Skip to main content

Design and Conception of Photosensitisers

  • Chapter
  • First Online:
Photosensitizers in Medicine, Environment, and Security

Abstract

This chapter resumes the general strategies and the last progresses in the design of photosensitisers, with chosen examples, many of them being extracted for the last 5 years literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lippard SJ (2010) The interface of inorganic chemistry and biology. J Am Chem Soc. 132:14689–14693

    Google Scholar 

  2. Hruby VJ (2009) Organic chemistry and biology: chemical biology through the eyes of collaboration. J Org Chem 74:9245–9264

    CAS  Google Scholar 

  3. Quartarolo AD, Lanzo I, Sicilia E, Russo N (2009) Can phthalocyanines and their substituted α-Para-(methoxy)phenyl derivatives act as photosensitizers in photodynamic therapy? A TD-DFT study. Phys Chem Chem Phys 11:4586–4592

    CAS  Google Scholar 

  4. Quartarolo AD, Sicilia E, Russo N (2009) On the potential use of squaraine derivatives as photosensitizers in photodynamic therapy: a TDDFT and RICC2 survey. J Chem Theory Comput 5:1849–1857

    CAS  Google Scholar 

  5. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234:351–371

    Google Scholar 

  6. Wainwright M (2004) Photoinactivation of viruses. Photochem Photobiol Sci 3:406–411

    CAS  Google Scholar 

  7. Costa L, Carvalho CMB, Faustino MAF, Neves MGPMS, Tomé JPC, Tomé AC, Cavaleiro JAS, Cunha A, Almeida A (2010) Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochem Photobiol Sci 9:1126–1133

    CAS  Google Scholar 

  8. Benhur E, Horowitz B (1995) Advances in photochemical approaches for blood sterilization. Photochem Photobiol 62:383–388

    CAS  Google Scholar 

  9. Wainwright M (2002) The emerging chemistry of blood product disinfection. Chem Soc Rev 31:128–136

    CAS  Google Scholar 

  10. Pandey RK (2000) Recent advances in photodynamic therapy. J Porphyrins Phthalocyanines 4:368–373

    CAS  Google Scholar 

  11. Wainwright M (2008) Photodynamic therapy: the development of new photosensitisers. Anticancer Agents Med Chem 8:280–291

    CAS  Google Scholar 

  12. Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33

    CAS  Google Scholar 

  13. Juzeniene A, Peng Q, Moan J (2007) Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 6:1234–1245

    CAS  Google Scholar 

  14. Garland MJ, CassidyCM CM, Woolfson D, Donnelly RF (2009) Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med Chem 1:667–691

    CAS  Google Scholar 

  15. Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs 2008:1–24

    Google Scholar 

  16. Phillips D (1995) The photochemistry of sensitisers for photodynamic therapy. Pure Appl Chem 67:117–126

    CAS  Google Scholar 

  17. Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129

    CAS  Google Scholar 

  18. Qian G, Wang ZY (2010) Near-infrared organic compounds and emerging applications. Chem Asian J 5:1006–1029

    CAS  Google Scholar 

  19. Wainwright M (2010) Therapeutic applications of near-infrared dyes. Color Technol 126:115–126

    CAS  Google Scholar 

  20. Dumoulin F, Durmuş M, Ahsen V, Nyokong T (2010) Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev 254:2792–2847

    CAS  Google Scholar 

  21. Tegos GP, Hamblin MR (2006) Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 50:196–203

    CAS  Google Scholar 

  22. Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12

    CAS  Google Scholar 

  23. Sternberg E, Dolphin D (1996) Pyrrolic photosensitizers. Curr Med Chem 3:239–272

    CAS  Google Scholar 

  24. Ali H, van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev 99:2379–2450

    CAS  Google Scholar 

  25. Comuzzi C, Cogoi S, Overhand M, Van der Marel GA, Overkleeft HS, Xodo LE (2006) Synthesis and biological evaluation of new pentaphyrin macrocycles for photodynamic therapy. J Med Chem 49:196–204

    CAS  Google Scholar 

  26. Sakharov DV, Elstak EDR, Chernyak B, Wirtz KWA (2005) Prolonged lipid oxidation after photodynamic treatment. Study with oxidation-sensitive probe C11-BODIPY581/591. FEBS Lett 579:1255–1260

    CAS  Google Scholar 

  27. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201

    CAS  Google Scholar 

  28. Ozlem S, Akkaya EU (2009) Thinking outside the silicon box: molecular AND logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. J Am Chem Soc 131:48–49

    CAS  Google Scholar 

  29. Adarsh N, Avirah RR, Ramaiah D (2010) Tuning photosensitized singlet oxygen generation efficiency of novel Aza-BODIPY dyes. Org Lett. 12:5720–5723

    Google Scholar 

  30. Krammer B, Plaetzer K (2008) ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci 7:283–289

    CAS  Google Scholar 

  31. Vuong TTK, Vever-Bizet C, Bonneau S, Bourg-Heckly G (2011) Hypericin incorporation and localization in fixed HeLa cells for various conditions of fixation and incubation. Photochem Photobiol Sci. 10:561–568

    Google Scholar 

  32. Bonnett R (1999) Photodynamic therapy in historical perspective. Rev Contemp Pharmarcother 10:1–17

    CAS  Google Scholar 

  33. Halperin EC, Perez CA, Brady LW (eds) (2007) Perez and Brady’s principles and practice of radiation oncology. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  34. Barr H, MacRobert AJ, Tralau CJ, Boulos PB, Bown SG (1990) The significance of the nature of the photosensitiser for photodynamic therapy: quantitative and biological studies in the colon. Br J Cancer 62:730–735

