Skip to main content

Charge Density in Materials and Energy Science

  • Chapter
  • First Online:
Modern Charge-Density Analysis
  • 1952 Accesses

Abstract

During the last decade charge density studies have matured and more and more studies target specific chemical, physical or biological issues rather than method development. Indeed a very wide range of information can be retrieved from analysis of charge densities. Here we review recent applications of charge density analysis in materials science with emphasis on thermoelectric, magnetic and porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coppens P (1997) X-ray Charge densities and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  2. (a) Coppens P, Koritzansky T (2001) Chemical applications of charge densities. Chem Rev 101:1583–1628; (b) Coppens P, Iversen BB, Larsen FK (2004) The use of synchrotron radiation in X-ray charge density analysis of coordination complexes Coord Chem Rev 249:179–195; (c) Coppens P (2005) Charge densities come of age. Angew Chem Int Ed 44:6810–6811

    Google Scholar 

  3. (a) Collins DM (1982) Electron-density images from imperfect data by iterative entropy maximization. Nature 298:49–51; (b) Sakata M, Sato M (1990) Accurate structure-analysis by the maximum-entropy method. Acta Crystallogr A 46:263–270; (c) Takata M, Nishibori E, Sakata M (2001) Charge density studies utilizing powder diffraction and MEM. Exploring of high Tc superconductors, C-60 superconductors and manganites. Z Kristallogr 216:71–86

    Google Scholar 

  4. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  5. Spackman MA (1992) Molecular electric moments from X-ray-diffraction data. Chem Rev 92:1769–1797

    Article  CAS  Google Scholar 

  6. Bader RFW, Gatti C (1998) A green’s function for the density. Chem Phys Lett 287:233–238

    Article  CAS  Google Scholar 

  7. (a) Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658; (b) Kohout M (2007) Bonding indicators from electron pair density. Faraday Discuss 135: 43–54

    Google Scholar 

  8. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nature Mater 7:105–114

    Article  CAS  Google Scholar 

  9. Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton

    Google Scholar 

  10. (a) Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328; (b) Venkatasubramanian R, Siivola E, Colpitts T et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602; (c) Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Google Scholar 

  11. (a) Kovnir KA, Shevelkov AV (2004) Semiconducting clathrates: synthesis, structure and properties. Russ Chem Rev 73:923–938; (b) Mudryk Y, Rogl P, Paul C et al (2002) Thermoelectricity of clathrate I Si and Ge phases. J Phys Condens Mat 14:7991–8004

    Google Scholar 

  12. (a) Blake NP, Latturner S, Bryan JD et al (2001) Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys 115:8060–8072; (b) Blake NP, Bryan JD, Latturner S et al (2001) Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys 114:10063–10074

    Google Scholar 

  13. Bryan JD, Bentien A, Blake NP et al (2002) Nonstoichiometry and chemical purity effects in thermoelectric Ba8Ga16Ge30 clathrate. J Appl Phys 92:7281–7290

    Article  CAS  Google Scholar 

  14. (a) Chakoumakos BC, Sales BC, Mandrus DG et al (2000) Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30. J Alloys Compd 296:80–86; (b) Keppens V, Sales BC, Mandrus D et al (2000) When does a crystal conduct heat like a glass? Philos Mag Lett 80:807–812; (c) Iversen BB, Palmqvist AEC, Cox D et al (2000) Why are clathrates good candidates for thermoelectric materials? J Solid State Chem 149:455–458

    Google Scholar 

  15. Bentien A, Palmqvist AEC, Bryan JD et al (2000) Experimental charge densities of semiconducting cage structures containing alkaline earth guest atoms. Angew Chem Int Ed 40:3613–3616

