Skip to main content

Metal Complexes with Anionic Polyphosphorus Chains as Potential Precursors for the Synthesis of Metal Phosphides

  • Chapter
  • First Online:
Phosphorus Compounds

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 37))

Abstract

While the synthesis, reactivity and properties of organic oligophosphanes have already been intensively studied, the number of metal complexes of the related anionic species described in the literature is still small. This chapter reviews the different synthetic methods for the preparation of metal complexes of catena-oligophosphanediides, as well as the reactivity of the (P4R4) 2− and (P4HR4) ions. In addition, a brief review on the potential application of metal oligophosphanides as precursors for the preparation of metal-rich phosphides (MP x , where x < 1), monophosphides (MP) and phosphorus-rich polyphosphides (MP x , where x > 1) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baudler M (1980) Three-membered phosphorus ring compounds. Pure Appl Chem 52:755–769

    CAS  Google Scholar 

  2. Baudler M (1982) Ketten- und ringförmige Phosphorverbindungen – Analogien zwischen Phosphor- und Kohlenstoffchemie. Angew Chem 94:520–539

    CAS  Google Scholar 

  3. Baudler M (1982) Chain and ring phosphorus compounds—analogies between phosphorus and carbon chemistry. Angew Chem Int Ed Engl 21:492–512

    Google Scholar 

  4. Baudler M (1987) Polyphosphorverbindungen – neue Ergebnisse und Perspektiven. Angew Chem 99:429–451

    CAS  Google Scholar 

  5. Baudler M (1987) Polyphosphorus compounds—new results and perspectives. Angew Chem Int Ed Engl 26:419–441

    Google Scholar 

  6. Baudler M, Glinka K (1993) Monocyclic and polycyclic phosphanes. Chem Rev 93:1623–1667

    CAS  Google Scholar 

  7. Etkin N, McFermin MC, Stephan DW (1997) Catalytic synthesis of the P16 macrocycle: (C6H4P8). J Am Chem Soc 119:2954–2955

    CAS  Google Scholar 

  8. Moser C, Belaj F, Pietschnig R (2009) Diphospha[2]ferrocenophane and 1,4-dihydro-tetraphosphane—stereoselective formation via hydrolytic P–P bond formation. Chem Eur J 15:12589–12591

    CAS  Google Scholar 

  9. Dillon KB, Mathey F, Nixon JF (1998) Phosphorus the carbon copy: from organophosphorus to phospha-organic chemistry. Wiley, Chichester

    Google Scholar 

  10. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Google Scholar 

  11. Gómez-Ruiz S, Hey-Hawkins E (2010) The versatile reactivity of anionic polyphosphorus rings. New J Chem 34:1525–1532

    Google Scholar 

  12. Hoffmann R (1982) Brücken zwischen Anorganischer und Organischer Chemie. Angew Chem 94:725–739

    Google Scholar 

  13. Hoffmann R (1982) Bridges between Inorganic and Organic Chemistry. Angew Chem Int Ed Engl 21:711–724

    Google Scholar 

  14. von Schnering H-G, Hönle W (1988) Bridging chasms with polyphosphides. Chem Rev 88:243–273

    Google Scholar 

  15. Brook SL, Perera SC, Stamm KL (2004) Chemical routes for production of transition-metal phosphides on the nanoscale: implications for advanced magnetic and catalytic materials. Chem Eur J 10:3364–3371

    Google Scholar 

  16. West BO (1977) In: Rheingold AL (ed) Homoatomic rings, chains and macromolecules of main-group elements. Elsevier, Amsterdam

    Google Scholar 

  17. Ahlrichs R, Fenske D, Oesen H, Schneider U (1992) Synthese und Struktur von [Ni(PtBu)6] und [Ni5(PtBu)6(CO)5] sowie Rechnungen zur elektronischen Struktur von [Ni(PtBu)6] und (PR)6, R = tBu, Me. Angew Chem 104:312–314

    CAS  Google Scholar 

  18. Ahlrichs R, Fenske D, Oesen H, Schneider U (1992) Synthesis and Structure of [Ni(PtBu6)] and [Ni5(PtBu)6(CO)5] and Calculations on the Electronic Structure of [Ni(PtBu)6] and (PR)6, R = tBu, Me. Angew Chem Int Ed Engl 31:323–326

