Skip to main content

Density Functional Calculations

  • Chapter
  • First Online:
  • 8101 Accesses

Abstract

Density functional theory is based on the two Hohenberg–Kohn theorems, which state that the ground-state properties of an atom or molecule are determined by its electron density function, and that a trial electron density must give an energy greater than or equal to the true energy (the latter theorem is true only if the exact functional could be used). In the Kohn–Sham approach the energy of a system is formulated as a deviation from the energy of an idealized system with noninteracting electrons. From the energy equation, by minimizing the energy with respect to the Kohn–Sham orbitals the Kohn–Sham equations can be derived, analogously to the Hartree–Fock equations. Finding good functionals is the main problem in DFT. Various levels of DFT and new functionals are discussed. The mutually related concepts of electronic chemical potential, electronegativity, hardness, softness, and the Fukui function are exemplified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Walter Kohn, born in Vienna 1923. B.A., B.Sc., University of Toronto, 1945, 1946. Ph.D. Harvard, 1948. Instructor in physics, Harvard, 1948–1950. Assistant, Associate, full Professor, Carnegie Mellon University, 1950–1960. Professor of physics, University of California at San Diego, 1960–1979; University of California at Santa Barbara 1979-present. Nobel Prize in chemistry 1998.

  2. 2.

    M06:“M zero six”, or colloquially “M oh six”. A descendant of M05, Minnesota ‘05 (2005): Y. Zhao, N.E. Schultz, D.E. Truhlar, J. Chem. Phys., 2005, 123, 161103.

  3. 3.

    Personal communication from Professor J.P. Perdew, 2009 November 7.

  4. 4.

    Kenichi Fukui, born Nara, Japan, 1918. Ph.D. Kyoto Imperial University 1948, Professor Kyoto Imperial University 1951. Nobel Prize 1981. Died 1998.

References

  1. (a) Whitaker A (1996) Einstein, Bohr and the quantum dilemma. Cambridge University Press, Cambridge (b) Yam P (June 1997) Scientific American, p 124 (c) Albert DZ (May 1994) Scientific American, p 58 (d) Albert DZ (1992) Quantum mechanics and experience. Harvard University Press, Cambridge, MA (e) Bohm D, Hiley HB (1992) The undivided universe. Routledge, New York (f) Baggott J (1992) The meaning of quantum theory. Oxford, New York (g) Jammer M (1974) The philosophy of quantum mechanics. Wiley, New York

    Google Scholar 

  2. Bader RFW (1990) Atoms in molecules. Oxford, New York

    Google Scholar 

  3. Reference 2, pp 7–8

    Google Scholar 

  4. Shusterman GP, Shusterman AJ (1997) J Chem Educ 74:771

    Article  CAS  Google Scholar 

  5. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York, p 53

    Google Scholar 

  6. (a) Wilson E (1998) Chem Eng News October 19:12 (b) Malakoff D (1998) Science 282:610

    Google Scholar 

  7. See e.g. Diacu F (1996) Mathematical Intelligencer 18:66

    Google Scholar 

  8. Kohn W (1951) Phys Rev 84:495

    Google Scholar 

  9. Cf. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ, p 422, equation (13.130); cf. p 624, problem 15.67, for the Kohn–Sham orbitals. The multielectron wavefunction is treated on pp 421–423

    Google Scholar 

  10. Löwdin P-O (1955) Phys Rev 97:1474

    Article  Google Scholar 

  11. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York

    Google Scholar 

  12. Koch W, Holthausen M (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York

    Google Scholar 

  13. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ, pp 573–592

    Google Scholar 

  14. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao Y (1999) J Phys Chem A 103:1913

    Article  CAS  Google Scholar 

  15. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Article  CAS  Google Scholar 

  16. Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701

    Article  CAS  Google Scholar 

  17. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, New York, Chapter 8

    Google Scholar 

  18. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, New York, Chapter 6

    Google Scholar 

  19. E.g. Griffiths DJ (1995) Introduction to quantum mechanics. Prentice-Hall, Engelwood Cliffs, NJ

    Google Scholar 

  20. Earlier work (1927) by Fermi was published in Italian and came to the attention of the physics community with a paper in German: Fermi E (1928) Z Phys 48:73. This appears in English translation in March NH (1975) Self-consistent fields in atoms. Pergamon, Oxford