    Google Scholar 

  16. (a) Nataraj D, Nagao N, Ferhat M et al Structure, high temperature transport, and thermal properties of Ba8GsxSi46-x (x = 10 and 16) clathrates prepared by the arc melting method. J Appl Phys 93:2424–2428; (b) Paschen S, Carrillo-Cabrera W, Bentien A et al (2001) Structural, transport, magnetic, and thermal properties of Eu8Ga16Ge30. Phys Rev B 64:214404; (c) Tournus F, Masenelli B, Mélinon P et al (2004) Guest displacement in silicon clathrates. Phys Rev B 69:035208

    Google Scholar 

  17. Sales BC, Chakoumakos BC, Jin R et al (2001) Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys Rev B 63:245113

    Article  Google Scholar 

  18. See e.g. (a) Zerec I, Keppens V, McGuire MA et al (2004) Four-well tunneling states and elastic response of clathrates. Phys Rev Lett 92:185502; (b) Suekuni K, Avila MA, Umeo K et al (2007) Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30-xGex. Phys Rev B 75:195210; (c) Avila MA, Suekuni K, Umeo K et al (2006) Glasslike versus crystalline thermal conductivity in carrier-tuned Ba8Ga16X30 clathrates (X = Ge,Sn). Phys Rev B 74:125109

    Google Scholar 

  19. Bentien A, Iversen BB, Bryan JD et al (2002) Maximum entropy method analysis of thermal motion and disorder in thermoelectric clathrate Ba8Ga16Si30. J Appl Phys 91:5694–5699

    Article  CAS  Google Scholar 

  20. (a) Christensen M, Iversen BB (2007) Host structure engineering in thermoelectric clathrates. Chem Mater 19:4896–4905; (b) Christensen M, Iversen BB (2008) Host-guest coupling in semiconducting Ba8Zn8Ge38. J Phys B Condens Mater 20:104244; (c) Christensen M, Lock N, Overgaard J et al (2006) Crystal structures of thermoelectric n- and p-type Ba8Ga16Ge30 studied by single crystal, multitemperature, neutron diffraction, conventional X-ray diffraction and resonant synchrotron X-ray diffraction. J Am Chem Soc 129:15657–15665

    Google Scholar 

  21. Bader RFW (2005) The quantum mechanical basis of conceptual chemistry. Monatshefte Chem 136:819–854

    Article  CAS  Google Scholar 

  22. (a) Debye P, Scherrer P (1918) Phys Z 19:474–483; (b) Bragg WL, James RW, Bosanquet CH (1992) The distribution of electrons around the nucleus in the sodium and chlorine atoms. Philos Mag 44:433–449

    Google Scholar 

  23. Gatti C, Bertini L, Blake NP et al (2003) Guest-framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest a in A8Ga16Ge30 (A = Sr, Ba). Chem Eur J 9:4556–4568

    Article  CAS  Google Scholar 

  24. Chen G, Dresselhaus MS, Dresselhaus G et al (2003) Recent developments in thermoelectric materials. Int Mater Rev 48:45–66

    Article  CAS  Google Scholar 

  25. Saber HH, El-Genk MS, Callita T (2007) Tests results of skudderudite based thermoelectric unicouples. Energy Convers Manag 48:555–567

    Article  CAS  Google Scholar 

  26. Guloy AM, Ramlau R, Tang Z et al (2006) A guest-free germanium clathrate. Nature 443: 320–323

    Article  CAS  Google Scholar 

  27. (a) Sharp JW, Jones EC, Williams RK et al (1995) Thermoelectric properties of CoSb3 and related alloys. J Appl Phys 78:1013–1016; (b) Zhang L, Grytsiv A, Kerber M et al (2009) MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: kinetics of formation and transport properties. J Alloys Compd 481:106–115

    Google Scholar 

  28. Pauling L (1978) Covalent chemical bonding of transition metals in pyrite, cobaltite, skutterudite, millerite, and related minerals. Can Mineral 16:447–452

    CAS  Google Scholar 

  29. Lefebvre-Devos I, Lassalle M, Wallart X et al (2001) Bonding in skutterudites: combined experimental and theoretical characterization of CoSb3. Phys Rev B 63:125110