    Google Scholar 

  19. Queisser J, Fenske D (1994) Neue Phosphor-verbrückte Übergangsmetallcarbonyl-Komplexe Die Kristallstrukturen von [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6-(PtBu)6] und [Ni4(CO)10(PiPr)6]. Z Anorg Allg Chem 620:58–66

    CAS  Google Scholar 

  20. Queisser J, Oesen H, Fenske D, Lehari B (1994) Synthese und Struktur der Phosphor-verbrückten Übergangsmetallkomplexe [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6] und [Ir4(C8H12)4Cl2(PPh)4]. Z Anorg Allg Chem 620:1821–1831

    CAS  Google Scholar 

  21. Fenske D, Queisser J, Schottmüller H (1998) Neue Untersuchungen zum Reaktionsverhalten von Triorganylcyclotriphosphanen. Die Kristallstrukturen von [(PPh3)2Pt(PtBu)3], [(PPh3)2-Pd(PtBu)2], [(CO)4Cr{(PiPr)3}2], [RhCl(PPh3)(PtBu)3], [(NiCO)62-CO)3{(PtBu)2}2] und [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ [FeCl3(thf)]. Z Anorg Allg Chem 624:443–451

    CAS  Google Scholar 

  22. Fenske D, Queisser J, Schottmüller H (1996) Neue Phosphor-verbrückte Übergangsmetall-Komplexe Die Kristallstrukturen von [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)(PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2] und [Ni8(PtBu)6(PPh3)2]. Z Anorg Allg Chem 622:1731–1739

    CAS  Google Scholar 

  23. Üffing C, von Hänisch C, Schnöckel H (2000) Der erste viergliedrige Al/P-Ring, der von drei Phosphoratomen und einem Aluminiumatom gebildet wird: Synthese und Kristallstruktur von [Cp*Al(PtBu)3]. Z Anorg Allg Chem 626:1557–1560

    Google Scholar 

  24. Uhl W, Benter M (2000) Formation of a gallium triphosphorus heterocycle by reaction of the alkylgallium(I) compound Ga4[C(SiMe3)3]4 with tri(tert-butyl)cyclotriphosphane. J Chem Soc Dalton Trans 3133–3135

    Google Scholar 

  25. Geier SJ, Stephan DW (2008) Activation of P5R5 (R = Ph, Et) by a Rh-β-diketiminate complex. Chem Commun 2779–2781

    Google Scholar 

  26. Geier SJ, Stephan DW (2008) Rh-catalyzed P–P bond activation. Chem Commun 99–101

    Google Scholar 

  27. Bai G, Wei P, Das AK, Stephan DW (2006) P–H and P–P bond activation by Ni(I) and Fe(I) β-diketiminato-complexes. Dalton Trans 1141–1146

    Google Scholar 

  28. Bartsch R, Hietkamp S, Morton S, Stelzer O (1981) Reaktionen koordinierter Liganden: X. Reaktivität zweikerniger Eisencarbonylkomplexe mit sekundären Phosphidobrücken μ-RPH. J Organomet Chem 222:263–273

    CAS  Google Scholar 

  29. Weber L, Bungardt D, Reizig K, Boese R, Benn R (1987) Übergangsmetall-substituierte Diphosphene, IV. Cyclotriphosphane und Cyclotetraphosphane mit Eisen- und Rutheniumkomplexsubstituenten. Chem Ber 120:451–456

    CAS  Google Scholar 

  30. Weber L, Sonnenberg U (1991) Übergangsmetall-substituierte Diphosphene, XXIII. Studien zur Synthese und Reaktivität von Dihalogenphosphido-Komplexen des Eisens und Rutheniums. Chem Ber 124:725–728

    CAS  Google Scholar 

  31. Felsberg R, Blaurock S, Junk P, Kirmse R, Voigt A, Hey-Hawkins E (2004) Organometallic molybdenum(V) complexes with primary phosphine ligands. Syntheses, spectroscopic properties and molecular structures of [Cp°MoCl4(PH2R)] (R = tBu, 1-Ad, Cy, Ph, 2,4,6-Me3C6H2, 2,4,6-Pr i3 C6H2, Cp° = C5EtMe4). Z Anorg Allg Chem 630:806–816