    Google Scholar 

  21. Thomas LH (1927) Proc Camb Phil Soc 23:542; reprinted in March NH (1975) Self-consistent fields in atoms. Pergamon, Oxford

    Google Scholar 

  22. Reference 11, Chapter 6

    Google Scholar 

  23. Slater JC (1975) Int J Quantum Chem Symp 9:7

    Article  CAS  Google Scholar 

  24. Reviews: (a) Connolly JWD (1977). In: Segal GA (ed) Semiempirical methods of electronic structure calculations part A: techniques. Plenum, New York. (b) Johnson KH (1973) Adv Quantum Chem 7:143

    Google Scholar 

  25. Slater JC (1951) Phys Rev 81:385

    Article  CAS  Google Scholar 

  26. For a personal history of much of the development of quantum mechanics, with significant emphasis on the Xα method, see: Slater JC (1975) Solid-state and molecular theory: a scientific biography. Wiley, New York

    Google Scholar 

  27. Reference 13, pp 573–577

    Google Scholar 

  28. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  29. Reference 11, section 3.4

    Google Scholar 

  30. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Google Scholar 

  31. Reference 13, section 13.14

    Google Scholar 

  32. Reference 18, p 241

    Google Scholar 

  33. Reference 11, sections 7.1–7.3

    Google Scholar 

  34. Reference 13, section 11.8

    Google Scholar 

  35. Reference 11, chapter 7

    Google Scholar 

  36. Reference 11, Appendix A

    Google Scholar 

  37. Reference 13, p 580

    Google Scholar 

  38. Merrill GN, Gronert S, Kass SR (1997) J Phys Chem A 101:208

    Article  CAS  Google Scholar 

  39. Reference 11, p 185

    Google Scholar 

  40. Genesis 28. 10–12

    Google Scholar 

  41. The concept was apparently first enunciated by J. P. Perdew at the DFT2000 symposium in Menton, France. It first appeared in print in: Perdew JP, Schmidt K (2001). In: Van Doren VE, Van Alsenoy K, Geerlings P (eds) Density functional theory and its applications to materials. AIP Press, New York

    Google Scholar 

  42. Mattsson AE (2002) Science 298:759

    Article  CAS  Google Scholar 

  43. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, New York, pp 244–245

    Google Scholar 

  44. Sousa SF, Fernandes OA, Ramos MJ (2007) J Phys Chem A 111:10439

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar DG (2007) Acc Chem Res 41:157

    Article  Google Scholar 

  46. Riley KE, Op’t Holt BT, Merz KM Jr (2007) J Chem Theory Comput 3:404

    Article  Google Scholar 

  47. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123:062201

    Article  Google Scholar 

  48. Kurth S, Perdew JP, Blaha P (1999) Int J Quant Chem 75:889

    Article  CAS  Google Scholar 

  49. Taylor AE (1955) Advanced calculus. Blaidsell Publishing Company, New York, p 371

    Google Scholar 

  50. Reference 11, pp 173–174

    Google Scholar 

  51. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  52. St-Amant A (1996). In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7, Chapter 5. VCH, New York, p 223

    Google Scholar 

  53. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ, pp 587

    Google Scholar 

  54. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  55. Head-Gordon M (1996) J Phys Chem 100:13213

    Article  CAS  Google Scholar 

  56. Brack M, Jennings BK, Chu YH (1976) Phys Lett 65B:1

    CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:1372, 5648

    Google Scholar 

  58. Stephens PJ, Devlin JJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  59. E.g. Perdew JP (1995) Nonlocal density functionals for exchange and correlation: theory and application. In: Ellis DE (ed) Density functional theory of molecules, clusters, and solids. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  60. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397, and references therein. B2PLYP does have empirical parameters, albeit just two

    Google Scholar 

  61. Wennmohs F, Neese F (2008) Chem Phys 343:217

    Article  CAS  Google Scholar 

  62. Clark T (2000) J Mol Struct (Theochem) 530:1

    Google Scholar 

  63. Nooijen M (2009) Adv Quant Chem 56:181

    Article  CAS  Google Scholar 

  64. Dewar MJS (1992). In: Seeman JI (ed) “A semiempirical life”, profiles, pathways and dreams series. American Chemical Society, Washington, DC, p 185

