Skip to main content

Bifunctional Acid-Base Catalysis

  • Chapter
  • First Online:
Enantioselective Organocatalyzed Reactions I

Abstract

Acid-base catalysis with bifunctional catalysts is a very prominent catalytic strategy in both small-molecule organocatalysts as well as enzyme catalysis. In both worlds, small-molecule catalysts and enzymatic catalysis, a variety of different general acids or hydrogen bond donors are used. In this chapter, important parallels between small molecule catalysts and enzymes are discussed, and a comparison is also made to the emerging field of frustrated Lewis pair catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. For a recent overview, see: Knowles RR, Jacobsen EN (2010) Proc Natl Acad Sci, doi: 10.1073/pnas.1006402107

    Google Scholar 

  2. For a comprehensive review of thiourea and urea catalysts, see: Kotke M, Schreiner P (2009) ‘(Thio)urea Organocatalysts.’ In: Pihko PM (ed) Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weinherm, Germany p 141

    Google Scholar 

  3. Hiemstra H, Wynberg H (1981) J Am Chem Soc 103:417

    Article  CAS  Google Scholar 

  4. Okino T, Hoashi Y, Takemoto Y (2003) J Am Chem Soc 125:12672

    Article  CAS  Google Scholar 

  5. Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y (2005) J Am Chem Soc 127:119

    Article  CAS  Google Scholar 

  6. Hoashi Y, Yabuta T, Takemoto Y (2004) Tetrahedron Lett 45:9185

    Article  CAS  Google Scholar 

  7. Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y (2006) Tetrahedron 62:365

    Article  CAS  Google Scholar 

  8. Hamza A, Schubert G, Soos T, Papai I (2006) J Am Chem Soc 128:13151

    Article  CAS  Google Scholar 

  9. (a)Tian SK, Chen YG, Hang JF, Tang L, McDaid P, Deng L (2004) Acc Chem Res 37:621; (b) Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713

    Google Scholar 

  10. Li BJ, Jiang L, Liu M, Chen YC, Ding LS, Wu Y (2005) Synlett 603

    Google Scholar 

  11. Ye J X, Dixon D J, Hynes P S (2005) Chem Commun 4481

    Google Scholar 

  12. Malerich JP, Hagihara K, Rawal VH (2008) J Am Chem Soc 130:14416

    Article  CAS  Google Scholar 

  13. For other reviews of this area, see: (a) Takemoto Y (2005) Org Biomol Chem 3:4299; (b) Taylor MS, Jacobsen EN (2006) Angew Chem Int Ed 45:1520; (c) Connon SJ (2006) Chem Eur J 12:5418; (d) Miyabe H, Takemoto Y (2008) Bull Chem Soc Jpn 81:785. (e) Connon SJ (2009) Synlett 354. (See also ref 9b)

    Google Scholar 

  14. Vakulya B, Varga S, Csampai A, Soos T (2005) Org Lett 7:1967

    Google Scholar 

  15. McCooey SH, Connon SJ (2005) Angew Chem Int Ed 44:6367

    Article  CAS  Google Scholar 

  16. (a) Tillman AL, Ye JX, Dixon DJ (2006) Chem Commun 1191. For a review, see (b) Tin A, Schaus SE (2007) Eur J Org Chem 5797–5815

    Google Scholar 

  17. Kohler M, Yost JM, Garnsey MR, Coltart DM (2010) Org Lett 12:3376–3379

    Article  CAS  Google Scholar 

  18. (a) Marcelli T, van Maarseveen JH, Hiemstra H (2006) Angew Chem Int Ed 45:7496–7504; (b) Palomo C, Oiarbide M, Laso A (2007) Eur J Org Chem 2007:2561–2574; (c) Marcelli T, van der Haas RNS, van Maarseveen JH, Hiemstra H (2006) Angew Chem Int Ed 45:929–931; (d) Marcelli T, van der Haas RNS, van Maarseveen JH, Hiemstra H (2005) Synlett 18:2817–2819

    Google Scholar 

  19. Liao Y-H, Liu X-L, Wu Z-J, Cun L-F, Zhang X-M, Yuan W-C (2010) Org Lett 12:2896

    Article  CAS  Google Scholar 

  20. Liu TY, Long J, Li BJ, Jiang L, Li R, Wu Y, Ding LS, Chen YC (2006) Org Biomol Chem 4:2097

    Article  CAS  Google Scholar 

  21. Gao Y, Ren Q, Wang L, Wang J (2010) Chem Eur J 16:13068

    Article  CAS  Google Scholar 

  22. For another interesting example of a multifunctional Brønsted acid catalyst, see: (a) Nugent BM, Yoder RA, Johnston JN (2004) J Am Chem Soc 126:3418; (b) Davis TA, Wilt JC, Johnston JN (2010) J Am Chem Soc 132:2880