    CAS  Google Scholar 

  32. Hey E, Bott SG, Atwood JL (1988) Synthese von Bis(η5-cyclopentadienyl)(1,2,3-triphenyltriphosphan-1,3-diyl)zirconium(IV) und -hafnium(IV), (M = Zr, Hf) und Struktur des Hafnocenderivates. Chem Ber 121:561–563

    CAS  Google Scholar 

  33. Hey E (1988) Neuer Syntheseweg und Molekülstruktur von (1,2,3-Triphenyltriphosphan-1,3-diyl)zirkonocen(IV), [(η5-C5H5)2Zr(PPh-PPh-PPh)]. Z Naturforsch 43B:1271–1273

    Google Scholar 

  34. Beswick MA, Choi N, Hopkins AD, McPartlin M, Mosquera MEG, Raithby PR, Rothenberger A, Stalke D, Wheatley AJ, Wright DS (1998) Direct synthesis of heterocyclic [(RP) n E] anions using [E(NMe2)3] (E = Sb, As); implications to the mechanism of formation of Zintl compounds. Chem Commun 2485–2486

    Google Scholar 

  35. Issleib K, Krech K (1965) Alkali-Phosphorverbindungen und ihr reaktives Verhalten, XXXVII: Spaltung des Tetraäthyl- und Tetracyclohexyl-cyclotetraphosphins mit Alkalimetallen. Chem Ber 98:2545–2550

    CAS  Google Scholar 

  36. Fluck E, Issleib K (1965) Untersuchungen der kernmagnetischen Resonanz von Phosphorverbindungen. X. 31P-Resonanzspektren von Alkalimetallphosphiden. Z Anorg Allg Chem 339:274–280

    CAS  Google Scholar 

  37. Issleib K, Krech K (1966) Alkali-Phosphorverbindungen und ihr reaktives Verhalten, XXXIX. Spaltung von “Phosphobenzol” mit Alkalimetallen. Chem Ber 99:1310–1315

    CAS  Google Scholar 

  38. Issleib K, Hoffmann M (1966) Alkali-Phosphorverbindungen und ihr reaktives Verhalten, XLI. Tetra-tert.-butyl-biphosphin und Tetra-tert.-butyl-cyclotetra-phosphin. Chem Ber 99:1320–1324

    CAS  Google Scholar 

  39. Issleib K, Rockstroh Ch, Duchek I, Fluck E (1968) Alkali-Phosphorverbindungen und ihr reaktives Verhalten. Alkalimetall- bzw. Magnesium-tetra- und -pentaalkylphosphine. Z Anorg Allg Chem 360:77–87

    CAS  Google Scholar 

  40. Issleib K, Krech K (1969) Alkali-phosphorverbindungen und ihr reaktives Verhalten. LX. Zur Spaltung der P–P-Bindung mit Lithium-phosphides LiPR2 bzw. Li2PR. J Prakt Chem 311:463–471

    CAS  Google Scholar 

  41. Riegel B, Pfitzner A, Heckmann G, Fluck E, Binder H (1994) Phosphorus-boron and phosphorus-silicon ring systems functionalization of phosphorus ring systems. Phosphorus Sulfur Silicon 93–94:173–176

    Google Scholar 

  42. Riegel B, Pfitzner A, Heckmann G, Binder H, Fluck E (1994) Synthese und Strukturbestimmung von (i-Pr)2NB(t-BuP)3 und (i-Pr)2NB(t-BuP)4. Z Anorg Allg Chem 620:8–15

    CAS  Google Scholar 

  43. Riegel B, Pfitzner A, Heckmann G, Binder H, Fluck E (1995) Synthese der Silatetraphospholane (tBuP)4SiMe2, (tBuP)4SiCl2 und (tBuP)4Si(Cl)SiCl3 Molekül- und Kristallstruktur von (tBuP)4SiCl2. Z Anorg Allg Chem 621:1989–1994

    CAS  Google Scholar 

  44. Bongert D, Heckmann G, Schwarz W, Hausen HD, Binder H (1995) Synthese und Strukturbestimmung von (tBuP)4Sn(CH3)2 und (CH3)2Sn[(tBu)P–P(tBu)]2Sn(CH3)2. Z Anorg Allg Chem 621:1358–1364