    Google Scholar 

  65. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

    Article  CAS  Google Scholar 

  66. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ; cited in index

    Google Scholar 

  67. Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction Inc, Irvine, CA

    Google Scholar 

  68. Hehre WJ, Lou L (1997) A guide to density functional calculations in Spartan. Wavefunction Inc, Irvine CA

    Google Scholar 

  69. Hehre WJ, Radom L, Schleyer pvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York; section 6.2

    Google Scholar 

  70. H 2 C=CHOH reaction: The only quantitative information on the barrier for this reaction seems to be: Saito S (1976) Chem Phys Lett 42:399, halflife in the gas phase in a Pyrex flask at room temperature ca. 30 minutes. From this one calculates (Chapter 5, Section 5.5.2.2d, Eq. 5.202) a free energy of activation of 93 kJ mol−1. Since isomerization may be catalyzed by the walls of the flask, the purely concerted reaction may have a much higher barrier. This paper also shows by microwave spectroscopy that ethenol has the O–H bond syn to the C=C. The most reliable measurement of the ethenol/ethanal equilibrium constant, by flash photolysis, is 5.89 × 10−7 in water at room temperature (Chiang Y, Hojatti M, Keeffe JR, Kresge AK, Schepp NP, Wirz J (1987) J Am Chem Soc 109:4000). This gives a free energy of equilibrium of 36 kJ mol−1 (ethanal 36 kJ mol−1 below ethenol). The accurate G3MP2 method [Chapter 5, Section 5.5.2.2b] places the gas phase free energy of ethanal 43 kJ mol−1 below that of ethenol. HNC reaction: The barrier for rearrangement of HNC to HCN has apparently never been actually measured. The equilibrium constant in the gas phase at room temperature was calculated (Maki AG, Sams RL (1981) J Chem Phys 75:4178) at 3.7 × 10−8, from actual measurements at higher temperatures; this gives a free energy of equilibrium of 42 kJ mol−1 (HCN 42 kJ mol−1 below HNC). The G3MP2 method places the gas phase free energy of HCN 59 kJ mol−1 below that of HNC. CH 3 NC reaction: The reported experimental activation energy is 161 kJ mol−1 (Wang D, Qian X, Peng J (1996) Chem Phys Lett 258:149; Bowman JM, Gazy B, Bentley JA, Lee TJ, Dateo CE (1993) J Chem Phys 99:308; Rabinovitch BS, Gilderson PW (1965) J Am Chem Soc 87:158; Schneider FW, Rabinovitch BS (1962) J Am Chem Soc 84:4215). The energy difference between CH3NC and CH3CN has apparently never been actually measured. The G3MP2 method places the gas phase free energy of CH3CN 99 kJ mol−1 below that of CH3NC. Cyclopropylidene reaction: Neither the barrier nor the equilibrium constant for the cyclopropylidene/allene reaction have been measured. The only direct experimental information of these species come from the failure to observe cyclopropylidene at 77 K (Chapman OL (1974) Pure Appl Chem 40:511). This and other experiments (references in Bettinger HF, Schleyer PvR, Schreiner PR, Schaefer HF (1997) J Org Chem 62:9267 and in Bettinger HF, Schreiner PR, Schleyer PvR, Schaefer HF (1996) J Phys Chem 100:16147) show that the carbene is much higher in energy than allene and rearranges very rapidly to the latter. Bettinger et al. 1997 (above) calculate the barrier to be 21 kJ mol−1 (5 kcal mol−1). The G3MP2 method places the gas phase free energy of allene 283 kJ mol−1 below that of cyclopropylidene

    Google Scholar 

  71. Spartan is an integrated molecular mechanics, ab initio and semiempirical program with an outstanding input/output graphical interface that is available in UNIX workstation and PC versions: Wavefunction Inc., http://www.wavefun.com, 18401 Von Karman, Suite 370, Irvine CA 92715, USA

  72. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865; Erratum: Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78;1396

    Google Scholar 

  73. Tao J, Pewdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  74. Scheiner AC, Baker J, Andzelm JW (1997) J Comput Chem 18:775

