108

    Article  CAS  Google Scholar 

  228. Gervaldo M, Fungo F, Durantini EN, Silber JJ, Sereno L, Otero L (2005) Carboxyphenyl metalloporphyrins as photosensitizers of semiconductor film electrodes. A study of the effect of different central metals. J Phys Chem B 109(44):20953–20962

    Article  CAS  Google Scholar 

  229. Giribabu L, Vijay Kumar C, Gopal Reddy V, Yella Reddy P, Srinivasa Rao C, Jang S-R, Yum J-H, Nazeeruddin MK, Grätzel M (2007) Unsymmetrical alkoxy zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. Sol Energy Mater Sol Cells 91(17):1611–1617

    Article  CAS  Google Scholar 

  230. Kang MG, Park N-G, Park YJ, Ryu KS, Chang SH (2003) Manufacturing method for transparent electric windows using dye-sensitized TiO2 solar cells. Sol Energy Mater Sol Cells 75(3–4):475–479

    CAS  Google Scholar 

  231. Bailey-Salzman RF, Rand BP, Forrest SR (2006) Semitransparent organic photovoltaic cells. Appl Phys Lett 88(23):233502–233503

    Article  CAS  Google Scholar 

  232. Reddy P, Giribabu L, Lyness C, Snaith H, Vijaykumar C, Chandrasekharam M, Lakshmikantam M, Yum J-H, Kalyanasundaram K, Grätzel M, Nazeeruddin M (2007) Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical Zinc Phthalocyanine. Angew Chem Int Ed 46(3):373–376

    Article  CAS  Google Scholar 

  233. Nazeeruddin MK, Humphry-Baker R, Grätzel M, Wohrle D, Schnurpfeil G, Schneider G, Hirth A, Trombach N (1999) Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines. J Porphyrins Phthalocyanines 3(3):230–237

    Article  CAS  Google Scholar 

  234. Nazeeruddin MK, Humphry-Baker R, Grätzel M, Murrer BA (1998) Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chem Commun 6:719–720

    Article  Google Scholar 

  235. Deng H, Mao H, Zhang H, Lu Z, Xu H (1998) Photoelectric effect of tetrasulfonated gallium phthalocyanine on a nanostructured TiO2 electrode. J Porphyrins Phthalocyanines 2(2):171–175

    Article  CAS  Google Scholar 

  236. He J, Benkö G, Korodi F, Polivka T, Lomoth R, Sun L, Hagfeldt A, Sundström V (2002) Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode. J Am Chem Soc 124(17):4922–4932

    Article  CAS  Google Scholar 

  237. Palomares E, Martinez-Diaz MV, Haque SA, Torres T, Durrant JR (2004) State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films. Chem Commun 18:2112–2113

    Article  CAS  Google Scholar 

  238. Deng H, Mao H, Liang B, Shen Y, Lu Z, Xu H (1996) Aggregation and the photoelectric behavior of tetrasulfonated phthalocyanine adsorbed on a TiO2 microporous electrode. J Photochem Photobiol A 99(1):71–74

    Article  CAS  Google Scholar 

  239. Deng H, Lu Z, Shen Y, Mao H, Xu H (1998) Improvement in photoelectric conversion of a phthalocyanine-sensitized TiO2 electrode by doping with porphyrin. Chem Phys 231(1):95–103

    Article  CAS  Google Scholar 

  240. Zharnikova N, Usol’tseva N, Kudrik E, Thelakkat M (2009) Synthesis, mesomorphism and electrochemical properties of tetrasubstituted zinc and copper phthalocyanines. J Mater Chem 19(20):3161–3167

    Article  CAS  Google Scholar 

  241. Cid J-J, Yum J-H, Jang S-R, Nazeeruddin M, Martínez-Ferrero E, Palomares E, Ko J, Grätzel M, Torres T (2007) Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew Chem Int Ed 46(44):8358–8362

    Article  CAS  Google Scholar 

  242. Yum J-H, S-r J, Humphry-Baker R, Grätzel M, Cid J-J, Torres T, Nazeeruddin MK (2008) Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 24(10):5636–5640

    Article  CAS  Google Scholar 

  243. Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol Energy Mater Sol Cells 80(1):47–71

    Article  CAS  Google Scholar 

  244. Chen Y, Zeng Z, Li C, Wang W, Wang X, Zhang B (2005) Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J Chem 29(6):773–776

