Skip to main content

Past, Present and Future of Charge Density and Density Matrix Refinements

  • Chapter
  • First Online:
Modern Charge-Density Analysis

Abstract

Basic theoretical and some practical aspects of the interpretation of X-ray scattering experiments are described. Our focus is on model building and refinement associated with retrieving information related to electron density matrices from the measured data. The ill-posed nature of this inverse problem is emphasised and the physical significance, reliability and reproducibility of the properties obtained by data fitting are discussed through representative examples taken from recent studies. A special attention is devoted to the pseudoatom formalism widely used to interpret high-resolution single-crystal X-ray diffraction data to map the static electron distribution in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  2. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals. Institute of Physics Publishing, Bristol

    Google Scholar 

  3. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge density analysis. Chem Rev 101:1583–1628

    Article  CAS  Google Scholar 

  4. Van Hove L (1954) Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys Rev 95(1):249–262

    Article  Google Scholar 

  5. Schülke W, Schmitz JR, Schulte-Schrepping H, Kaprolat A (1995) Dynamic and structure factor of electrons in Si: inelastic X-ray scattering results. Phys Rev B 52(16):11721–11732

    Article  Google Scholar 

  6. Shukla A (1999) Ab initio Hartree-Fock computation of the electronic static structure factor for crystalline insulators: benchmark results on LiF. Phys Rev B 60(7):4539–4544

    Article  CAS  Google Scholar 

  7. Watanabe N, Hayashi H, Udagawa Y, Ten-no S, Iwata S (1998) Static structure factor and electron correlation effects studied by inelastic X-ray scattering spectroscopy. J Chem Phys 108(11):4545–4553

    Article  CAS  Google Scholar 

  8. Heisenberger P, Platzman PM (1970) Compton scattering of X-rays from bound electrons. Phys Rev A 2(2):415–423

    Article  Google Scholar 

  9. Chew G (1950) The inelastic scattering of high energy neutrons by deuterons according to the impulse approximation. Phys Rev 80(2):186–202

    Article  Google Scholar 

  10. Chew G, Wick GC (1952) The impulse approximation. Phys Rev 85(4):636–642

    Article  CAS  Google Scholar 

  11. Pattison P, Weyrich W, Williams B (1977) Observation of ionic deformation and bonding from Compton profiles. Solid State Commun 21:967–970

    Article  CAS  Google Scholar 

  12. Hansen NK (1980) Reports of Hahn-Meitner Institute HMI B342

    Google Scholar 

  13. Hansen NK, Pattison P, Schneider J (1987) Analysis of the 3-dimensional electron distribution in silicon using directional Compton profile measurements. Z Phys B 66:305–315

    Article  CAS  Google Scholar 

  14. Gillet J-M, Fluteaux C, Becker PJ (1999) Analytical reconstruction of momentum density from directional Compton profiles. Phys Rev B 60(4):2345–2349

    Article  CAS  Google Scholar 

  15. Kontrym-Sznajd G (1990) Three dimensional image reconstruction with application in positron annihilation. Phys Stat Solid A 117(1):227–240

    Article  Google Scholar 

  16. Reiter G, Silver R (1985) Measurement of interionic potentials in solids using deep-inelastic neutron scattering. Phys Rev Lett 54(10):1047–1050

    Article  CAS  Google Scholar 

  17. Sivia DS, Skilling J (2006) Data analysis. Oxford Science, Oxford

    Google Scholar 

  18. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  19. Jeffreys H (1939) Theory of probability. Clarendon, Oxford

    Google Scholar 

  20. Schmider H, Edgecombe KE, Smith VH Jr (1992) One-particle matrices along the molecular bonds in linear molecules. J Chem Phys 96(11):8411–8419

    Article  CAS  Google Scholar 

  21. Howard S, Hulke JP, Mallinson PR, Frampton CS (1994) Density matrix refinement for molecular crystals. Phys Rev B 49(11):7124–7136

    Article  CAS  Google Scholar 

  22. Schmider H, Smith VH Jr, Weyrich W (1992) Reconstruction of the one particle density matrix from expectation values in position and momentum space. J Chem Phys 96(12):8986–8994

    Article  CAS  Google Scholar 

  23. Schmider H, Smith VH Jr, Weyrich W (1993) On the inference of the one-particle density matrix from position and momentum-space form factors. Z Naturforsch 48A:211–220