    Article  CAS  Google Scholar 

  75. El-Azhary AA (1996) J Phys Chem 100:15056

    Article  CAS  Google Scholar 

  76. Bauschlicher CW Jr, Ricca A, Partridge H, Langhoff SR (1997). In: Chong DP (ed) Recent advances in density functional methods. Part II. World Scientific, Singapore

    Google Scholar 

  77. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  78. As of mid-2009, the latest “full” version (as distinct from more frequent revisions) of the Gaussian suite of programs was Gaussian 09. Gaussian is available for several operating systems; see Gaussian, Inc., http://www.gaussian.com, 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA

  79. Ochterski JW, Gaussian white paper “Thermochemistry in Gaussian”, http://www.gaussian.com/g_whitepap/thermo.htm

  80. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255; Chart 1

    Google Scholar 

  81. Hammond GS (1955) J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

  82. From the NIST website, http://webbook.nist.gov/chemistry/: Chase MW Jr (1998) NIST-JANAF Themochemical tables, 4th edn. J Phys Chem Ref Data, Monograph 9, 1–1951

  83. Peterson GA (1998). Irikura KK, Frurip DJ (eds) Computational thermochemistry, Chapter 13. American Chemical Society, Washington, DC

    Google Scholar 

  84. Goldstein E, Beno B, Houk KN (1996) J Am Chem Soc 118:6036

    Article  CAS  Google Scholar 

  85. Martell JM, Goddard JD, Eriksson L (1997) J Phys Chem 101:1927

    Article  CAS  Google Scholar 

  86. The data are from Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction, Inc., Irvine, CA; Chapter 4. In each case, the first 10 examples from the relevant table were used

    Google Scholar 

  87. Wiberg KB, Ochterski JW (1997) J Comp Chem 18:108

    Article  CAS  Google Scholar 

  88. Rousseau E, Mathieu D (2000) J Comp Chem 21:367

    Article  CAS  Google Scholar 

  89. Ventura ON, Kieninger M, Cachau RE (1999) J Phys Chem A 103:147

    Article  CAS  Google Scholar 

  90. For this and other misgivings about the multistep methods see Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, UK, pp 241–244

    Google Scholar 

  91. CBS-QB3 was found to give unacceptable errors for halogenated compounds: Bond D (2007) J Org Chem 72:7313

    Google Scholar 

  92. For pericyclic reactions: Ess DH, Houk KN (2005) J Phys Chem A 109:9542

    Google Scholar 

  93. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  94. del Rio A, Bourcekkine A, Meinel J (2003) J Comp Chem 24:2093

    Article  Google Scholar 

  95. Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385

    Article  CAS  Google Scholar 

  96. Glukhovtsev MN, Bach RD, Pross A, Radom L (1996) Chem Phys Lett 260:558

    Article  CAS  Google Scholar 

  97. Bell RL, Tavaeras DL, Truong TN, Simons J (1997) Int J Quantum Chem 63:861

    Article  CAS  Google Scholar 

  98. Truong TN, Duncan WT, Bell RL (1996). In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density functional theory. American Chemical Society, Washington, DC

    Google Scholar 

  99. Zhang Q, Bell RL (1995) J Phys Chem 99:592

    Article  CAS  Google Scholar 

  100. Eckert F, Rauhut G (1998) J Am Chem Soc 120:13478

    Article  CAS  Google Scholar 

  101. Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063

    Article  CAS  Google Scholar 

  102. Jursic BS (1996). In: Seminario JM (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam

    Google Scholar 

  103. Brown SW, Rienstra-Kiracofe JC, Schaefer HF (1999) J Phys Chem A 103:4065

    Article  CAS  Google Scholar 

  104. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, UK, p 309

    Google Scholar 

  105. Geerlings P, De Profit F, Martin JML (1996). In Seminario JM (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam

    Google Scholar 

  106. Lendvay G (1994) J Phys Chem 98:6098

    Article  CAS  Google Scholar 

  107. Boyd RJ, Wang J, Eriksson LA (1995). In Chong DP (ed) Recent advances in density functional methods. Part I. World Scientific, Singapore

    Google Scholar 

  108. Levine IN (2000) Quantum Chemistry, 5th edn. Prentice Hall, Upper Saddle River, NJ; sections 9.9, 9.10

    Google Scholar 

  109. Stratman RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  Google Scholar 

  110. Wiberg KB, Stratman RE, Frisch MJ (1998) Chem Phys Lett 297:60

    Article  CAS  Google Scholar 

  111. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburgh, PA, p 218

    Google Scholar 

  112. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J Am Chem Soc 128:2072

    Article  CAS  Google Scholar 

  113. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  114. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497