    Article  CAS  Google Scholar 

  245. Bandara J, Weerasinghe H (2006) Design of high-efficiency solid-state dye-sensitized solar cells using coupled dye mixtures. Sol Energy Mater Sol Cells 90(7–8):864–871

    CAS  Google Scholar 

  246. Kuang D, Walter P, Nüesch F, Kim S, Ko J, Comte P, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2007) Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23(22):10906–10909

    Article  CAS  Google Scholar 

  247. Yum J-H, Jang S-R, Walter P, Geiger T, Nuesch F, Kim S, Ko J, Grätzel M, Nazeeruddin MK (2007) Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem Commun 44:4680–4682

    Article  CAS  Google Scholar 

  248. Choi H, Kim S, Kang SO, Ko J, Kang M-S, Clifford J, Forneli A, Palomares E, Nazeeruddin M, Grätzel M (2008) Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells. Angew Chem 120(43):8383–8387

    Article  Google Scholar 

  249. Clifford JN, Palomares E, Nazeeruddin MK, Thampi R, Grätzel M, Durrant JR (2004) Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J Am Chem Soc 126(18):5670–5671

    Article  CAS  Google Scholar 

  250. Perera VPS, Pitigala PKDDP, Senevirathne MKI, Tennakone K (2005) A solar cell sensitized with three different dyes. Sol Energy Mater Sol Cells 85(1):91–98

    CAS  Google Scholar 

  251. Kim S, Lee JK, Kang SO, Ko J, Yum J-H, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128(51):16701–16707

    Article  CAS  Google Scholar 

  252. Fan S-Q, Fang B, Choi H, Paik S, Kim C, Jeong B-S, Kim J-J, Ko J (2010) Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell. Electrochim Acta 55(15):4642–4646

    Article  CAS  Google Scholar 

  253. Cid J-J, García-Iglesias M, Yum J-H, Forneli A, Albero J, Martínez-Ferrero E, Vázquez P, Grätzel M, Nazeeruddin M, Palomares E, Torres T (2009) Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Chem Eur J 15(20):5130–5137

    Article  CAS  Google Scholar 

  254. Mori S, Nagata M, Nakahata Y, Yasuta K, Goto R, Kimura M, Taya M (2010) Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. J Am Chem Soc 132(12):4054–4055

    Article  CAS  Google Scholar 

  255. McKeown NB, Makhseed S, Msayib KJ, Ooi L-L, Helliwell M, Warren JE (2005) A phthalocyanine clathrate of cubic symmetry containing interconnected solvent-filled voids of nanometer dimensions. Angew Chem Int Ed 44(46):7546–7549

    Article  CAS  Google Scholar 

  256. Cherian S, Wamser CC (2000) Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J Phys Chem B 104(15):3624–3629

    Article  CAS  Google Scholar 

  257. Ma T, Inoue K, Noma H, Yao K, Abe E (2002) Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivatives. J Photochem Photobiol A 152(1–3):207–212

    Article  CAS  Google Scholar 

  258. Odobel F, Blart E, Lagree M, Villieras M, Boujtita H, El Murr N, Caramori S, Alberto Bignozzi C (2003) Porphyrin dyes for TiO2 sensitization. J Mater Chem 13(3):502–510

    Article  CAS  Google Scholar 

  259. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord Chem Rev 248(13–14):1363–1379

    Article  CAS  Google Scholar 

  260. Tachibana Y, Haque SA, Mercer IP, Durrant JR, Klug DR (2000) Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: a comparison of ruthenium bipyridyl and porphyrin sensitizer dyes. J Phys Chem B 104(6):1198–1205

    Article  CAS  Google Scholar 

  261. Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, Schmidt-Mende L, Nazeeruddin MK, Wang Q, Grätzel M, Officer DL (2007) Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C 111(32):11760–11762

    Article  CAS  Google Scholar 

  262. Lu H-P, Mai C-L, Tsia C-Y, Hsu S-J, Hsieh C-P, Chiu C-L, Yeh C-Y, Diau EW-G (2009) Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells. Phys Chem Chem Phys 11(44):10270–10274

    Article  CAS  Google Scholar 

  263. Imahori H, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko NV, Lemmetyinen H (2010) Effects of meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical and photovoltaic properties. J Phys Chem C 114(23):10656–10665

    Article  CAS  Google Scholar 

  264. Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells. Energy Environ Sci 3(7):949–955