    Google Scholar 

  23. Lee JW, Ryu TH, Oh JS, Bae HY, Jang HB, Song CE (2009) Chem Commun 7224

    Google Scholar 

  24. (a) Oh SH, Rho HS, Lee JH, Lee JE, Youk SH, Chin J, Song CE (2008) Angew Chem Int Ed 47:7872; (b) Park SE, Nam EH, Jang HB, Oh JS, Some S, Lee YS, Song CE (2010) Adv Synth Catal 352:2211

    Google Scholar 

  25. It should be noted that the presence of a hydrogen bond donor/ Brønsted acid is not required for high enantioselectivities in alcoholysis of meso anhydrides. For leading references to other cinchona- alka loid based catalysts for this transformation, see: Li H, Liu X, Wu F, Tang L, Deng L (2010) Proc Nat Acad Sci, doi: 10.1073/pnas.1004439107

    Google Scholar 

  26. For a comprehensive review of oxyanion holes in catalysis, see: Pihko P, Rapakko S, Wierenga RK (2009) ‘Oxyanion Holes and Their Mimics’ In: Pihko PM (ed) Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weinherm, Germany p 43

    Google Scholar 

  27. (a) For reviews, see: Frey PA, (2004) J Phys Org Chem 17:511; (b) Hedstrom L (2002) Chem Rev 102:4501; (c) Sedolisins (serine-carboxyl peptidases), such as kumamolisin-As, offer an interesting counterexample. In this carboxypeptidase, the oxyanion hole includes an aspartate group which appears to protonate the developing oxyanion. For a computational study of this system, see: Guo H, Wlodawer A, Guo H (2005) J Am Chem Soc 127:15662

    Google Scholar 

  28. (a) Blow D (2000) Structure 8:77; (b) Henderson R (1970) J Mol Biol 54:341

    Google Scholar 

  29. Bahnson BJ, Anderson VE, Petsko GA (2002) Biochemistry 41:2621

    Article  CAS  Google Scholar 

  30. Engel CK, Mathieu M, Zeelen JP, Hiltunen JK, Wierenga RK (1996) EMBO J 15:5135

    CAS  Google Scholar 

  31. Willadsen P, Eggerer H (1975) Eur J Biochem 54:247

    Article  CAS  Google Scholar 

  32. (a) Hamed RB, Batchelar ET, Clifton IJ, Schofield CJ (2008) Cell Mol Life Sci 65:2507; (b) Holden HM, Benning MM, Haller T, Gerlt JA (2001) Acc Chem Res 34:145

    Google Scholar 

  33. For recent reviews of frustrated Lewis pairs, see: (a) Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46; (b) Stephan DW (2009) Dalton Trans 3129

    Google Scholar 

  34. (a) Welch GC, Stephan DW (2007) J Am Chem Soc 129:1880; (b) Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Science 314:1124

    Google Scholar 

  35. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Angew Chem 119:8196; (2007) Angew Chem Int Ed 46: 8050

    Google Scholar 

  36. For hydrogenation with P(tBu)3/B(C6F5)3 pair see Rokob TA, Hamza A, Stirling A, Pápai I (2009) J Am Chem Soc 131:2029

    Google Scholar 

  37. (a) Spies P, Schwendemann S, Lange S, Kehr G, Frohlich R, Erker G (2008) Angew Chem 120:7654; (2008) Angew Chem Int Ed 47:7543; (b) Axenov KV, Kehr G, Frohlich R, Erker G (2009) J Am Chem Soc 131:3454; (c) Schwendemann S, Tumay TA, Axenov KV, Peuser I, Kehr G, Frohlich R, Erker G (2010) Organometallics 29:1067

    Google Scholar 

  38. (a) Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) J Am Chem Soc 130:14117; (b) Sumerin V, Schulz F, Nieger M, Atsumi M, Wang C, Leskela M, Pyykko P, Repo T, Rieger B (2009) J Organomet Chem 694:2654

    Google Scholar 

  39. The terms ansa-aminoborane [ansa (lat.)  =  “handle”] refer to the use of the successful concept of ansa- metallocenes where a bridge between two Cp-ligands forces them into a distinct geometry and hence nfluences the specific reactivity of these compounds.

    Google Scholar 

  40. Chen C, Wang Y, Klankermayer J (2010) Angew Chem Int Ed 49:9475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri M. Pihko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pihko, P.M., Rahaman, H. (2011). Bifunctional Acid-Base Catalysis. In: Mahrwald, R. (eds) Enantioselective Organocatalyzed Reactions I. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3865-4_6

Download citation

Publish with us

Policies and ethics