    Article  CAS  Google Scholar 

  115. Frisch MJ, Trucks GW, Cheeseman JR (1996). In: Seminario JM (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam

    Google Scholar 

  116. Rablen PR, Pearlman SA, Finkbiner J (2000) J Phys Chem A 103:7357

    Article  Google Scholar 

  117. Sefzik TH, Tureo D, Iuliucci RJ (2005) J Phys Chem A 109:1180

    Article  CAS  Google Scholar 

  118. Wu A, Zhang Y, Xu X, Yan Y (2007) J Comp Chem 28:2431

    Article  CAS  Google Scholar 

  119. Zhao Y, Truhlar D (2008) J Phys Chem A 112:6794

    Google Scholar 

  120. Pérez M, Peakman TM, Alex A, Higginson PD, Mitchell JC, Snowden MJ, Morao I (2006) J Org Chem 71:3103

    Article  Google Scholar 

  121. Castro C, Karney WL, Vu CMH, Burkhardt SE, Valencia MA (2005) J Org Chem 70:3602

    Article  CAS  Google Scholar 

  122. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric Identification of organic compounds, 4th edn. Wiley, New York; methane, 191, 219; cyclopropane, 193, 220; benzene, 196, 222; acetone, 227

    Google Scholar 

  123. Patchkovskii S, Thiel W (1999) J Comp Chem 20:1220

    Article  CAS  Google Scholar 

  124. Muchall HM, Werstiuk NH, Choudhury B (1998) Can J Chem 76:227

    Google Scholar 

  125. Levin RD, Lias SG (1982) Ionization potential and appearance potential measurements, 1971–1981. National Bureau of Standards, Washington, DC

    Google Scholar 

  126. Curtis LA, Nobes RH, Pople JA, Radom I (1992) J Chem Phys 97:6766

    Article  Google Scholar 

  127. Golas E, Lewars E, Liebman J (2009) J Phys Chem A 113:9485

    Article  CAS  Google Scholar 

  128. (a) Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383 (b) Chong DP, Gritsenko OV, Baerends EJ (2002) J Chem Phys 116:1760

    Google Scholar 

  129. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, UK, p 272

    Google Scholar 

  130. Stowasser R, Hoffmann R (1999) J Am Chem Soc 121:3414

    Article  CAS  Google Scholar 

  131. Salzner U, Lagowski JB, Pickup PG, Poirier RA (1997) J Comp Chem 18:1943

    Article  CAS  Google Scholar 

  132. Vargas R, Garza J, Cedillo A (2005) J Phys Chem A 109:8880

    Article  CAS  Google Scholar 

  133. Zhan C-C, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184

    Article  CAS  Google Scholar 

  134. Zhang GZ, Musgrave CB (2005) J Phys Chem A 111:1554

    Article  Google Scholar 

  135. Hunt WJ, Goddard WA (1969) Chem Phys Lett 3:414

    Article  CAS  Google Scholar 

  136. Berzelius JJ (1819) Essai sur la théorie des proportions chimiques et sur l’influence chimique de l’électricité; see Nye MJ (1993) From chemical philosophy to theoretical chemistry. University of California Press, Berkeley, CA, p 64

    Google Scholar 

  137. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York, pp 90–95

    Google Scholar 

  138. Mulliken RS (1952) J Am Chem Soc 74:811

    Article  CAS  Google Scholar 

  139. (a) Pearson RG (1963) J Am Chem Soc 85:3533 (b) Pearson RG (1963) Science 151:172

    Google Scholar 

  140. Footnote in [139a], p 3533

    Google Scholar 

  141. (a) Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson and Ross, Stroudenburg, PA (b) Lo TL (1977) Hard and soft acids and basis in organic chemistry. Academic Press, New York

    Google Scholar 

  142. Dewar MJS (1992) A semiempirical life. American Chemical Society, Washington, DC, p 160

    Google Scholar 

  143. Ritter S (2003) Chem Eng News 17 Feb:50

    Google Scholar 

  144. Parr RG, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  145. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York; Chapters 4 and 5 in particular