    Article  CAS  Google Scholar 

  265. Hsieh C-P, Lu H-P, Chiu C-L, Lee C-W, Chuang S-H, Mai C-L, Yen W-N, Hsu S-J, Diau EW-G, Yeh C-Y (2010) Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J Mater Chem 20(6):1127–1134

    Article  CAS  Google Scholar 

  266. Xiang N, Huang X, Feng X, Liu Y, Zhao B, Deng L, Shen P, Fei J, Tan S (2010) The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes Pigm 88:75–83. doi:10.1016/j.dyepig.2010.05.003

    Article  CAS  Google Scholar 

  267. Kira A, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko NV, Lemmetyinen H, Imahori H (2010) Effects of π-elongation and the fused position of quinoxaline-fused porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. J Phys Chem C 114(25):11293–11304

    Article  CAS  Google Scholar 

  268. Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EW-G, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew Chem Int Ed Engl 49(37):6646–6649. doi:10.1002/anie.201002118

    Article  CAS  Google Scholar 

  269. Imahori H, Hayashi S, Hayashi H, Oguro A, Eu S, Umeyama T, Matano Y (2009) Effects of porphyrin substituents and adsorption conditions on photovoltaic properties of porphyrin-sensitized TiO2 cells. J Phys Chem C 113(42):18406–18413

    Article  CAS  Google Scholar 

  270. Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y, Imahori H (2007) Effects of 5-membered heteroaromatic spacers on structures of porphyrin films and photovoltaic properties of porphyrin-sensitized TiO2 cells. J Phys Chem C 111(8):3528–3537

    Article  CAS  Google Scholar 

  271. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley-VCH, Weinheim

    Google Scholar 

  272. Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2002) Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J Phys Chem B 106(6):1363–1371

    Article  CAS  Google Scholar 

  273. Choi H, Baik C, Kang S, Ko J, Kang M-S, Nazeeruddin M, Grätzel M (2008) Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew Chem Int Ed 47(2):327–330

    Article  CAS  Google Scholar 

  274. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107(2):597–606

    Article  CAS  Google Scholar 

  275. Khazraji AC, Hotchandani S, Das S, Kamat PV (1999) Controlling dye (merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. J Phys Chem B 103(22):4693–4700

    Article  CAS  Google Scholar 

  276. Ghosh HN, Asbury JB, Lian T (1998) Direct observation of ultrafast electron injection from coumarin 343 to TiO2 nanoparticles by femtosecond infrared spectroscopy. J Phys Chem B 102(34):6482–6486

    Article  CAS  Google Scholar 

  277. Rehm JM, McLendon GL, Nagasawa Y, Yoshihara K, Moser J, Grätzel M (1996) Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface. J Phys Chem 100(23):9577–9578

    Article  Google Scholar 

  278. Erten-Ela S, Yilmaz MD, Icli B, Dede Y, Icli S, Akkaya EU (2008) A panchromatic boradiazaindacene (bodipy) sensitizer for dye-sensitized solar cells. Org Lett 10(15):3299–3302

    Article  CAS  Google Scholar 

  279. Kolemen S, Cakmak Y, Erten-Ela S, Altay Y, Brendel J, Thelakkat M, Akkaya EU (2010) Solid-state dye-sensitized solar cells using red and near-IR absorbing bodipy sensitizers. Org Lett 12(17):3812–3815

    Article  CAS  Google Scholar 

  280. Senadeera GKR, Nakamura K, Kitamura T, Wada Y, Yanagida S (2003) Fabrication of highly efficient polythiophene-sensitized metal oxide photovoltaic cells. Appl Phys Lett 83(26):5470–5472

    Article  CAS  Google Scholar 

  281. Geiger T, Kuster S, Yum J-H, Moon S-J, Nazeeruddin MK, Grätzel M, Nüesch F (2009) Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 anocrystalline films. Adv Funct Mater 19(17):2720–2727

    Article  CAS  Google Scholar 

  282. Mor GK, Kim S, Paulose M, Varghese OK, Shankar K, Basham J, Grimes CA (2009) Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett 9(12):4250–4257

    Article  CAS  Google Scholar 

  283. Yao Q-H, Shan L, Li F-Y, Yin D-D, Huang C-H (2003) An expanded conjugation photosensitizer with two different adsorbing groups for solar cells. New J Chem 27(8):1277–1283