    CAS  Google Scholar 

  35. Maier A, Tomaselli F, Matzi V, Rehak P, Pinter H, Smolle-Jüttner FM (2001) Does new photosensitizer improve photodynamic therapy in advanced esophageal carcinoma? Lasers Surg Med 29:323–327

    CAS  Google Scholar 

  36. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    CAS  Google Scholar 

  37. Lo P-C, Chan CMH, Liu J-Y, Fong W-P, Ng DKP (2007) Highly photocytotoxic glucosylated silicon(IV) phthalocyanines. Effects of peripheral chloro substitution on the photophysical and photodynamic properties. J Med Chem 50:2100–2107

    CAS  Google Scholar 

  38. Picard N, Ali H, van Lier JE, Klarskov K, Paquette B (2009) Bromines on N-allyl position of cationic porphyrins affect both radio- and photosensitizing properties. Photochem Photobiol Sci 8:224–232

    CAS  Google Scholar 

  39. Solovyov KN, Borisevich EA (2005) Intramolecular heavy-atom effect in the photophysics of organic molecules. Phys Usp 48:231–253

    CAS  Google Scholar 

  40. Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher WM, O’Shea DF (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. J Am Chem Soc 126:10619–10631

    CAS  Google Scholar 

  41. Serra AC, Pineiro M, Rocha Gonsalves AMd’A, Abrantes M, Laranjo M, Santos AC, Botelho MF (2008) Halogen atom effect on photophysical and photodynamic characteristics of derivatives of 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin. J Photochem Photobiol B Biol 92:61–67

    Google Scholar 

  42. Pereira MM, Monteiro CJP, Simões AVC, Pinto SMA, Abreu AR, Sá GFF, Silva EFF, Rocha LB, Dạbrowski JM, Formosinho SJ, Simões S, Arnaut LG (2010) Synthesis and photophysical characterization of a library of photostable halogenated bacteriochlorins: an access to near infrared chemistry. Tetrahedron 66:9545–9551

    CAS  Google Scholar 

  43. Lo P-C, Wang S, Zeug A, Meyer M, Röder B, Ng DKP (2003) Preparation and photophysical properties of halogenated silicon(IV) phthalocyanines substituted axially with poly(ethylene glycol) chains. Tetrahedron Lett 44:1967–1970

    CAS  Google Scholar 

  44. Huang J-D, Wang S, Lo P-C, Fong W-P, Kod W-H, Ng DKP (2004) Halogenated silicon(IV) phthalocyanines with axial poly(ethylene glycol) chains. Synthesis, spectroscopic properties, complexation with bovine serum albumin and in vitro photodynamic activities. New J Chem 28:348–354

    CAS  Google Scholar 

  45. Lo P-C, Leung SCH, Chan EYM, Fong W-P, Ko W-H, Ng DKP (2007) Photodynamic effects of a novel series of silicon-(IV) phthalocyanines against human colon adenocarcinoma cells. Photodiagnosis Photodyn Ther 4:117–123

    CAS  Google Scholar 

  46. Lee PPS, Lo PC, Chan EYM, Fong WP, Ko W-H, Ng DKP (2005) Synthesis and in vitro photodynamic activity of novel galactose-containing phthalocyanines. Tetrahedron Lett 46:1551–1554

    CAS  Google Scholar 

  47. Lo P-C, Fong W-P, Ng DKP (2008) Effects of peripheral chloro substitution on the photophysical properties and in vitro photodynamic activities of galactose-conjugated silicon(IV) phthalocyanines. ChemMedChem 3:1110–1117

    CAS  Google Scholar 

  48. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    CAS  Google Scholar 

  49. Hui Lim S, Thivierge C, Nowak-Sliwinska P, Han J, van den Bergh H, Wagnières G, Burgess K, Boon Lee H (2010) In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J Med Chem 53:2865–2874

    Google Scholar 

  50. Obermüller RA, Hohenthanner K, Falk H (2001) Toward hypericin-derived potential photodynamic therapy agents. Photochem Photobiol 74:211–215

    Google Scholar 

  51. Scherz A, Salomon Y, Scheer H, Brandis A (1999) Palladium-substituted bacteriochlorophyll derivatives and use thereof. International PCT patent application no. PCT/IL99/00673

    Google Scholar 

  52. Vakrat-Haglili Y, Weiner L, Brumfeld V, Brandis A, Salomon Y, Mcllroy B, Wilson BC, Pawlak A, Rozanowska M, SarnaT SA (2005) The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide. J Am Chem Soc 127:6487–6497

    CAS  Google Scholar 

  53. Chen Q, Huang Z, Luck D, Beckers J, Brun PH, Wilson BC, Scherz A, Salomon Y, Hetzel FW (2002) Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers. Photochem Photobiol 76:438–445

    CAS  Google Scholar 

  54. Obata M, Hirohara S, Tanaka R, Kinoshita I, Ohkubo K, Fukuzumi S, Tanihara M, Yano S (2009) In vitro heavy-atom effect of palladium(II) and platinum(II)complexes of pyrrolidine-fused chlorin in photodynamic therapy. J Med Chem 52(9):2747–2753

    CAS  Google Scholar 

  55. Zorlu Y, Dumoulin F, Durmus M, Ahsen V (2010) Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron 66:3248–3258

    CAS  Google Scholar 

  56. Detty MR, Merkel PB (1990) Chalcogenapyrylium dyes as potential photochemotherapeutic agents. Solution studies of heavy atom effects on triplet yields, quantum efficiencies of singlet oxygen generation, rates of reaction with singlet oxygen, and emission quantum yields. J Am Chem Soc 112:3845–3855