    Article  Google Scholar 

  30. Ohno A, Sasaki S, Nishibori E et al (2007) X-ray charge density study of chemical bonding in skutterudite CoSb3. Phys Rev B 76:064119

    Article  Google Scholar 

  31. Leithe-Jasper A, Borrmann H, Akselrud L et al (2009) Unpublished results

    Google Scholar 

  32. Leithe-Jasper A, Schnelle W, Rosner H et al (2004) Weak itinerant ferromagnetism and electronic and crystal structures of alkali-metal iron antimonides: NaFe4Sb12 and KFe4Sb12. Phys Rev B 70:214418

    Article  Google Scholar 

  33. (a) Wagner FR, Bezugly V, Kohout M et al (2007) Charge decomposition analysis of the electron localizability indicator a bridge between the orbital and direct space representation of the chemical bond. Chem Eur J 13:5724–5741; (b) Kohout M, Wagner FR, Grin Y (2002) Electron localization function for transition-metal compounds. Theor Chem Acc 108:150–156

    Google Scholar 

  34. Schnelle W, Leithe-Jasper A, Schmidt M et al (2005) Itinerant iron magnetism in filled skutterudites CaFe4Sb12 and YbFe4Sb12: stable divalent state of ytterbium. Phys Rev B 72:020402

    Article  Google Scholar 

  35. Schnelle W, Leithe-Jasper A, Rosner H et al (2008) Magnetic, thermal, and electronic properties of iron-antimony filled skutterudites MFe4Sb12 (M = Na, K, Ca, Sr, Ba, La, Yb). Phys Rev B 77:094421

    Article  Google Scholar 

  36. Koza MM, Capogna L, Leithe-Jasper A et al (2010) Vibrational dynamics of filled skutterudites M 1−x Fe4Sb12 (M = Ca, Sr, Ba, and Yb). Phys Rev B 81:174302

    Article  Google Scholar 

  37. Dashjav E, Prots Y, Kreiner G et al (2008) Chemical bonding analysis and properties of La7Os4C9-A new structure type containing C- and C-2-units as Os-coordinating ligands. J Solid State Chem 181:3121–3129

    Article  CAS  Google Scholar 

  38. Sichevych O, Kohout M, Schnelle W et al (2009) EuTM2Ga8 (TM = Co, Rh, Ir) - a contribution to the chemistry of the CeFe2Al8-type compounds. Inorg Chem 48:6261–6270

    Article  CAS  Google Scholar 

  39. Leung P, CoppensP (1983) Generalized relations between D-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray-diffraction data. Acta Crystallogr B 39:377–387; (b) Bianchi R, Gervasio G, Marabello D (2001) Experimental electron density in the triclinic phase of Co2(CO)6(μ-CO)(μ-C4O2H2) at 120 K. Acta Crystallogr B 57:638–645; (c) Bianchi R, Gervasio G, Marabello D (2001) An experimental evidence of a metal-metal bond in μ-carbonylhexacarbonyl[μ-(5-oxofuran-2(5 H)-ylidene-κC,κC)]-dicobalt(Co-Co)[Co2(CO)6(μ-CO)(μ-C4O2H2)]. Helv Chim Acta 84:722–734; (d) Bianchi R, Gervasio G, Marabello D (1998) Experimental charge density study of the Mn-Mn bond in Mn2(CO)10 at 120 K. Chem Commun 1535–1536; (e) Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2(CO)10: metal-metal and metal-ligand bond characterization. Inorg Chem 39:2360–2366; (f) Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal-metal and metal-ligand bonds. J Am Chem Soc 120:13429–13435; (g) Macchi P, Garlaschelli L, Martinengo S et al (1999) Charge density in transition metal clusters: supported vs unsupported metal-metal interactions. J Am Chem Soc 121:10428–10429; (h) Farrugia LJ, Mallinson PR, Stewart B (2003) Experimental charge density in the transition metal complex Mn2(CO)10: a comparative study. Acta Crystallogr B 59:234–247