    Article  CAS  Google Scholar 

  284. Chen L, Yum J-H, Moon S-J, Herrmann A, Eickemeyer F, Pschirer NG, Erk P, Schöneboom J, Müllen K, Grätzel M, Nazeeruddin MK (2008) An improved perylene sensitizer for solar cell applications. ChemSusChem 1(7):615–618

    Article  CAS  Google Scholar 

  285. Cappel UB, Karlsson MH, Pschirer NG, Eickemeyer F, Schöneboom J, Erk P, Boschloo G, Hagfeldt A (2009) A broadly absorbing perylene dye for solid-state dye-sensitized solar cells. J Phys Chem C 113(33):14595–14597

    Article  CAS  Google Scholar 

  286. Ma X, Hua J, Wu W, Jin Y, Meng F, Zhan W, Tian H (2008) A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 64(2):345–350

    Article  CAS  Google Scholar 

  287. Wang Z-S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2007) Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid. J Phys Chem C 111(19):7224–7230

    Article  CAS  Google Scholar 

  288. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Péchy P, Grätzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 41:5194–5196

    Article  CAS  Google Scholar 

  289. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17(7):813–815

    Article  CAS  Google Scholar 

  290. Snaith HJ, Petrozza A, Ito S, Miura H, Grätzel M (2009) Charge generation and photovoltaic operation of solid-state dye-sensitized solar cells incorporating a high extinction coefficient indolene-based sensitizer. Adv Funct Mater 19(11):1810–1818

    Article  CAS  Google Scholar 

  291. Wang M, Xu M, Shi D, Li R, Gao F, Zhang G, Yi Z, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) High-performance liquid and solid dye-sensitized solar cells based on a novel metal-free organic sensitizer. Adv Mater 20(23):4460–4463

    Article  CAS  Google Scholar 

  292. Chen D-Y, Hsu Y-Y, Hsu H-C, Chen B-S, Lee Y-T, Fu H, Chung M-W, Liu S-H, Chen H-C, Chi Y, Chou P-T (2010) Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. Chem Commun 46(29):5256–5258

    Article  CAS  Google Scholar 

  293. Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol Energy Mater Sol Cells 77(1):89–103

    Article  CAS  Google Scholar 

  294. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27(5):783–785

    Article  CAS  Google Scholar 

  295. Hara K, Miyamoto K, Abe Y, Yanagida M (2005) Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes. J Phys Chem B 109(50):23776–23778

    Article  CAS  Google Scholar 

  296. Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin S, Grätzel M (2008) Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew Chem 120(10):1949–1953

    Article  Google Scholar 

  297. Senadeera GKR, Kitamura T, Wada Y, Yanagida S (2005) Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Sol Energy Mater Sol Cells 88(3):315–322

    Article  CAS  Google Scholar 

  298. Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J Phys Chem B 107(18):4374–4381

    Article  CAS  Google Scholar 

  299. Hara K, Kurashige M, Ito S, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem Commun 2:252–253

    Article  CAS  Google Scholar 

  300. Thomas KRJ, Lin JT, Hsu Y-C, Ho K-C (2005) Organic dyes containing thienylfluorene conjugation for solar cells. Chem Commun 32:4098–4100

    Article  CAS  Google Scholar 

  301. Hwang S, Lee JH, Park C, Lee H, Kim C, Park C, Lee M-H, Lee W, Park J, Kim K, Park N-G, Kim C (2007) A highly efficient organic sensitizer for dye-sensitized solar cells. Chem Commun 46:4887–4889

    Article  CAS  Google Scholar 

  302. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47(7):1184–1201

    Article  CAS  Google Scholar 

  303. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107(11):4891–4932

    Article  CAS  Google Scholar 

  304. Benniston AC, Copley G (2009) Lighting the way ahead with boron dipyrromethene (bodipy) dyes. Phys Chem Chem Phys 11(21):4124–4131

    Article  CAS  Google Scholar 

  305. Treibs A, Kreuzer F-H (1968) Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Liebigs Ann Chem 718(1):208–223

    Article  CAS  Google Scholar 

  306. Arbeloa TL, Arbeloa FL, Arbeloa IL, García-Moreno I, Costela A, Sastre R, Amat-Guerri F (1999) Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution. Chem Phys Lett 299(3–4):315–321