    CAS  Google Scholar 

  57. Snow AW (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 17. Academic, New York, pp 129–176

    Google Scholar 

  58. Kostka M, Zimcik P, Miletin M, Klemera P, Kopecky K, Musil Z (2006) Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines. J Photochem Photobiol A Chem 178:16–25

    CAS  Google Scholar 

  59. Zorlu Y, Un I, Dumoulin F (2009) Octasolketal-substituted phthalocyanines: synthesis and systematic study of metal effect and substitution pattern on 13C NMR. J Porphyrins Phthalocyanines 13:760–768

    CAS  Google Scholar 

  60. Dullweber F, Montforts F-P (2008) Synthesis of chlorins extended by highly substituted double bonds. Synlett 20:3213–3215

    Google Scholar 

  61. Vicente MGH, Smith KM (2004) Porphyrins with fused exocyclic rings. J Porphyrins Phthalocyanines 8:26–42

    Google Scholar 

  62. Atilgan S, Ekmekci Z, Dogan AL, Guc D, Akkaya EU (2006) Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chem Commun 4398–4400

    Google Scholar 

  63. Makarov S, Litwinski C, Ermilov EA, Suvorova O, Röder B, Wöhrle D (2006) Synthesis and photophysical properties of annulated dinuclear and trinuclear phthalocyanines. Chem Eur J 12:1468–1474

    CAS  Google Scholar 

  64. Makarov SG, Suvorova ON, Litwinski C, Ermilov EA, Röder B, Tsaryova O, Dülcks T, Wöhrle D (2007) Linear and rectangular trinuclear phthalocyanines. Eur J Inorg Chem 546–552

    Google Scholar 

  65. Lelievre D, Damette Oi Simon J (1993) Planar bisphthalocyanine: a reinvestigation. J Chem Soc Chem Commun 939–940

    Google Scholar 

  66. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722

    CAS  Google Scholar 

  67. Tedesco AC, Rotta JCG, Lunardi CN (2003) Synthesis, photophysical and photochemical aspects of phthalocyanines for photodynamic therapy. Curr Org Chem 7:187–196

    CAS  Google Scholar 

  68. Zimcik P, Miletin M, Novakova V, Kopecky K, Nejedla M, Stara V, Sedlackova K (2009) Effective monofunctional azaphthalocyanine photosensitizers for photodynamic therapy. Aust J Chem 62:425–433

    CAS  Google Scholar 

  69. Gregory P (2000) Industrial applications of phthalocyanines. J Porphyrins Phthalocyanines 4:432–437

    CAS  Google Scholar 

  70. Frederiksen PK, McIlroy SP, Nielsen CB, Nikolajsen L, Skovsen E, Jørgensen M, Mikkelsen KV, Ogilby PR (2005) Two-photon photosensitized production of singlet oxygen in water. J Am Chem Soc 127:255–269

    CAS  Google Scholar 

  71. Oar MA, Serin JM, Dichtel WR, Fréchet JMJ, Ohulchanskyy TY, Prasad PN (2005) Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer. Chem Mater 17:2267–2275

    CAS  Google Scholar 

  72. Nielsen CB, Johnsen M, Arnbjerg J, Pittelkow M, McIlroy SP, Ogilby PR, Jørgensen M (2005) Synthesis and characterization of water-soluble phenylene-vinylene-based singlet oxygen sensitizers for two-photon excitation. J Org Chem 70:7065–7079

    CAS  Google Scholar 

  73. Boca SC, Four M, Bonne A, van der Sanden B, Astilean S, Baldeck PL, Lemercier G (2009) An ethylene-glycol decorated ruthenium(II) complex for two-photon photodynamic therapy. Chem Commun 4590–4592

    Google Scholar 

  74. Guo Y, Kumar M, Zhang P (2007) Nanoparticle-based photosensitizers under CW infrared excitation. Chem Mater 19:6071–6072

    CAS  Google Scholar 

  75. Carling C-J, Nourmohammadian F, Boyer J-C, Branda NR (2010) Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew Chem Int Ed 49:3782–3785

    CAS  Google Scholar 

  76. Zhang P, Steelant W, Kumar M, Scholfield M (2007) Versatile photosensitizers for photo­dynamic therapy at infrared excitation. J Am Chem Soc 129:4526–4527

    CAS  Google Scholar 

  77. Szacitowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 105:2647–2694

    Google Scholar 

  78. Furuta T, Wang SS-H, Dantzker JL, Dore TM, Bybee WJ, Callaway EM, Denk W, Tsien RY (1999) Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biolo­gically useful cross-sections for two photon photolysis. Proc Natl Acad Sci USA 96:1193–1200

    CAS  Google Scholar 

  79. Josefsen LB, Aylott JW, Beeby A, Warburton P, Boyle JP, Peers C, Boyle RW (2010) Porphyrin-nanosensor conjugates. New tools for the measurement of intracellular response to reactive oxygen species. Photochem Photobiol Sci 9:801–811

    CAS  Google Scholar 

  80. Banerjee I, Mondal D, Martin J, Kane RS (2010) Photoactivated Antimicrobial Activity of Carbon Nanotube−Porphyrin Conjugates. Langmuir. 26:17369–17374

    Google Scholar 

  81. Kokotov S, Lewis A, Neumann R, Amrusi S (1994) X-ray induced visible luminescence of porphyrins. Photochem Photobiol 59:385–387