    CAS  Google Scholar 

  45. Bongert D, Heckmann G, Schwarz W, Hausen HD, Binder H (1996) Synthese der Stannatetraphospholane (tBuP)4SnR2 (R = tBu, nBu, C6H5) und (tBuP)4Sn(Cl)nBu Molekül- und Kristallstruktur von (tBuP)4Sn(tBu)2. Z Anorg Allg Chem 622:1167–1672

    CAS  Google Scholar 

  46. Bongert D, Heckmann G, Hausen HD, Schwarz W, Binder H (1996) Synthese und Struktur von Hexa-t-butyl-1,4-dichloro-1,4-distanna-2,3,5,6,7,8-hexaphosphabicyclo[2.2.2]octan—Eine neue Käfigverbindung mit dem Sn(P2)3Sn-Gerüst. Z Anorg Allg Chem 622:1793–1798

    CAS  Google Scholar 

  47. Binder H, Schuster B, Schwarz W, Klinkhammer KW (1999) 1,1-Diethyl-1-germa-2,3,4,5-tetra-tert-butyl-2,3,4,5-tetraphospholan (C2H5)2Ge(tBuP)4, Molekül- und Kristallstruktur. Z Anorg Allg Chem 625:699–701

    CAS  Google Scholar 

  48. Köpf H, Voigtländer R (1981) Anionoide Polyphosphane als Chelatliganden: Triphosphanato-P 1,P 3-Komplexe des Titanocen-, Zirconocen- und Hafnocen-Systems. Chem Ber 114:2731–2743

    Google Scholar 

  49. Jones RA, Seeberger MH, Whittlesey BR (1985) Reactions of coordinated ligands: coupling of two diphosphenes (P=P) at a metal center to give a coordinated phosphametallocyclopentane. Synthesis and X-ray structure of (t-BuPP-t-Bu)Ni(t-BuP-t-BuP-t-BuP-t-BuP): a square-planar Ni(II) geometry imparted by sterically demanding ligands. J Am Chem Soc 107:6424–6426

    CAS  Google Scholar 

  50. Baudler M, Koch D (1976) Beiträge zur Chemie des Phosphors. 64 [1]. Zur quasicyclischen Konformation der Organylphosphide M2(PR)n′ [M = K, Na]. Z Anorg Allg Chem 425:227–235

    CAS  Google Scholar 

  51. Baudler M, Koch D, Tolls E, Diederich KM, Kloth B (1976) Beiträge zur Chemie des Phosphors. 61. Zur Struktur der Salze M2(PC6H5)3, [M = K, Na]. Z Anorg Allg Chem 420:146–154

    CAS  Google Scholar 

  52. Hoffmann PR, Caulton KG (1975) Structure and dynamics of catenated phosphorus(III) dianions. J Am Chem Soc 97:6370–6374

    Google Scholar 

  53. Geier J, Rüegger H, Wörle M, Grützmacher H (2003) Synthese und Struktur von Natriumoligophosphandiiden im System PhPCl2/Na. Angew Chem 115:4081–4085

    Google Scholar 

  54. Geier J, Rüegger H, Wörle M, Grützmacher H (2003) Sodium oligophosphanediide ions in the PhPCl2/Na system: syntheses and structural characterization. Angew Chem Int Ed 42:3951–3954

    CAS  Google Scholar 

  55. Geier J, Harmer J, Grützmacher H (2004) “Naked” phosphanediide chains and their fragmentation into diphosphene radical anions. Angew Chem 116:4185–4189

    Google Scholar 

  56. Geier J, Harmer J, Grützmacher H (2004) “Naked” phosphanediide chains and their fragmentation into diphosphene radical anions. Angew Chem Int Ed 43:4093–4097

    CAS  Google Scholar 

  57. Schisler A (2003) Dissertation, Universität Leipzig

    Google Scholar 

  58. Wolf R (2005) Dissertation, Universität Leipzig

    Google Scholar 

  59. Wolf R, Schisler A, Lönnecke P, Jones C, Hey-Hawkins E (2004) Syntheses and molecular structures of novel alkali metal tetraorganylcyclopentaphosphanides and tetraorganyltetra-phosphane-1,4-diides. Eur J Inorg Chem 3277–3286