    Article  CAS  Google Scholar 

  307. Monsma FJ, Barton AC, Chol Kang H, Brassard DL, Haugland RP, Sibley DR (1989) Characterization of novel fluorescent ligands with high affinity for D1 and D2 dopaminergic receptors. J Neurochem 52(5):1641–1644

    Article  CAS  Google Scholar 

  308. Hattori S, Ohkubo K, Urano Y, Sunahara H, Nagano T, Wada Y, Tkachenko NV, Lemmetyinen H, Fukuzumi S (2005) Charge separation in a nonfluorescent donor-acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation. J Phys Chem B 109(32):15368–15375

    Article  CAS  Google Scholar 

  309. Kumaresan D, Thummel R, Bura T, Ulrich G, Ziessel R (2009) Color tuning in new metal-free organic sensitizers (bodipys) for dye-sensitized solar cells. Chem Eur J 15(26):6335–6339

    Article  CAS  Google Scholar 

  310. Lee CY, Hupp JT (2009) Dye sensitized solar cells: TiO2 sensitization with a bodipy-porphyrin antenna system. Langmuir 26(5):3760–3765

    Article  CAS  Google Scholar 

  311. Rousseau T, Cravino A, Bura T, Ulrich G, Ziessel R, Roncali J (2009) BODIPY derivatives as donor materials for bulk heterojunction solar cells. Chem Commun 13:1673–1675

    Article  CAS  Google Scholar 

  312. Rousseau T, Cravino A, Bura T, Ulrich G, Ziessel R, Roncali J (2009) Multi-donor molecular bulk heterojunction solar cells: improving conversion efficiency by synergistic dye combinations. J Mater Chem 19(16):2298–2300

    Article  CAS  Google Scholar 

  313. Kim B, Ma B, Donuru VR, Liu H, Frechet JMJ (2010) Bodipy-backboned polymers as electron donor in bulk heterojunction solar cells. Chem Commun 46(23):4148–4150

    Article  CAS  Google Scholar 

  314. Karolin J, Johansson LB-A, Strandberg L, Ny T (1994) Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins. J Am Chem Soc 116(17):7801–7806

    Article  CAS  Google Scholar 

  315. Hao Y, Yang M, Yu C, Cai S, Liu M, Fan L, Li Y (1998) Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film. Sol Energy Mater Sol Cells 56(1):75–84

    Article  CAS  Google Scholar 

  316. Kim Y-G, Walker J, Samuelson LA, Kumar J (2003) Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells. Nano Lett 3(4):523–525

    Article  CAS  Google Scholar 

  317. Senadeera GKR, Pathirathne WMTC (2004) Utilization of conducting polymer as a sensitizer in solid-state photocells. Curr Sci 87(3):339–342

    CAS  Google Scholar 

  318. Mwaura JK, Zhao X, Jiang H, Schanze KS, Reynolds JR (2006) Spectral broadening in nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers. Chem Mater 18(26):6109–6111

    Article  CAS  Google Scholar 

  319. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23(24):12445–12449

    Article  CAS  Google Scholar 

  320. Liu X, Zhu R, Zhang Y, Liu B, Ramakrishna S (2008) Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. Chem Commun 32:3789–3791

    Article  CAS  Google Scholar 

  321. Senadeera GKR (2005) Microwave-assisted irradiation method for the synthesis of poly(3-thiophenylacetic acid). Curr Sci 88(1):145–148

    CAS  Google Scholar 

  322. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280(5370):1741–1744

    Article  CAS  Google Scholar 

  323. Treibs A, Jacob K (1965) Cyclotrimethine dyes derived from squaric acid. Angew Chem Int Ed Engl 4(8):694

    Article  Google Scholar 

  324. Sreejith S, Carol P, Chithra P, Ajayaghosh A (2008) Squaraine dyes: a mine of molecular materials. J Mater Chem 18(3):264–274

    Article  CAS  Google Scholar 

  325. Yum J-H, Walter P, Huber S, Rentsch D, Geiger T, Nüesch F, De Angelis F, Grätzel M, Nazeeruddin MK (2007) Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical Squaraine dye. J Am Chem Soc 129(34):10320–10321

    Article  CAS  Google Scholar 

  326. Alex S, Santhosh U, Das S (2005) Dye sensitization of nanocrystalline TiO2: enhanced efficiency of unsymmetrical versus symmetrical squaraine dyes. J Photochem Photobiol A 172(1):63–71