    Google Scholar 

  146. (a) Gibbs JW (1993) The scientific papers of J. Willard Gibbs: Vol. I, Thermodynamics. Ox Bow, Woodbridge CT. (b) Kaplan TA (2006) Confronting confusion about chemical potential. J Stat Phys 122:1237. (c) Job G, Herrmann F (2006) An attempt to give an intuitive feeling for chemical potential. Eur J Phys 27:353. (d) Baierlein R (2001) An explanation of chemical potential in different ways. Am J Phys 69:423

    Google Scholar 

  147. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547

    Article  CAS  Google Scholar 

  148. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  149. Mulliken RS (1934) J Chem Phys 2:782

    Article  CAS  Google Scholar 

  150. Pearson RG (1999) J Chem Educ 76:267

    Article  CAS  Google Scholar 

  151. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  152. Toro-Labbé A (1999) J Phys Chem A 103:4398

    Article  Google Scholar 

  153. Nguyen LT, Le TN, De Proft F, Chandra AK, Langenaeker W, Nguyen MT, Geerlings P (1999) J Am Chem Soc 121:5992

    Article  CAS  Google Scholar 

  154. (a) Fukui K (1987) Science 218:747. (b) Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New York. (c) Fukui K (1971) Acc Chem Res 57:4

    Google Scholar 

  155. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708

    Article  CAS  Google Scholar 

  156. Carey FA, Sundberg RL (2000) Advanced organic chemistry, 3rd edn. Plenum, New York, p 437

    Google Scholar 

  157. Méndez F, Gázquez JL (1994) J Am Chem Soc 116:9298

    Article  Google Scholar 

  158. Damoun S, Van de Woude G, Choho K, Geerlings P (1999) J Phys Chem A 103:7861

    Article  CAS  Google Scholar 

  159. Anderson JSM, Melin J, Ayers PW (2007) J Chem Theory Comput 3:375

    Article  CAS  Google Scholar 

  160. (a) Zhou Z, Parr RG (1989) J Am Chem Soc 111:7371 (b) Zhou Z, Parr RG, Garst JF (1988) Tetrahedron Lett 29:4843

    Google Scholar 

  161. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York, p 101

    Google Scholar 

  162. Melin J, Ayers PW, Ortiz JV (2007) J Phys Chem A 111:10017

    Article  CAS  Google Scholar 

  163. Padmanabhan J, Parthasarthi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) J Phys Chem A 111:9130

    Article  CAS  Google Scholar 

  164. Bulat FA, Chamorro E, Fuentealba P, Toro-Labbé A (2004) J Phys Chem A 108:342

    Article  CAS  Google Scholar 

  165. Melin J, Aparicio F, Subramanian V, Galván M, Chattaraj PK (2004) J Phys Chem A 108:2487

    Article  CAS  Google Scholar 

  166. (a) Koch W, Holthausen M (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York, part B, and refs. therein (b) Frenking G (1997) J Chem Soc Dalton Trans 1653

    Google Scholar 

  167. (a) Kyistyan S, Pulay P (1994) Chem Phys Lett 229:175 (b) Perez-Jorda JM, Becke AD (1995) Chem Phys Lett 233:134

    Google Scholar 

  168. (a) Lozynski M, Rusinska-Roszak D, Mack H-G (1998) J Phys Chem A 102:2899 (b) Adamo C, Barone V (1997). In: Chong DP (ed) Recent advances in density functional methods. Part II. World Scientific, Singapore (c) Sim F, St-Amant A, Papai I, Salahub DR (1992) J Am Chem Soc 114:4391

    Google Scholar 

  169. Added in Press

    Google Scholar 

  170. Book: Chattaraj PK (ed) (2009) Chemical reactivity theory. CRC press, Boca Raton, FL. Historical account by Parr, then theoretical development of electron density properties and reactivity indexes. Review of book: Hackett JC (2010) J Am Chem Soc 132:7558

    Google Scholar 

  171. Book: Sholl D, Steckel JA (2009) Density functional theory. A practical introduction. Wiley, Hoboken. Useful introduction with practical examples. Review of book: Jungwirth P (2010) Angew Chem Int Ed Engl 49:485