    CAS  Google Scholar 

  82. Kusuzaki K, Murata H, Matsubara T, Miyazaki S, Okamura A, Seto M, Matsumine A, Hosoi H, Sugimoto T, Uchida A (2005) Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Res 25:1225–1235

    CAS  Google Scholar 

  83. Whitaker CJ, Battah SH, Forsyth MJ, Edwards C, Boyle RW, Matthews EK (2000) Anticancer Drug Des 15(3):161–170

    CAS  Google Scholar 

  84. Allen CM, Sharman WM, van Lier JE (2001) Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines 5:161–169

    CAS  Google Scholar 

  85. Ali H, Langlois R, Wagner JR, Brasseur N, Paquette B, van Lier JE (1988) Biological activities of phthalocyanines-X. Syntheses and analyses of sulfonated phthalocyanines. Photochem Photobiol 47:713–717

    CAS  Google Scholar 

  86. Cauchon N, Tian H, Langlois R, La Madeleine C, Martin S, Ali H, Hunting DJ, van Lier JE (2005) Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines. Bioconjug Chem 16:80–89

    CAS  Google Scholar 

  87. van Lier JE, Tian H, Ali H, Cauchon N, Hasséssian HM (2009) Trisulfonated porphyrazines: new photosensitizers for the treatment of retinal and subretinal edema. J Med Chem 52:4107–4110

    Google Scholar 

  88. Taquet J-P, Frochot C, Maneville V, Barberi-Heyob M (2007) Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Curr Med Chem 14:1673–1687

    CAS  Google Scholar 

  89. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    CAS  Google Scholar 

  90. Henderson BW, Dougherty TJ (1992) How doesphotodynamic therapy work? Photochem Photobiol 55:145–157

    CAS  Google Scholar 

  91. Kwitniewski M, Juzeniene A, Glosnicka R, Moan J (2008) Immunotherapy: a way to improve the therapeutic outcome of photodynamic therapy? Photochem Photobiol Sci 7:1011–1017

    CAS  Google Scholar 

  92. Olivo M, Bhuvaneswari R, Swarnalatha Lucky S, Dendukuri N, Soo-Ping Thong P (2010) Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals 3:1507–1529

    Google Scholar 

  93. Hammer RP, Owens CV, Hwang S-H, Sayes CM, Soper SA (2002) Asymmetrical, water-soluble phthalocyanine dyes for covalent labeling of oligonucleotides. Bioconjug Chem 13:1244–1252

    CAS  Google Scholar 

  94. Sutton JM, Clarke OJ, Fernandez N, Boyle RW (2002) Porphyrin, chlorin, and bacteriochlorin isothiocyanates: useful reagents for the synthesis of photoactive bioconjugates. Bioconjug Chem 13:249–263

    CAS  Google Scholar 

  95. Duan W, Smith K, Savoie H, Greenman J, Boyle RW (2005) Near IR emitting isothiocyanato-substituted fluorophores: their synthesis and bioconjugation to monoclonal antibodies. Org Biomol Chem 3:2384–2386

    CAS  Google Scholar 

  96. Clarke OJ, Boyle RW (1999) Isothiocyanatoporphyrins, useful intermediates for the conjugation of porphyrins with biomolecules and solid supports. Chem Commun 2231–2232

    Google Scholar 

  97. Bakleh ME, Sol V, Estieu-Gionnet K, Granet R, Déléris G, Krausz P (2009) An efficient route to VEGF-like peptide porphyrin conjugates via microwaveassisted ‘click-chemistry’. Tetrahedron 65:7385–7392

    CAS  Google Scholar 

  98. Dubuc C, Langlois R, Bénard F, Cauchon N, Klarskov K, Tone P, van Lier JE (2008) Targeting gastrin-releasing peptide receptors of prostate cancer cells for photodynamic therapy with a phthalocyanine–bombesin conjugate. Bioorg Med Chem Lett 18:2424–2427

    CAS  Google Scholar 

  99. Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53:6811–6824

    CAS  Google Scholar 

  100. Li D, Diao J, Wang D, Liu J, Zhang J (2010) Design, synthesis and biological evaluation of folate-porphyrin: a new photosensitizer for targeted photodynamic therapy. J Porphyrins Phthalocyanines 14:547–555

    CAS  Google Scholar 

  101. Li D, Wang D, Diao J, Liu J (2009) Folate receptor mediated targeted delivery of porphyrin photosensitizer. Chem Lett 38:1158–1159

    CAS  Google Scholar 

  102. Schneider R, Schmitt F, Frochot C, Fort Y, Lourette N, Guillemin F, Müller J-F, Barberi-Heyob M (2005) Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg Med Chem 13:2799–2808

    CAS  Google Scholar 

  103. Gravier J, Schneider R, Frochot C, Bastogne T, Schmitt F, Didelon J, Guillemin F, Barberi-Heyob M (2008) Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J Med Chem 51:3867–3877

    CAS  Google Scholar 

  104. Meerovich IG, Jerdeva VV, Derkacheva VM, Meerovich GA, Lukyanets EA, Kogan EA, Savitsky AP (2005) Photodynamic activity of dibiotinylated aluminum sulfophthalocyanine in vitro and in vivo. J Photochem Photobiol B Biol 80:57–64

    CAS  Google Scholar 

  105. Khan EH, Ali H, Tian H, Rousseau J, Tessier G, Shafiullah, van Lier JE (2003) Synthesis and biological activities of phthalocyanine–estradiol conjugates. Bioorg Med Chem Lett 13:1287–1290