    Article  CAS  Google Scholar 

  327. Ferrere S, Gregg BA (2002) New perylenes for dye sensitization of TiO2. New J Chem 26(9):1155–1160

    Article  CAS  Google Scholar 

  328. Zafer C, Kus M, Turkmen G, Dincalp H, Demic S, Kuban B, Teoman Y, Icli S (2007) New perylene derivative dyes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 91(5):427–431

    Article  CAS  Google Scholar 

  329. Dentani T, Funabiki K, Jin J-Y, Yoshida T, Minoura H, Matsui M (2007) Application of 9-substituted 3,4-perylenedicarboxylic anhydrides as sensitizers for zinc oxide solar cell. Dyes Pigm 72(3):303–307

    Article  CAS  Google Scholar 

  330. Shibano Y, Umeyama T, Matano Y, Imahori H (2007) Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells. Org Lett 9(10):1971–1974

    Article  CAS  Google Scholar 

  331. Edvinsson T, Li C, Pschirer N, Schöneboom J, Eickemeyer F, Sens R, Boschloo G, Herrmann A, Müllen K, Hagfeldt A (2007) Intramolecular charge-transfer tuning of perylenes: spectroscopic features and performance in dye-sensitized solar cells. J Phys Chem C 111(42):15137–15140

    Article  CAS  Google Scholar 

  332. Bach U, Tachibana Y, Moser J-E, Haque SA, Durrant JR, Grätzel M, Klug DR (1999) Charge separation in solid-state dye-sensitized heterojunction solar cells. J Am Chem Soc 121(32):7445–7446

    Article  CAS  Google Scholar 

  333. Tatay S, Haque SA, O’Regan B, Durrant JR, Verhees WJH, Kroon JM, Vidal-Ferran A, Gavina P, Palomares E (2007) Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. J Mater Chem 17(29):3037–3044

    Article  CAS  Google Scholar 

  334. Chen Y-S, Li C, Zeng Z-H, Wang W-B, Wang X-S, Zhang B-W (2005) Efficient electron injection due to a special adsorbing group’s combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. J Mater Chem 15(16):1654–1661

    Article  CAS  Google Scholar 

  335. Guo M, Diao P, Ren Y-J, Meng F, Tian H, Cai S-M (2005) Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Sol Energy Mater Sol Cells 88(1):23–35

    Article  CAS  Google Scholar 

  336. Ehret A, Stuhl L, Spitler MT (2001) Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. J Phys Chem B 105(41):9960–9965

    Article  CAS  Google Scholar 

  337. Sayama K, Hara K, Ohga Y, Shinpou A, Suga S, Arakawa H (2001) Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photoelectrochemical properties of dye-sensitized porous semiconductor electrodes. New J Chem 25(2):200–202

    Article  CAS  Google Scholar 

  338. Wu W-J, Zhan W-H, Hua J-L, Tian H (2008) A new study on solid-state cyanine dye-sensitized solar cells. Res Chem Intermed 34(2):241–248

    Article  CAS  Google Scholar 

  339. Wang Z-S, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19(8):1138–1141

    Article  CAS  Google Scholar 

  340. Zhang X, Zhang J-J, Xia Y-Y (2008) Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells. J Photochem Photobiol A 194(2–3):167–172

    Article  CAS  Google Scholar 

  341. Koops SE, Barnes PRF, O’Regan BC, Durrant JR (2010) Kinetic competition in a coumarin dye-sensitized solar cell: injection and recombination limitations upon device performance. J Phys Chem C 114(17):8054–8061

    Article  CAS  Google Scholar 

  342. Horiuchi T, Miura H, Uchida S (2003) Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem Commun 24:3036–3037

    Article  CAS  Google Scholar 

  343. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126(39):12218–12219

    Article  CAS  Google Scholar 

  344. Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S (2004) Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem Commun 6(1):71–74

    Article  CAS  Google Scholar 

  345. Mishra A, Ma C-Q, Bäuerle P (2009) Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 109(3):1141–1276

    Article  CAS  Google Scholar 

  346. Justin Thomas KR, Hsu Y-C, Lin JT, Lee K-M, Ho K-C, Lai C-H, Cheng Y-M, Chou P-T (2008) 2,3-Disubstituted thiophene-based organic dyes for solar cells. Chem Mater 20(5):1830–1840

    Article  CAS  Google Scholar 

  347. Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P, Zakeeruddin SM, Grätzel M (2008) An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J Am Chem Soc 130(29):9202–9203