    Google Scholar 

  24. Pecora LM (1986) Determination of the quantum density matrix from experiment: an application to positron annihilation. Phys Rev B 33(9):5987–5993

    Article  CAS  Google Scholar 

  25. Gillet J-M (2007) Determination of a one-electron reduced density matrix using a coupled pseudoatom model and a set of complementary scattering data. Acta Crystallogr A 63: 234–238

    Article  Google Scholar 

  26. Gillet J-M, Becker PJ, Cortona P (2001) Joint refinement of a local wave-function model from Compton and Bragg scattering data. Phys Rev B 63:235115

    Article  Google Scholar 

  27. Kiang HS (1969) N-representability theorem for reduced density matrices. J Math Phys 10(10):1920–1921

    Article  Google Scholar 

  28. McWeeny R (1959) Hartree-Fock theory with non-orthogonal basis functions. Phys Rev 114(6):1528–1529

    Article  CAS  Google Scholar 

  29. McWeeny R (1960) Some recent advances in density matrix theory. Rev Mod Phys 32(2): 335–369

    Article  Google Scholar 

  30. Clinton W, Galli A, Massa L (1969) Direct determination of pure-state density matrices. II. Construction of constrained idempotent one-body densities. Phys Rev 177(1):7–13

    Article  CAS  Google Scholar 

  31. Clinton W, Massa L (1972) Determination of the electron density matrix from X-ray diffraction data. Phys Rev Lett 29(20):1363–1366

    Article  CAS  Google Scholar 

  32. Weiss AW (1961) Configuration interaction in simple atomic systems. Phys Rev 122: 1826–1836

    Article  CAS  Google Scholar 

  33. Stewart RF, Feil D (1980) A theoretical study of elastic X-ray scattering. Acta Crystallogr A 36:503–509

    Article  Google Scholar 

  34. Stewart RF (1997) Vibrational averaging of X-ray-scattering intensities. Isr J Chem 16: 137–143

    Google Scholar 

  35. Stewart RF (1969) Generalized X-ray scattering factors. J Chem Phys 51:4569–4576

    Article  CAS  Google Scholar 

  36. Stewart RF (1977) One-electron density functions and many-centered finite multipole expansions. Isr J Chem 16:124–131

    CAS  Google Scholar 

  37. Stewart RF (1976) Electron population analysis with rigid pseudoatoms. Acta Crystallogr A 32:565–574

    Article  Google Scholar 

  38. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small molecule data sets. Acta Crystallogr A 34:909–921

    Article  Google Scholar 

  39. Fertig HA, Kohn W (2000) Symmetry of atomic electron density in Hartree, Hartree-Fock and density-functional theories. Phys Rev A 62:052511–10

    Article  Google Scholar 

  40. Stewart RF, Bentley J, Goodman B (1975) Generalized X-ray scattering factors in diatomic molecules. J Chem Phys 63:3786–3793

    Article  CAS  Google Scholar 

  41. Clementi E, Roetti C (1974) Atom Data Nucl Data Tab 14:177

    Article  CAS  Google Scholar 

  42. Spackman MA (1992) Molecular electric moments from X-ray diffraction data. Chem Rev 92:1769–1797

    Article  CAS  Google Scholar 

  43. Volkov A, King HF, Coppens P, Farrugia LJ (2006) On the calculation of electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. Acta Crystallogr A 62:400–408

    Article  Google Scholar 

  44. Spackman MA (2007) Comments on On the calculation of electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model by Volkov, King, Coppens & Farrugia (2006). Acta Crystallogr A 63:198–200

    Article  Google Scholar 

  45. Hirshfeld FL (1977) Charge deformation and vibrational smearing. Isr J Chem 16:168–174

    CAS  Google Scholar 

  46. Oddershede J, Larsen S (2004) Charge density study of naphthalene based on X-ray diffraction data at four different temperatures and theoretical calculations. J Phys Chem A 108:1057–1063

    Article  CAS  Google Scholar 

  47. Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10:151–177

    Article  Google Scholar 

  48. Katriel J, Davidson ER (1980) Asymptotic behavior of atomic and molecular wave functions. Proc Natl Acad Sci USA 77:4403–4406