    CAS  Google Scholar 

  106. Ali H, van Lier JE (1997) Synthesis of monofunctionalised phthalocyanines using palladium catalysed cross-coupling reactions. Tetrahedron Lett 38:1157–1160

    CAS  Google Scholar 

  107. James DA, Swamy N, Paz N, Hanson RN, Ray R (1999) Synthesis and estrogen receptor binding affinity of a porphyrin-estradiol conjugate for targeted photodynamic therapy of cancer. Bioorg Med Chem Lett 9:2379–2384

    CAS  Google Scholar 

  108. Boyle RW, Johnson CK, Dolphin DJ (1995) Iodination and heck alkynation of 5,15-diphenylporphyrin A convenient entry to asymmetrically meso-substituted porphyrins. J Chem Soc Chem Commun 527–528

    Google Scholar 

  109. Fabbrini M, Trachsel E, Soldani P, Bindi S, Alessi P, Bracci L, Kosmehl H, Zardi L, Neri D, Neri P (2006) Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugate. Int J Cancer 118:1085–1813

    Google Scholar 

  110. Alonso CMA, Palumbo A, Bullous AJ, Pretto F, Neri D, Boyle RW (2010) Site-specific and stoichiometric conjugation of cationic porphyrins to antiangiogenic monoclonal antibodies. Bioconjug Chem 21:302–313

    CAS  Google Scholar 

  111. Tirand L, Frochot C, Vanderesse R, Thomas N, Trinquet E, Pinel S, Viriot M-L, Guillemin F, Barberi-Heyob M (2006) A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Control Release 111:153–164

    CAS  Google Scholar 

  112. Thomas N, Pernot M, Vanderesse R, Becuwe P, Kamarulzaman E, Da Silva D, François A, Frochot C, Guillemin F, Barberi-Heyob M (2010) Photodynamic therapy targeting neuropilin-1: interest of pseudopeptides with improved stability properties. Biochem Pharmacol 80:226–235

    CAS  Google Scholar 

  113. Hamblin MR, Miller JL, Hasan T (1996) Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells. Cancer Res 56:5205–5210

    CAS  Google Scholar 

  114. Duska LR, Hamblin MR, Miller JL, Hasan T (1999) Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo. J Natl Cancer Inst 91:1557–1563

    CAS  Google Scholar 

  115. Tochner ZA, Hahn S, Glatstein E (1999) Photoimmunotherapy and ovarian cancer: an improbable fiction or a palpable hit? J Natl Cancer Inst 91:1526–1527

    CAS  Google Scholar 

  116. Hudson R, Carcenac M, Smith K, Madden L, Clarke OJ, Pèlegrin A, Greenman J, Boyle RW (2005) The development and characterisation of porphyrin isothiocyanate–monoclonal antibody conjugates for photoimmunotherapy. Br J Cancer 92:1442–1449

    CAS  Google Scholar 

  117. Boyle RW, Dolphin D (1996) Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 64:469–485

    CAS  Google Scholar 

  118. Rosenkranz AA, Jans DA, Sobolev AS (2000) Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol Cell Biol 78:452–464

    CAS  Google Scholar 

  119. Sibrian-Vazquez M, Jensen TJ, Vicente MGH (2007) Porphyrin-retinamides: synthesis and cellular studies. Bioconjug Chem 18:1185–1193

    CAS  Google Scholar 

  120. Sol V, Lamarche F, Enache M, Garcia G, Granet R, Guilloton M, Blais JC, Krausz P (2006) Polyamine conjugates of meso-tritolylporphyrin and protoporphyrin IX: potential agents for photodynamic therapy of cancers. Bioorg Med Chem 14:1364–1377

    CAS  Google Scholar 

  121. Sibrian-Vazquez M, Nesterova IV, Jensen TJ, Vicente MGH (2008) Mitochondria targeting by guanidine- and biguanidine-porphyrin photosensitizers. Bioconjug Chem 19:705–713

    CAS  Google Scholar 

  122. Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    CAS  Google Scholar 

  123. Lei W, Xie J, YHou Y, Jiang G, Zhang H, Wang P, Wang X, Zhang B (2010) Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant. J Photochem Photobiol B Biol 98:167–171

    CAS  Google Scholar 

  124. Medina RA, Owen GI (2002) Glucose transporters: expression, regulation and cancer. Biol Res 35:9–26

    CAS  Google Scholar 

  125. Laville I, Figueiredo T, Loock B, Pigaglio S, Maillard P, Grierson DS, Carrez D, Croisy A, Blais J (2003) Synthesis, cellular internalization and photodynamic activity of glucoconjugated derivatives of tri and tetra(meta-hydroxyphenyl)chlorins. Bioorg Med Chem 11:1643–1652

    CAS  Google Scholar 

  126. Maillard Ph, Loock B, Grierson DS, Laville I, Blais J, Doz F, Desjardins L, Carrez D, Guerquin-Kern JL, Croisy A (2007) In vitro phototoxicity of glycoconjugated porphyrins and chlorins in colorectal adenocarcinoma (HT29) and retinoblastoma (Y79) cell lines. Photodiagnosis Photodyn Ther 4:261–268

    CAS  Google Scholar 

  127. Obata M, Hirohara S, Sharyo K, Alitomo H, Kajiwara K, S-i O, Tanihara M, Ohtsuki C, Yano S (2007) Sugar-dependent photodynamic effect of glycoconjugated porphyrins: a study on photocytotoxicity, photophysical properties and binding behavior to bovine serum albumin (BSA). Biochem Biophys Acta 1770:1204–1211