    Google Scholar 

  172. Theophilou AK (2010) DFT without functional derivatives, a suggested approach. J Mol Struct (Theochem) 943:42

    Google Scholar 

  173. Li Y, Lu D, Nguye H-V, Galli G (2010) DFT and weak interactions, the EXX/RPA approach. J Phys Chem A 114:1944

    Article  CAS  Google Scholar 

  174. Bader RFW (2010) Historical and conceptual review of the electron density function. J Mol Struct (Theochem) 943:2

    Google Scholar 

  175. Fuentealba P, David J, Guerra D (2010) Are DFT parameters thermodynamic or kinetic? Conclusion: “A combination of both depending on the type of reaction”. J Mol Struct (Theochem) 943:127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Errol G. Lewars .

Appendices

Easier Questions

  1. 1.

    State the arguments for and against regarding DFT as being more a semiempirical than an ab initio-like theory.

  2. 2.

    What is the essential difference between wavefunction theory and DFT? What is it that, in principle anyway, makes DFT simpler than wavefunction theory?

  3. 3.

    Why can’t current DFT calculations be improved in a stepwise, systematic way, as can ab initio calculations?

  4. 4.

    Which of these prescriptions for dealing with a function are functionals: (1) square root of f(x). (2) sinf(x). (3) \( \sum\limits_{x = 1}^3 {f(x)} \). (4) \( \int {f(x)dx} \). (5) exp(f(x)).

  5. 5.

    For which class(es) of functions is the nth derivative of f(x) a functional?

  6. 6.

    Explain why a kind of molecular orbital is found in current DFT, although DFT is touted as an alternative to wavefunction theory.

  7. 7.

    What is fundamentally wrong with functionals that are not gradient-corrected?

  8. 8.

    The ionization energy of a molecule can be regarded as the energy required to remove an electron from its HOMO. How then would a pure density functional theory, with no orbitals, be able to calculate ionization energy?

  9. 9.

    Label these statements true or false: (1) For each molecular wavefunction there is an electron density function. (2) Since the electron density function has only x, y, z as its variables, DFT necessarily ignores spin. (3) DFT is good for transition metal compounds because it has been specifically parameterized to handle them. (4) In the limit of a sufficiently big basis set, a DFT calculation represents an exact solution of the Schrödinger equation. (5) The use of very big basis sets is essential with DFT. (6) A major problem in density functional theory is the prescription for going from the molecular electron density function to the energy.

  10. 10.

    Explain in words the meaning of the terms electronegativity, hardness, and the Fukui function.

Harder Questions

  1. 1.

    It is sometimes said that electron density is physically more real than a wavefunction. Do you agree? Is something that is more easily grasped intuitively necessarily more real?

  2. 2.

    A functional is a function of a function. Explore the concept of a function of a functional.

  3. 3.

    Why is it that the Hartree–Fock Slater determinant is an inexact representation of the wavefunction, but the DFT determinant for a system of noninteracting electrons is exact for this particular wavefunction?

  4. 4.

    Why do we expect the “unknown” term in the energy equation (E XC[ρ 0 ], in Eq. 7.21) to be small?

  5. 5.

    Merrill et al. have said that “while solutions to the [HF equations] may be viewed as exact solutions to an approximate description, the [KS equations] are approximations to an exact description!” Explain.

  6. 6.

    Electronegativity is the ability of an atom or molecule to attract electrons. Why then is it (from one definition) the average of the ionization energy and the electron affinity (Eq. 7.32), rather than simply the electron affinity?

  7. 7.

    Given the wavefunction of a molecule, it is possible to calculate the electron density function. Is it possible in principle to go in the other direction? Why or why not?

  8. 8.

    The multielectron wavefunction Ψ is a function of the spatial and spin coordinates of all the electrons. Physicists say that Ψ for any system tells us all that can be known about the system. Do you think the electron density function ρ tells us everything that can be known about a system? Why or why not?

  9. 9.

    If the electron density function concept is mathematically and conceptually simpler than the wavefunction concept, why did DFT come later than wavefunction theory?

  10. 10.

    Is a metal, with its common pool of electrons, a good approximation of the homogeneous electron gas of early DFT theory? Why or why not?

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lewars, E.G. (2011). Density Functional Calculations. In: Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3862-3_7

Download citation

Publish with us

Policies and ethics