    Google Scholar 

  40. Overgaard J, Clausen HF, Platts JA et al (2008) Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc 130:3834–3843

    Article  CAS  Google Scholar 

  41. Farrugia LJ (2005) Is there a Co-Co bond path in Co2(CO)6(μ-CO)(μ-C4H2O2)? Chem Phys Lett 414:122–126

    Article  CAS  Google Scholar 

  42. Finger M, Reinhold J (2003) Energy density distribution in bridged cobalt complexes. Inorg Chem 42:8128–8130

    Article  CAS  Google Scholar 

  43. Gatti C, Bertini L (2004) The local form of the source function as a fingerprint of strong and weak intra- and intermolecular interactions. Acta Crystallogr A 60:438–449

    Article  Google Scholar 

  44. Gatti C, Lasi D (2007) Source function description of metal-metal bonding in d-block organometallic compounds. Faraday Discuss 135:55–78

    Article  CAS  Google Scholar 

  45. Poulsen RD, Overgaard J, Schulman A et al (2009) Effects of weak intermolecular interactions on the molecular isomerism of tricobalt metal chains. J Am Chem Soc 131:7580–7591

    Article  CAS  Google Scholar 

  46. Carroll RL, Gorman CB (2002) The genesis of molecular electronics. Angew Chem Int Ed 41:4378–4400

    Google Scholar 

  47. (a) Cotton FA, Daniels LM, Jordan GT et al (1997) Symmetrical and unsymmetrical compounds having a linear Co 6+3 chain ligated by a spiral set of dipyridyl anions. J Am Chem Soc 119:10377–10381; (b) Clerac R, Cotton FA, Dunbar KR et al (2000) A new linear tricobalt compound with di(2-pyridyl)amide (dpa) ligands: two-step spin crossover of [Co3(dpa)4Cl2][BF4]. J Am Chem Soc 122:2272–2278; (c) Clerac R, Cotton FA, Daniel LM et al (2001) Tuning the metal-metal bonds in the linear tricobalt compound Co3(dpa)4Cl2: bond-stretch and spin-state isomers. Inorg Chem 40:1256–1264; (d) Clerac R, Cotton FA, Daniels LM et al (2001) Linear tricobalt compounds with Di(2-pyridyl)amide (dpa) Ligands: temperature dependence of the structural and magnetic properties of symmetrical and unsymmetrical forms of Co3(dpa)4Cl2 in the solid state. J Am Chem Soc 122:6226–6236

    Google Scholar 

  48. (a) Clerac R, Cotton FA, Jeffery SP et al (2001) Compounds with symmetrical tricobalt chains wrapped by dipyridylamide ligands and cyanide or isothiocyanate ions as terminal ligands. Inorg Chem 40:1265–1270; (b) Cotton FA, Murillo CA, Wang X (1999) Linear tricobalt compounds with di-(2-pyridyl)amide (dpa) ligands: studies of the paramagnetic compound Co3(dpa)4Cl2 in solution. Inorg Chem 38:6294–6297

    Google Scholar 

  49. (a) Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220; (b) Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392; (c) McKinnon JJ, Spackman MA, Mitchell MS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr B 60:627–668; (d) McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 3814–3816; (e) Spackman MA, McKinnon JJ, Jayatilaka D (2008) Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 10:377–388; (f) Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Google Scholar 

  50. Dziobkowski CT, Wrobleski JT, Brown DB (1981) Magnetic and spectroscopic properties of FeIIFe III2 O(CH3CO2)6 L3, L = H2O or C5H5N - direct observation of the thermal barrier to electron-transfer in a mixed-valence complex. Inorg Chem 20:679–684

    Article  CAS  Google Scholar 

  51. (a) Blow DM, Birktoft JJ, Hartley BS (1969) Role of a buried acid group in mechanism of action of chymotrypsin. Nature 221:337; (b) Overgaard J, Schiøtt B, Larsen FK et al (2001) The charge density distribution in a model compound of the catalytic triad in serine proteases. Chem Eur J 7:3756–3767