    Google Scholar 

  60. Wolf R, Hey-Hawkins E (2006) Oligophosphanid-Anionen: Synthesen und Molekülstrukturen von [K2(PMDETA)2(P4Ph4)], [K2(PMDETA)(P4 tBu4)]2 und [K(PMDETA)(THF){cyclo-(P5 tBu4)}] (PMDETA = NMe(CH2CH2NMe2)2). Z Anorg Allg Chem 632:727–734

    CAS  Google Scholar 

  61. Wolf R, Hey-Hawkins E (2005) Synthese und Molekülstruktur der Cu4P8-Käfigverbindung [Cu4(P4Ph4)2(PCyp3)3]. Angew Chem 117:6398–6401

    Google Scholar 

  62. Wolf R, Hey-Hawkins E (2005) Synthesis and molecular structure of the Cu4P8 cage compound [Cu4(P4Ph4)2(PCyp3)3]. Angew Chem Int Ed 44:6241–6244

    CAS  Google Scholar 

  63. Wolf R, Gómez-Ruiz S, Böhlmann W, Reinhold J, Hey-Hawkins E (2006) The (P4HMes4)- anion: lability, fluxionality, and structural ambiguity (Mes = 2,4,6-Me3C6H2). Inorg Chem 45:9107–9113

    CAS  Google Scholar 

  64. Gómez-Ruiz S, Wolf R, Hey-Hawkins E (2008) Different transmetallation behaviour of [M(P4HR4)] salts toward rhodium(I) and copper(I) (M = Na, K; R = Ph, Mes; Mes = 2,4,6-Me3C6H2). Dalton Trans 1982–1988

    Google Scholar 

  65. Gómez-Ruiz S, Hey-Hawkins E (2007) Oxidative cleavage of tetraaryltetraphosphane-1,4-diides by nickel(II) and palladium(II): formation of unusual Ni0 and Pd0 diaryldiphosphene complexes. Dalton Trans 5678–5683

    Google Scholar 

  66. Chatt J, Hitchcock PB, Pidcock A, Warrens CP, Dixon KR (1982) Synthesis and 31P n.m.r. spectroscopy of platinum and palladium complexes containing side-bonded diphenyldiphosphene. The X-ray crystal and molecular structure of [Pd(PhP = PPh){bis(diphenyl-phosphino)ethane}]. J Chem Soc Chem Commun 932–933

    Google Scholar 

  67. Chatt J, Hitchcock PB, Pidcock A, Warrens CP, Dixon KR (1984) The nature of the co-ordinate link. Part 11. Synthesis and phosphorus-31 nuclear magnetic resonance spectroscopy of platinum and palladium complexes containing side-bonded (E)-diphenyldiphosphene. X-Ray crystal and molecular structures of [Pd{(E)-PhP = PPh}(Ph2PCH2CH2PPh2)] and [Pd{[(E)-PhP = PPh][W(CO)5]2}(Ph2PCH2CH2PPh2)]. J Chem Soc Dalton Trans 2237–2244

    Google Scholar 

  68. Gómez-Ruiz S, Zahn S, Kirchner B, Böhlmann W, Hey-Hawkins E (2008) P–P bond cleavage of tetraphenyltetraphosphane-1,4-diide facilitated by Nickel(0). Chem Eur J 14:8980–8985

    Google Scholar 

  69. Weng Z, Teo S, Hor TS (2006) Stabilization of nickel(0) by hemilabile P,N-ferrocene ligands and their ethylene oligomerization activities. Organometallics 25:4878–4882

    CAS  Google Scholar 

  70. Carlini C, Marchionna M, Galletti AMR, Sbrana G (2001) Olefin oligomerization by novel catalysts prepared by oxidative addition of carboxylic acids to nickel(0) precursors and modified by phosphine ancillary ligands and organoaluminum compounds. J Mol Catal A 169:79–88

    CAS  Google Scholar 

  71. Eisch JJ, Ma X, Han KI, Gitua JN, Kruger C (2001) Mechanistic comparison of the nickel(0)-catalyzed homo-oligomerization and co-oligomerization of alkynes and nitriles. Eur J Inorg Chem 77–88

    Google Scholar 

  72. Cermak J, Soukupova L, Chvalovsky V (1993) Propadiene oligomerization catalysed by nickel(0) phosphine complexes immobilized on phosphinated poly(styrene-divinylbenzene) support. J Mol Catal 80:181–188