    Article  CAS  Google Scholar 

  49. Pillet S, Souhassou M, Lecomte C, Schwarz K, Blaha P, Rerat M, Lichanot A, Roversi P (2001) Recovering experimental and theoretical electron densities in corundum using the multipolar model: IUCr multipole refinement project. Acta Crystallogr A 57:290–303

    Article  CAS  Google Scholar 

  50. Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson P, Richter T, Koritsanszky T (2006) Program manual, XD2006 – a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors. User’s manual. http://xd.chem.buffalo.edu/docs/xdmanual.pdf

  51. Coppens P, Boehme R, Price PF, Stevens ED (1981) Electron population analysis of accurate diffraction data. 10. Joint X-ray and neutron data refinement of structural and charge density parameters. Acta Crystallogr A 37:857–863

    Article  Google Scholar 

  52. Blessing RH (1995) On the differences between X-ray and neutron thermal vibration parameters. Acta Crystallogr B 51:816–823

    Article  Google Scholar 

  53. Schomaker V, Trueblood KN (1968) On the rigid-body motion of molecules in crystals. Acta Crystallogr B 24:63–76

    Article  CAS  Google Scholar 

  54. Madsen AO, Sorensen HO, Flensburg C, Stewart RF, Larsen S (2004) Modeling of the nuclear parameters of H atoms in X-ray charge density studies. Acta Crystallogr A 60:550–561

    Article  Google Scholar 

  55. Destro R, Roversi P, Barzaghi M, Marsh RE (2000) Experimental charge density of α-glycine at 23 K. J Phys Chem A 104:1047–1054

    Article  CAS  Google Scholar 

  56. Roversi P, Destro R (2004) Approximate anisotropic displacement parameters for H atoms in molecular crystals. Chem Phys Lett 386:472–478

    Article  CAS  Google Scholar 

  57. Bürgi HB, Capelli SC, Goeta AE, Howard JAK, Spackman MA, Yufit DS (2002) Electron distribution and molecular motion in crystalline benzene: an accurate experimental study combining CCD X-ray data on C6H6 with multi-temperature neutron-diffraction results on C6D6. Chem Eur J 8:3512–3521

    Article  Google Scholar 

  58. Flaig R, Koritsanszky T, Zobel D, Luger P (1998) Topological analysis of experimental electron densities of amino acids: 1. D,L-Aspartic acid at 20 K. J Am Chem Soc 120:2227–2236

    Article  CAS  Google Scholar 

  59. Munshi P, Madsen AO, Spackman MA, Larsen S, Destro R (2008) Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. Acta Crystallogr A 64:465–475

    Article  Google Scholar 

  60. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Science, Oxford

    Google Scholar 

  61. Tsirelson VT (2002) Mapping of electronic energy distributions using experimental electron density. Acta Crystallogr B 58:632–639

    Article  Google Scholar 

  62. Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220:399–487

    Article  CAS  Google Scholar 

  63. Saunders VR, Dovesi R, Roetti C, Causa M, Harrison NM, Orlando R, Zicovich-Wilson CM (1998) CRYSTAL98 user’s manual. University of Turin, Turin

    Google Scholar 

  64. Gatti C, Saunders VR, Roetti C (1994) Crystal-field effect on the topological properties of the electron density in molecular-crystals – the case of urea. J Chem Phys 101:10686–10696

    Article  CAS  Google Scholar 

  65. Ovegaard J, Hibbs DE (2004) The experimental electron density in polymorphs A and B of the anti-ulcer drug famotidine. Acta Crystallogr A 60:480–487

    Article  Google Scholar 

  66. Hibbs DE, Overgaard J, Platts JA, Waller MP, Hursthouse MB (2004) Experimental and theoretical charge density studies of tetrafluoro-phthalonitrile and tetrafluoro-isophthalonitrile. J Phys Chem B 108:3663–3673

    Article  CAS  Google Scholar 

  67. Overgaard J, Waller MP, Platts JA, Hibbs DE (2003) Influence of crystal effects on molecular densities in a study of 9-Ethynyl-9-fluorenol. J Phys Chem A 107:11201–11208

    Article  CAS  Google Scholar 

  68. Scheins S, Dittrich B, Messerschmidt M, Paulmann C, Luger P (2004) Atomic volumes and charges in a system with a strong hydrogen bond: L-tryptophan formic acid. Acta Crystallogr B 60:184–190