    Google Scholar 

  52. Wilson C, Iversen BB, Overgaard J et al (2000) Multi-temperature crystallographic studies of mixed-valence polynuclear complexes; Valence trapping process in the trinuclear oxo-bridged iron compound, [Fe3O(O2CC(CH3)3)6(C5H5N)3]. J Am Chem Soc 122:11370–11379

    Article  CAS  Google Scholar 

  53. Overgaard J, Larsen FK, Schiøtt B et al (2003) Electron density distributions of redox active mixed valence carboxylate bridged trinuclear iron complexes. J Am Chem Soc 125:11088–11099

    Article  CAS  Google Scholar 

  54. Overgaard J, Larsen FK, Timco GA et al (2009) Experimental charge density in an oxidized trinuclear iron complex using 15 K synchrotron and 100 K conventional single-crystal X-ray diffraction. Dalton Trans 664–671

    Google Scholar 

  55. Clausen HF, Overgaard J, Chen YS et al (2008) Synchrotron X-ray charge density study of coordination polymer Co3(C8H4O4)4(C4H12N)2(C5H11NO)3 at 16 K. J Am Chem Soc 130:7988–7996

    Article  CAS  Google Scholar 

  56. Poulsen RD, Bentien A, Christensen M et al (2006) Solvothermal synthesis, multi-temperature crystal structures and physical properties of isostructural coordination polymers, 2C4H12N+[M3(C8H4O4)4]2-⋅3C5H11NO, M = Co, Zn. Acta Crystallogr B 62:245–254

    Article  Google Scholar 

  57. Radhakrishna P, Gillon B, Chevrier G (1993) Superexchange in manganese formate dihydrate, studied by polarized-neutron diffraction. J Phys Condens Matter 5:6447–6460

    Article  CAS  Google Scholar 

  58. (a) Takeda K, Kawasaki K (1971) Magnetism and phase transition in 2-dimensional lattices – M(HCOO)2⋅2H2O (M = Mn,Fe,Ni,Co). J Phys Soc Jpn 31:1026–1036; (b) Burlet P, Burlet P, Rossat-Mignod J et al (1975) Magnetic-behavior of dihydrate formates M(HCOO)2⋅ 2H2O of transition-metals M = Mn, Fe, Co, Ni. Phys Status Solidi 71:675–685 (1975); (c) Kageyama H, Khomskii DI, Levitin RZ et al (2003) Weak ferrimagnetism, compensation point, and magnetization reversal in Ni(HCOO)2⋅2H2O. Phys Rev B 67:224422; (d) Pierce RD, Friedberg SA (1971) Heat capacities of Fe(HCOO)2·2H2O and Ni(HCOO)2·2H2O between 1.4 and 20 K. Phys Rev B 3:934–942; (e) Hoy GR, Barros SDS, Barros FDS et al (1965) Inequivalent magnetic ions in dihydrated formates of Fe++ and Ni++. J Appl Phys 36:936–937

    Google Scholar 

  59. Zenmyo K, Kubo H, Tokita M et al (2006) Proton NMR study of nickel formate di-hydrate, Ni(HCOO)2 ⋅2H2O. J Phys Soc Jpn 75:104704

    Article  Google Scholar 

  60. (a) Poulsen RD, Bentien A, Chevalier M et al (2005) Synthesis, physical properties, multitemperature crystal structure, and 20 K synchrotron X-ray charge density of a magnetic metal organic framework structure, Mn3(C8O4H4)3(C5H11ON)2. J Am Chem Soc 127:9156–9166; (b) Poulsen RD, Bentien A, Graber T et al (2004) Synchrotron charge-density studies in materials chemistry:16 K X-ray charge density of a new magnetic metal-organic framework material, [Mn2(C8H4O4)2(C3H7NO)2]. Acta Crystallogr A 60:382–389