    CAS  Google Scholar 

  73. Sun W-H, Zhang D, Zhang S, Jie S, Hou J (2006) Ethylene polymerization promoted by nickel complexes. Kinet Catal 47:278–283

    CAS  Google Scholar 

  74. Speiser F, Braunstein P, Saussine L (2005) Catalytic ethylene dimerization and oligomerization: recent developments with nickel complexes containing P,N-chelating ligands. Acc Chem Res 38:784–793

    CAS  Google Scholar 

  75. Zhang Z (2005) Nickel(0) catalysts in organic synthesis. Synlett 877–878

    Google Scholar 

  76. Bartsch R, Carmichael D, Hitchcock PB, Meidine MF, Nixon JF, Sillet GJD (1988) First examples of η1-ligated 1,2,4-triphosphacyclopentadienyl ring systems. Synthesis and fluxional behaviour of trans-[MCl(C2R2P3)(PEt3)2], (R = tBu, adamantyl), (M = Pd, Pt); crystal and molecular structures of trans-[PtX(C t2 Bu2P3)(PR3)2], (X = Cl, R = Et; X = I, R = Ph). J Chem Soc Chem Commun 1615–1617

    Google Scholar 

  77. Philips IG, Ball RG, Cavell RG (1992) Reactions of perfluoromethyl-substituted cyclopolyphosphines with zerovalent group 10 metal complexes. Crystal and molecular structure of a palladium complex with a coordinated diphosphene, [Pd(η2-CF3P=PCF3)(PPh3)2]. Inorg Chem 31:1633–1641

    Google Scholar 

  78. Nixon JF, Sillet GJD (1993) 31P and 195Pt NMR studies on fluxional η1-ligated 1,2,4-triphosphacyclopentadienyl palladium(II) and platinum(II) complexes. J Organomet Chem 461:237–245

    CAS  Google Scholar 

  79. Gómez-Ruiz S, Gallego B, Hey-Hawkins E (2009) Platinum(II) tetramesityltetraphosphane-1,4-diides. Dalton Trans 2915–2920

    Google Scholar 

  80. Wolf R, Hey-Hawkins E (2006) Synthesis and molecular structure of [Cp*Ta(Ph)(P6Ph5)]: a terminal phosphinidene complex of the (P6Ph5)3− ligand (Cp* = C5Me5). Eur J Inorg Chem 1348–1351

    Google Scholar 

  81. Blaurock S, Hey-Hawkins E (2002) Syntheses, crystal structures and reactivity of organometallic tantalum(IV) phosphinidene complexes: trans-[{Cp*TaCl(μ-PR)}2] (Cp* = C5Me5, R = Cy, tBu, Ph), cis- and trans-[{Cp*TaCl(μ-PMes)}2] (Mes = 2,4,6-Me3C6H2) and cis-[{Cp′TaCl(μ-PMes)}2] (Cp′ = C5H4Me). Eur J Inorg Chem 2975–2984

    Google Scholar 

  82. Hadi GAA, Fromm K, Blaurock S, Jelonek S, Hey-Hawkins E (1997) Organometallic tantalum complexes with phosphine, phosphanido and phosphinidene ligands. Syntheses and crystal structures of [Cp′TaCl4{PH2(2,4,6-Pr i3 C6H2)}], [Cp′Ta(μ-PPh2)(PPh2)]2·C7H8 and [Cp′TaCl{μ-P(2,4,6-Pr i3 C6H2)}]2·C7H8(Cp′ = C5H4Me). Polyhedron 16:721–731

    CAS  Google Scholar 

  83. Cummins CC, Schrock RR, Davis WM (1993) Phosphinidentantal(v)-Komplexe des Typs [(N3N)TaPR] als Phospha-Wittig-Reagentien (R = Ph, Cy, tBu; N3N = (Me3SiNCH2CH2)3N). Angew Chem 105:758–761

    CAS  Google Scholar 

  84. Cummins CC, Schrock RR, Davis WM (1993) Phosphinidenetantalum(V) complexes of the type [(N3N)Ta=PR] as phospha-Wittig reagents. Angew Chem Int Ed Engl 32:756–759

    Google Scholar 

  85. Bonanno JB, Wolczanski PT, Lobkovsky EB (1994) Arsinidene, phosphinidene, and imide formation via 1,2-H2-elimination from (silox)3HTaEHPh (E = N, P, As): structures of (silox)3Ta=EPh (E = P, As). J Am Chem Soc 116:11159–11160