    CAS  Google Scholar 

  128. Laville I, Pigaglio S, Blais JC, Doz F, Loock B, Maillard P, Grierson DS, Blais J (2006) Photodynamic efficiency of glycoconjugated polyethylene glycol porphyrins in human retinoblastoma cells. J Med Chem 49:2558–2567

    CAS  Google Scholar 

  129. Zorlu Y, Dumoulin F, Bouchu D, Ahsen V, Lafont D (2010) Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitizers. Tetrahedron Lett 51:6615–6618

    CAS  Google Scholar 

  130. Maillard P, Guerquin-Kern J-L, Momenteau M (1989) Glycoconjugated tetrapyrrolic macrocycles. J Am Chem Soc 111:9125–9127

    CAS  Google Scholar 

  131. Alvarez-Mico X, Calvete MJF, Hanack M, Ziegler T (2006) The first example of anomeric glycoconjugation to phthalocyanines. Tetrahedron Lett 47:3283–3286

    CAS  Google Scholar 

  132. Ribeiro AO, Tome JPC, Neves MGPMS, Tome AC, Cavaleiro JAS, Iamamoto Y, Torres T (2006) [1,2,3,4-tetrakis(a/b-D-galactopyranos-6-yl)-phthalocyaninato]zinc(II): a water-soluble phthalocyanine. Tetrahedron Lett 47:9177–9181

    CAS  Google Scholar 

  133. Iqbal Z, Hanack M, Ziegler T (2009) Synthesis of an octasubstituted galactose zinc(II) phthalocyanine. Tetrahedron Lett 50:873–875

    CAS  Google Scholar 

  134. Choi C-F, Huang J-D, Lo P-C, Fong W-P, Ng DKP (2008) Glycosylated zinc(II) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org Biomol Chem 6:2173–2181

    CAS  Google Scholar 

  135. Liu J-Y, Lo P-C, Fong W-P, Ng DKP (2009) Effects of the number and position of the substituents on the in vitro photodynamic activities of glucosylated zinc(II) phthalocyanines. Org Biomol Chem 7:1583–1591

    CAS  Google Scholar 

  136. Berthold HJ, Franke S, Thiem J, Schotten T (2010) Ex post glycoconjugation of phthalocyanines. J Org Chem 75:3859–3862

    CAS  Google Scholar 

  137. Alvarez-Mico X, Calvete MJF, Hanack M, Ziegler T (2007) Expeditious synthesis of glycosylated phthalocyanines. Synthesis 14:2186–2192

    Google Scholar 

  138. Hirohara S, Obata M, Saito A, S-i O, Ohtsuki C, Higashida S, S-i O, Okura I, Sugai Y, Mikata Y, Tanihara M, Yano S (2004) Cellular uptake and photocytotoxicity of glycoconjugated porphyrins in HeLa cells. Photochem Photobiol 80:301–308

    CAS  Google Scholar 

  139. Zorlu Y, Ermeydan MA, Dumoulin F, Ahsen V, Savoie HW, Boyle RW (2008) Glycerol and galactose substituted zinc phthalocyanines. Synthesis and photodynamic activity. Photochem Photobiol Sci 8:312–318

    Google Scholar 

  140. Dai T, Huang Y-Y, Hamblin MR (2009) Photodynamic therapy for localized infections-state of the art. Photodiagnosis Photodyn Ther 6:170–188

    CAS  Google Scholar 

  141. Carvalhoa CMB, Tomé JPC, Faustino MAF, Nevesa MGPMS, Tomé AC, Cavaleiro JAS, Costa L, Alves E, Oliveira A, Cunha Â, Almeida A (2009) Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection. J Porphyrins Phthalocyanines 13:574–577

    Google Scholar 

  142. Wainwright M, Giddens RM (2003) Phenothiazinium photosensitisers: choices in synthesis and application. Dyes Pigments 57:245–257

    CAS  Google Scholar 

  143. Wainwright M (2005) The development of phenothiazinium photosensitisers. Photodiagnosis Photodyn Ther 2:263–272

    CAS  Google Scholar 

  144. Phoenix DA, Harris F (2003) Phenothiazinium-based photosensitizers: antibacterials of the future? Trends Mol Med 9:283–285

    CAS  Google Scholar 

  145. Georgakoudi I, Foster TH (1998) Effects of the subcellular redistribution of two nile blue derivatives on photodynamic oxygen consumption. Photochem Photobiol 68:115–122

    CAS  Google Scholar 

  146. Wainwright M, Meegan K, Loughran C, Giddens RM (2009) Phenothiazinium photosensitisers. Part VI: photobactericidal asymmetric derivatives. Dyes Pigments 82:387–391

    CAS  Google Scholar 

  147. New OM, Dolphin D (2009) Design and synthesis of novel phenothiazinium photosensitiser derivatives. Eur J Org Chem 2675–2686

    Google Scholar 

  148. Alves E, Costa L, Carvalho CMB, Tomé JPC, Faustino MA, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A (2009) Charge effect on the photoinactivation of gram-negative and gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol 9:70–83

    Google Scholar 

  149. Mantareva V, Kussovski V, Angelov I, Wöhrle D, Dimitrov R, Popova E, Dimitrov S (2011)Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivation of planktonic andbiofilm cultures of pathogenic microorganisms. Photochem Photobiol Sci. 10:91–102

    Google Scholar 

  150. Ragas X, Sanchez-Garciá D, Ruiz-González R, Dai T, Agut M, Hamblin R, Nonell S (2010) Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J Med Chem. 53:7796–7803