    Google Scholar 

  61. Overgaard J, Iversen BB, Palii SP et al (2002) Host-guest chemistry of the chromium-wheel complex [Cr8F8(tBuCO2)16]: prediction of inclusion capabilities by using an electrostatic potential distribution determined by modeling synchrotron X-ray structure factors at 16 K. Chem Eur J 8:2775–2786

    Article  CAS  Google Scholar 

  62. Yaghi OM, O’Keeffe M, Ockwig NW (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  63. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  64. Matsuda R, Kitaura R, Kitagawa S (2005) Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 436:238–241

    Article  CAS  Google Scholar 

  65. Noro S, Kitagawa S, Kondo M et al (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4 '-bipyridine)2}n]. Angew Chem Int Ed 39:2082–2084

    Article  CAS  Google Scholar 

  66. Férey G, Latroche M, Serre C et al (2003) Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. Chem Commun 24:2976–2977

    Article  Google Scholar 

  67. Rowsell JLC, Millward AR, Park KS et al (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126:5666–5667

    Article  CAS  Google Scholar 

  68. Seo JS, Whang D, Lee H et al (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986

    Article  CAS  Google Scholar 

  69. Ohmori O, Fujita M (2004) Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4'-bipyridine) square grid complex. Chem Commun 1586–1587

    Google Scholar 

  70. (a) Takata M, Umeda B, Nishibori E et al (1995) Confirmation by X-ray-diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377:46–49; (b) Takata M, Nishibori E, Sakata M (2001) Charge density studies utilizing powder diffraction and MEM. Exploring of high Tc superconductors, C-60 superconductors and manganites. Z Kristallogr 216:71–86; (c) Takata M (2008) The MEM/Rietveld method with nano-applications - accurate charge-density studies of nano-structured materials by synchrotron-radiation powder diffraction. Acta Crystallogr A 64:232–245

    Google Scholar 

  71. Kondo M, Okubo T, Asami A et al (1999) Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzde = pyrazine-2,3-dicarboxylate; L = a pillar ligand). Angew Chem Int Ed 38:140–143

    Article  CAS  Google Scholar 

  72. Kitaura R, Kitagawa S, Kubota Y et al (2002) Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science 298:2358–2361

    Article  CAS  Google Scholar 

  73. Takata M, Nishibori E, Kato K et al (2002) High resolution Debye-Scherrer camera installed at SPring-8. Adv X ray Anal 45:377–384

    CAS  Google Scholar 

  74. Tanaka H, Takata M, Nishibori E et al (2002) ENIGMA: maximum-entropy method program package for huge systems. J Appl Crystallogr 35:282–286

    Article  CAS  Google Scholar 

  75. Kubota Y, Takata M, Matsuda R et al (2005) Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. Angew Chem Int Ed 44:920–923

    Article  CAS  Google Scholar 

  76. Kitaura R, Matsuda R, Kubota Y et al (2005) Formation and characterization of crystalline molecular arrays of gas molecules in a 1-dimensional ultramicropore of a porous copper coordination polymer. J Phys Chem B 109:23378–23385

    Article  CAS  Google Scholar 

  77. Matsuda R, Kitaura R, Kitagawa S et al (2005) Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 436:238–241

    Article  CAS  Google Scholar 

  78. Dybtsev DN, Chun H, Kim K (2004) Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed 43:5033–5036

    Article  CAS  Google Scholar 

  79. Noritake T, Aoki M, Towata S et al (2002) Chemical bonding of hydrogen in MgH2. Appl Phys Lett 81:2008–2010

    Article  CAS  Google Scholar 

  80. Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo B. Iversen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Overgaard, J., Grin, Y., Takata, M., Iversen, B.B. (2011). Charge Density in Materials and Energy Science. In: Gatti, C., Macchi, P. (eds) Modern Charge-Density Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3836-4_13

Download citation

Publish with us

Policies and ethics