    CAS  Google Scholar 

  86. Olkowska-Oetzel J, Pikies J (2003) Chemistry of the phosphinophosphinidene tBu2P–P, a novel π-electron ligand. Appl Organomet Chem 17:28–35

    CAS  Google Scholar 

  87. Krautscheid H, Matern E, Kovacs I, Fritz G, Pikies J (1997) Komplexchemie P-reicher Phosphane und Silylphosphane. XIV. Phosphinophosphiniden tBu2P–P als Ligand in den Pt-Komplexen [{η2-tBu2P–P}Pt(PPh3)2] und [{η2-tBu2P–P}Pt(PEtPh2)2]. Z Anorg Allg Chem 623:1917–1924

    CAS  Google Scholar 

  88. Matern E, Pikies J, Fritz G (2000) Komplexchemie P-reicher Phosphane und Silylphosphane. XXI Zum Einfluß der PR3-Liganden auf Bildung und Eigenschaften der Phosphinophosphiniden-Komplexe [{η2-tBu2P–P}Pt(PR3)2] und [{η2-tBu2P1–P2}Pt(P3R3)-(P4R′3)]. Z Anorg Allg Chem 626:2136–2142

    CAS  Google Scholar 

  89. Figueroa JS, Cummins CC (2004) Diorganophosphanylphosphinidenes as complexed ligands: synthesis via an anionic terminal phosphide of niobium. Angew Chem 116:1002–1006

    Google Scholar 

  90. Figueroa JS, Cummins CC (2004) Diorganophosphanylphosphinidenes as complexed ligands: synthesis via an anionic terminal phosphide of niobium. Angew Chem Int Ed 43:984–988

    CAS  Google Scholar 

  91. Cummins CC (2006) Anionische Übergangsmetallkomplexe mit terminalen Carbid-, Nitrid- und Phosphidliganden als Synthesebausteine für niederkoordinierte Phosphorverbindungen. Angew Chem 118:876–884

    Google Scholar 

  92. Cummins CC (2006) Terminal, anionic carbide, nitride, and phosphide transition-metal complexes as synthetic entries to low-coordinate phosphorus derivatives. Angew Chem Int Ed 45:862–870

    CAS  Google Scholar 

  93. Corbridge DEC (1990) Phosphorus: an outline of its chemistry, biochemistry and technology, 4th edn. Elsevier, New York

    Google Scholar 

  94. Liu J, Chen X, Shao M, An C, Yu W, Qian Y (2003) Surfactant-aided solvothermal synthesis of dinickel phosphide nanocrystallites using red phosphorus as starting materials. J Cryst Growth 252:297–301

    CAS  Google Scholar 

  95. Abu II, Smith KJ (2007) HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts. Appl Catal A 328:58–67

    CAS  Google Scholar 

  96. Senevirathne K, Burns AW, Bussell ME, Brock SL (2007) Synthesis and characterization of discrete nickel phosphide nanoparticles: effect of surface ligation chemistry on catalytic hydrodesulfurization of thiophene. Adv Funct Mater 17:3933–3939

    CAS  Google Scholar 

  97. Shu Y, Oyama ST (2005) Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides. Carbon 43:1517–1532

    CAS  Google Scholar 

  98. Prins R, Pirngruber G, Weber T (2001) Metal phosphides and zeolite-like mesoporous materials as catalysts. Chimia 55:791–795

    CAS  Google Scholar 

  99. Zuzaniuk V, Prins R (2003) Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J Catal 219:85–96

    CAS  Google Scholar 

  100. Rodriguez JA, Kim J-Y, Hanson JC, Sawhill SJ, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6285

    CAS  Google Scholar 

  101. Stinner C, Prins R, Weber T (2001) Binary and ternary transition-metal phosphides as HDN catalysts. J Catal 202:187–194

    CAS  Google Scholar 

  102. Chiriac H, Moga A-E, Urse M, Paduraru I, Lupu N (2004) Preparation and magnetic properties of amorphous NiP and CoP nanowire arrays. J Magn Magn Mater 272–276:1678–1680