    Article  CAS  Google Scholar 

  348. Wang Z-S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, Kubo T, Furube A, Hara K (2008) Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar-cell performance by structural modification. Chem Mater 20(12):3993–4003

    Article  CAS  Google Scholar 

  349. Kim S, Kim D, Choi H, Kang M-S, Song K, Kang SO, Ko J (2008) Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering. Chem Commun 40:4951–4953

    Article  CAS  Google Scholar 

  350. Tanaka K, Takimiya K, Otsubo T, Kawabuchi K, Kajihara S, Harima Y (2006) Development and photovoltaic performance of oligothiophene-sensitized TiO2 solar cells. Chem Lett 35(6):592–593

    Article  CAS  Google Scholar 

  351. Tan S, Zhai J, Fang H, Jiu T, Ge J, Li Y, Jiang L, Zhu D (2005) Novel carboxylated oligothiophenes as sensitizers in photoelectric conversion systems. Chem Eur J 11(21):6272–6276

    Article  CAS  Google Scholar 

  352. Katoh R, Furube A, Mori S, Miyashita M, Sunahara K, Koumura N, Hara K (2009) Highly stable sensitizer dyes for dye-sensitized solar cells: role of the oligothiophene moiety. Energy Environ Sci 2(5):542–546

    Article  CAS  Google Scholar 

  353. Yang H-Y, Yen Y-S, Hsu Y-C, Chou H-H, Lin JT (2010) Organic dyes incorporating the dithieno[3,2-b:2′,3′-d]thiophene moiety for efficient dye-sensitized solar cells. Org Lett 12(1):16–19

    Article  CAS  Google Scholar 

  354. Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E, Hara K (2006) Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc 128(44):14256–14257

    Article  CAS  Google Scholar 

  355. Liang Y, Peng B, Chen J (2010) Correlating dye adsorption behavior with the open-circuit voltage of triphenylamine-based dye-sensitized solar cells. J Phys Chem C 114(24):10992–10998

    Article  CAS  Google Scholar 

  356. Teng C, Yang X, Yang C, Li S, Cheng M, Hagfeldt A, Sun L (2010) Molecular design of anthracene-bridged metal-free organic dyes for efficient dye-sensitized solar cells. J Phys Chem C 114(19):9101–9110

    Article  CAS  Google Scholar 

  357. Shen P, Liu Y, Huang X, Zhao B, Xiang N, Fei J, Liu L, Wang X, Huang H, Tan S (2009) Efficient triphenylamine dyes for solar cells: effects of alkyl-substituents and π-conjugated thiophene unit. Dyes Pigm 83(2):187–197

    Article  CAS  Google Scholar 

  358. Choi H, Kang SO, Ko J, Gao G, Kang HS, Kang M-S, Nazeeruddin MK, Grätzel M (2009) An efficient dye-sensitized solar cell with an organic sensitizer encapsulated in a cyclodextrin cavity. Angew Chem Int Ed 48(32):5938–5941

    Article  CAS  Google Scholar 

  359. Im H, Kim S, Park C, Jang S-H, Kim C-J, Kim K, Park N-G, Kim C (2010) High performance organic photosensitizers for dye-sensitized solar cells. Chem Commun 46(8):1335–1337

    Article  CAS  Google Scholar 

  360. Moon S-J, Yum J-H, Humphry-Baker R, Karlsson KM, Hagberg DP, Marinado T, Hagfeldt A, Sun L, Grätzel M, Nazeeruddin MK (2009) Highly efficient organic sensitizers for solid-state dye-sensitized solar cells. J Phys Chem C 113(38):16816–16820

    Article  CAS  Google Scholar 

  361. Fischer MKR, Wenger S, Wang M, Mishra A, Zakeeruddin SM, Grätzel M, Bäuerle P (2010) D-π-a sensitizers for dye-sensitized solar cells: linear vs. branched oligothiophenes. Chem Mater 22(5):1836–1845

    Article  CAS  Google Scholar 

  362. Choi H, Baik C, Kang S, Ko J, Kang M-S, Nazeeruddin M, Grätzel M (2008) Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew Chem 120(2):333–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukundan Thelakkat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Willinger, K., Thelakkat, M. (2011). Photosensitizers in Solar Energy Conversion. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_11

Download citation

Publish with us

Policies and ethics