    Google Scholar 

  151. de Oliveira KT, de Assis FF, Ribeiro AO, Neri CR, Fernandes AU, Baptista MS, Lopes NP, Serra OA, Iamamoto Y (2009) Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation. J Org Chem 74:7962–7965

    Google Scholar 

  152. Tokuoka Y, Suzuki M, Ohsawa Y, Ochiai A, Ishizuka M, Kawashima N (2008) Drug Dev Ind Pharm 34:595–601

    CAS  Google Scholar 

  153. Douillard S, Olivier D, Patrice T (2009) In vitro and in vivo evaluation of radachlorin (R) sensitizer for photodynamic therapy. Photochem Photobiol Sci 8:405–413

    CAS  Google Scholar 

  154. Mao J, Zhang Y, Zhu J, Zhang C, Guo Z (2009) Molecular combo of photodynamic therapeutic agent silicon(IV) phthalocyanine and anticancer drug cisplatin. Chem Commun 908–910

    Google Scholar 

  155. Gianferrara T, Bergamo A, Bratsos I, Milani B, Spagnul C, Sava G, Alessio E (2010) Ruthenium-porphyrin conjugates with cytotoxic and phototoxic antitumor activity. J Med Chem 53:4678–4690

    CAS  Google Scholar 

  156. Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857

    CAS  Google Scholar 

  157. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    CAS  Google Scholar 

  158. Yang S-G, Chang J-E, Shin B, Park S, Nad K, Shim C-K (2010) 99mTc-Hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging. J Mater Chem 20:9042–9046

    CAS  Google Scholar 

  159. Poon C-T, Chan P-S, Man C, Jiang F-L, Ngok Shun Wong R, Mak N-K, Kwong DWJ, Tsao S-W, Wong W-K (2010) An amphiphilic ruthenium(II)–polypyridyl appended porphyrin as potential bifunctional two-photon tumor-imaging and photodynamic therapeutic agent. J Inorg Biochem 104:62–70

    CAS  Google Scholar 

  160. Barth RF, Soloway AH, Fairchild RG, Brugger RM (1992) Boron neutron capture therapy for cancer. Realities and prospects. Cancer 70:2995–3007

    CAS  Google Scholar 

  161. Hawthorne MF (1993) The role of chemistry in the development of boron neuron-capture therapy of cancer. Angew Chem Int Ed 32:950–984

    Google Scholar 

  162. Gottumukkala V, Ongayi O, Baker DG, Lomax LG, Vicente MGH (2006) Synthesis, cellular uptake and animal toxicity of a tetra(carboranylphenyl)-tetrabenzoporphyrin. Bioorg Med Chem 14:1871–1879

    CAS  Google Scholar 

  163. Ongayi O, Gottumukkala V, Fronczek FR, Vicente MGH (2005) Synthesis and characterization of a carboranyl-tetrabenzoporphyrin. Bioorg Med Chem Lett 15:1665–1668

    CAS  Google Scholar 

  164. Li H, Fronczek FR, Vicente MGH (2008) Synthesis and properties of cobaltacarborane-functionalized Zn(II)-phthalocyanines. Tetrahedron Lett 49:4828–4830

    CAS  Google Scholar 

  165. Li H, Fronczek FR, Vicente MGH (2009) Cobaltacarborane–phthalocyanine conjugates: syntheses and photophysical properties. J Organomet Chem 694:1607–1611

    CAS  Google Scholar 

  166. Fabris C, Jori G, Giuntini F, Roncucci G (2001) Photosensitizing properties of a boronated phthalocyanine: studies at the molecular and cellular level. J Photochem Photobiol B Biol 64:1–7

    CAS  Google Scholar 

  167. Friso E, Roncucci G, Dei D, Soncin M, Fabris C, Chiti G, Colautti P, Esposito J, De Nardo L, Rossi CR, Nitti D, Giuntini F, Borsettoa L, Jori G (2006) A novel 10B-enriched carboranyl-containing phthalocyanine as a radio- and photo-sensitising agent for boron neutron capture therapy and photodynamic therapy of tumours: in vitro and in vivo studies. Photochem Photobiol Sci 5:39–50

    CAS  Google Scholar 

  168. Luguya R, Jensen TJ, Smith KM, Vicente MGH (2006) Synthesis and cellular studies of a carboranylchlorin for the PDT and BNCT of tumors. Bioorg Med Chem 14:5890–5897

    CAS  Google Scholar 

  169. Hao E, Friso E, Miotto G, Jori G, Soncin M, Fabris C, Sibrian-Vazquez M, Vicente MGH (2008) Synthesis and biological investigations of tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC). Org Biomol Chem 6:3732–3740

    CAS  Google Scholar 

  170. Bregadze VI, Semioshkin AA, Las’kova JN, Berzina MY, Lobanova IA, Sivaev IB, Grin MA, Titeev RA, Brittal DI, Ulybina OV, Chestnova AV, Ignatova AA, Feofanov AV, Mironov AF (2009) Novel types of boronated chlorin e6 conjugates via ‘click chemistry’. Appl Organometal Chem 23:370–374

    CAS  Google Scholar 

  171. Ol’shevskaya VA, Nikitina RG, Savchenko AN, Malshakova MV, Vinogradov AM, Golovina GV, Belykh DV, Kutchin AV, Kaplan MA, Kalinin VN, Kuzmin VA, Shtil AA (2009) Novel boronated chlorin e6-based photosensitizers: synthesis, binding to albumin and antitumour efficacy. Bioorg Med Chem 17:1297–1306