    Article  CAS  Google Scholar 

  69. Munshi P, Guru Row TN (2005) Exploring the lower limit in hydrogen bonds: analysis of weak C–H⋯O and C–H⋯π interactions in substituted coumarins from charge density analysis. J Phys Chem A 109:659–672

    Article  CAS  Google Scholar 

  70. Brown AS, Spackman MA (1991) A model study of κ-refinement procedure for fitting valence electron densities. Acta Crystallogr A 47:21–29

    Article  Google Scholar 

  71. Coppens P, Guru Row TN, Leung P, Stevens ED, Becker PJ, Wang YW (1979) Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. Acta Crystallogr A 35:63–72

    Article  Google Scholar 

  72. Spackman MA, Byrom PG (1997) Retrieval of structure-factor phases in non-centrosymmetric space group. Model studies using multipole refinement. Acta Crystallogr B 53:553–564

    Article  Google Scholar 

  73. Haouzi AEl, Hansen NK, Hènass CLe, Protas J (1996) The phase problem in the analysis of X-ray diffraction data in terms of electron-density distributions. Acta Crystallogr A 52:291–301

    Article  Google Scholar 

  74. Howard ST, Hursthouse MB, Lehmann CW (1995) Experimental and theoretical determination of electronic properties in L-dopa. Acta Crystallogr B 51:328–337

    Article  Google Scholar 

  75. Volkov A, Abramov YA, Coppens P (2001) Density optimized radial exponents for X-ray charge density refinement from ab initio calculations. Acta Crystallogr A 57:272–282

    Article  CAS  Google Scholar 

  76. Bytheway I, Chandler SG, Figgis BN (2002) Can a multipole analysis faithfully reproduce topological descriptors of a total charge density? Acta Crystallogr A 58:451–459

    Article  Google Scholar 

  77. Spackman MA, Byrom PG, Alfredsson M, Hermansson K (1999) Influence of intermolecular interactions on multipole refined electron densities. Acta Crystallogr A 55:30–47

    Article  Google Scholar 

  78. Pichon-Pesme V, Lecomte C, Lachekar H (1995) On building a data bank of transferable experimental electron density parameters: applications to polypeptides. J Phys Chem 99:6242–6250

    Article  CAS  Google Scholar 

  79. Volkov A, Li X, Koritsanszky T, Coppens P (2004) Ab initio quality electro-static atomic and molecular properties from a transferable theoretical pseudoatom databank: comparison of electrostatic moments, topological properties, and interaction energies with theoretical and force-field results. J Phys Chem A 108:4283–4300

    Article  CAS  Google Scholar 

  80. Dittrich B, Koritsanszky T, Luger P (2004) A simple approach to molecular densities with invarioms. Angew Chem Int Ed 43:2718–2721

    Article  CAS  Google Scholar 

  81. Jelsch C, Pichon-Pesme V, Lecomte C, Aubry A (1998) Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures. Acta Crystallogr D 54:1306–1318

    Article  CAS  Google Scholar 

  82. Pichon-Pesme V, Zarychta B,~Guillot B, Lecomte C, Jelsch C (2007) On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Crystallogr A 63:108–125

    Article  Google Scholar 

  83. Dominiak PM, Volkov A, Dominiak AP, Jarzembska KN, Coppens P (2009) Combining crystallographic information and an aspherical-atom data bank in the evaluation of the electrostatic interaction energy in an enzyme-substrate complex: influenza neuraminidase inhibition. Acta Crystallogr D 65:485–499

    Article  Google Scholar 

  84. Koritsanszky T, Volkov A (2004) Density radial functions for bonded atoms. Chem Phys Lett 383:431–435

    Article  Google Scholar 

  85. te Velde B, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  86. Hirshfeld FL (1977) Spatial partitioning of charge density. Theor Chim Acta 44:129–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.-M. Gillet would like to thank D. Sivia for fruitful discussions on combined data treatment. CNRS and Agence Nationale pour la Recherche (CEDA project) are also thanked for financial support. T. Koritsanszky acknowledges the support of the German Science Foundation (SPP 1178: “Experimental Electron Density as the Key to Understand Chemical Bonding”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Gillet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gillet, JM., Koritsanszky, T. (2011). Past, Present and Future of Charge Density and Density Matrix Refinements. In: Gatti, C., Macchi, P. (eds) Modern Charge-Density Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3836-4_5

Download citation

Publish with us

Policies and ethics