    Google Scholar 

  172. Spiuirril PG, Hill JS, Kahl SB, Ghiggino KP (1996) Photophysics and intracellular distribution of a boronated porphyrin phototherapeutic agent. Photochem Photobiol 64:975–983

    Google Scholar 

  173. Ol’shevskaya VA, Nikitina RG, Zaitsev AV, Luzgina VN, Kononova EG, Morozova TG, Drozhzhina VV, Ivanov OG, Kaplan MA, Kalinin VN, Shtil AA (2006) Boronated protohaemins: synthesis and in vivo antitumour efficacy. Org Biomol Chem 4:3815–3821

    Google Scholar 

  174. De M, Partha PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    CAS  Google Scholar 

  175. http://cordis.europa.eu/nanotechnology/nanomedicine.htm

  176. Niamien Konan Y, Gurny R, Allémann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 66:89–106

    Google Scholar 

  177. Kumar Chatterjee D, Shan Fong L, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    Google Scholar 

  178. Britton J, Antunes E, Nyokong T (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J Photochem Photobiol A Chem 210:1–7

    CAS  Google Scholar 

  179. Chidawanyika W, Litwinski C, Antunes E, Nyokong T (2010) Photophysical study of a covalently linked quantum dot–low symmetry phthalocyanine conjugate. J Photochem Photobiol A Chem 212:27–35

    CAS  Google Scholar 

  180. Idowu M, Tebello Nyokong T (2009) Study of the photophysical behavior of tetrasul­fonated metallophthalocyanines in the presence of CdTe quantum dots. Polyhedron 28:891–896

    CAS  Google Scholar 

  181. Li F, B-c B, Na K (2010) Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in witro phototoxicity against HeLa cells. Bioconjug Chem 21:1312–1320

    CAS  Google Scholar 

  182. Kello M, Mikĕs J, Jendželovský R, Kovaĺ J, Fedoročko P (2010) PUFAs enhance oxidative stress and apoptosis in tumour cells exposed to hypericin-mediated PDT. Photochem Photobiol Sci 9:1244–1251

    CAS  Google Scholar 

  183. Sawant RR, Torchilin VP (2010) Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 6:4026–4044

    CAS  Google Scholar 

  184. Deryckel ASL, de Witte PAM (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56:17–30

    Google Scholar 

  185. Guelluy P-H, Fontaine-Aupart M-P, Grammenos A, Lécart S, Piette J, Hoebeke M (2010) Optimizing photodynamic therapy by liposomal formulation of thephotosensitizer pyropheophorbide-a methyl ester: in vitro and ex vivo comparative biophysical investigations in a colon carcinoma cell line. Photochem Photobiol Sci 9:1252–1260

    CAS  Google Scholar 

  186. Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, Antonenko Y (2010) Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir 26:5726–5733

    CAS  Google Scholar 

  187. Ballut S, Makky A, Loock B, Michel J-P, Maillard P, Rosilio V (2009) Chem Commun 2009:224–226

    Google Scholar 

  188. Koo H, Lee H, Lee S, Hyun Min K, Sang Kim M, Sung Lee D, Choi Y, Chan Kwon I, Kim K, Young Jeong S (2010) In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun 46:5668–5670

    CAS  Google Scholar 

  189. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    CAS  Google Scholar 

  190. Matsamura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanisms of tumoritropic accumulation of protein and the antitumor agent SMANCS. Cancer Res 46:6387–6392

    Google Scholar 

  191. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 277:39–61

    CAS  Google Scholar 

  192. Preuß A, Chen K, Hackbarth S, Wacker M, Langer K, Röder B (2011) Photosensitizer loaded HSA nanoparticles II: in vitro investigations. Int J Pharm. 404:308–316

    Google Scholar 

  193. Chen K, Preuß A, Hackbarth S, Wacker M, Langer K, Röder B (2009) Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J Photochem Photobiol B Biol 96:66–74

    CAS  Google Scholar 

  194. Wacker M, Chen K, Preuss A, Possemeyer K, Roeder B, Langer K (2010) Photosensitizer loaded HSA nanoparticles. I: preparation and photophysical properties. Int J Pharm 393:253–262

    CAS  Google Scholar 

  195. Bonneau S, Morlière P, Brault D (2004) Dynamics of interactions of photosensitizers with lipoproteins and membrane-models: correlation with cellular incorporation and subcellular distribution. Biochem Pharmacol 68:1443–1452

    CAS  Google Scholar 

  196. Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocine O, Amro K, Loock B, Couleaud P, Frochot C, Morère A, Maillard P, Garcia M, Durand J-O (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun 1475–1477

    Google Scholar 

  197. Hone DC, Walker PI, Evans-Gowing R, Simon FitzGerald S, Beeby A, Chambrier I, Cook MJ, Russell DA (2002) Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 18:2985–2987

    CAS  Google Scholar 

  198. Lee Koo Y-E, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 58:1556–1577

    Google Scholar 

  199. Gao D, Xu H, Philbert MA, Kopelman R (2008) Bioeliminable nanohydrogels for drug delivery. Nano Lett 8:3320–3324

    CAS  Google Scholar 

  200. Tang W, Xu H, Park EJ, Philbert MA, Kopelman R (2008) Encapsulation of methylene blue in polyacrylamide nanoparticles platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 369:579–583

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Dumoulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dumoulin, F. (2011). Design and Conception of Photosensitisers. In: Nyokong, T., Ahsen, V. (eds) Photosensitizers in Medicine, Environment, and Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3872-2_1

Download citation

Publish with us

Policies and ethics