    Google Scholar 

  103. Park J, Koo B, Yoon KY, Hwang Y, Kang M, Park JG, Hyeon T (2005) Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal–phosphine complexes using a syringe pump. J Am Chem Soc 127:8433–8440

    CAS  Google Scholar 

  104. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon JM, Monconduit L, Doublet ML (2006) FeP: another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem Mater 18:3531–3538

    CAS  Google Scholar 

  105. Gu Z, Parans Paranthaman M, Pan Z (2009) Vapor-phase synthesis of gallium phosphide nanowires. Cryst Growth Des 9:525–527

    CAS  Google Scholar 

  106. Xie Y, Su HL, Qian XF, Liu XM, Qian YT (2000) A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J Solid State Chem 149:88–91

    CAS  Google Scholar 

  107. Muller TKT, Labardi M, LuxSteiner M, Marti O, Mlynek J, Krausch G (1996) Scanning force and friction microscopy at highly oriented polycrystalline graphite and CuP2(100) surfaces in ultrahigh vacuum. J Vac Sci Technol B 14:1296–1301

    Google Scholar 

  108. Blackman CS, Carmalt CJ, O’Neill SA, Parkin IP, Apostolico L, Molloy KC (2004) Atmospheric-pressure chemical vapor deposition of group IVb metal phosphide thin films from tetrakisdimethylamidometal complexes and cyclohexylphosphine. Chem Mater 16:1120–1125

    CAS  Google Scholar 

  109. Blackman CS, Carmalt CJ, O’Neill SA, Parkin IP, Molloy KC, Apostolico L (2003) Chemical vapour deposition of group Vb metal phosphide thin films. J Mater Chem 13:1930–1935

    CAS  Google Scholar 

  110. Kanatzidis MG, Pöttgen R, Jeitschko W (2005) Metallische Schmelzen – Reaktionsmedien zur Präparation intermetallischer Verbindungen. Angew Chem 117:7156–7184

    Google Scholar 

  111. Kanatzidis MG, Pöttgen R, Jeitschko W (2005) The metal flux: a preparative tool for the exploration of intermetallic compounds. Angew Chem Int Ed 44:6996–7023

    CAS  Google Scholar 

  112. Kaner R, Castro CA, Gruska RP, Wold A (1977) Preparation and characterization of the platinum metal phosphides RuP2 and IrP2. Mater Res Bull 12:1143–1147

    CAS  Google Scholar 

  113. Chen L, Luo T, Huang M, Gu Y, Shi L, Qian Y (2004) A mild reduction–phosphidation approach to nanocrystalline GaP. Solid State Commun 132:667–671

    CAS  Google Scholar 

  114. Kim YK, Cho YW (2005) Synthesis of transition metal pnictide nanocrystalline powders by mechanochemical reaction. J Alloys Compd 393:211–218

    CAS  Google Scholar 

  115. Hou H, Yang Q, Tan C, Ji G, Gu B, Xie Y (2004) One-pot solution-phase synthesis of paramagnetic Co2P nanorods. Chem Lett 33:1272–1273

    CAS  Google Scholar 

  116. Henkes AE, Vasquez Y, Schaak RE (2007) Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J Am Chem Soc 129:1896–1897

    CAS  Google Scholar 

  117. Kleinke H, Franzen HF (1996) Das binäre Phosphid Hf7P4 – ein unerwartetes Syntheseprodukt. Angew Chem 108:2062–2064

    Google Scholar 

  118. Kleinke H, Franzen HF (1996) Hf7P4: a new binary phosphide synthesized by a surprising route. Angew Chem Int Ed 35:1934–1936

    CAS  Google Scholar 

  119. Kher SS, Wells RL (1994) A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP. Chem Mater 6:2056–2062

    CAS  Google Scholar 

  120. Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE (1995) Solution–liquid–solid growth of crystalline III–V semiconductors: an analogy to vapor–liquid–solid growth. Science 270:1791–1794

    CAS  Google Scholar 

  121. Hector AL, Parkin IP (1994) Self-propagating routes to transition-metal phosphides. J Mater Chem 4:279–283

    CAS  Google Scholar 

  122. Treece RE, Conklin JA, Kaner RB (1994) Metathetical synthesis of binary and ternary antiferromagnetic gadolinium pnictides (P, As, and Sb). Inorg Chem 33:5701–5707

    CAS  Google Scholar 

  123. Carmalt CJ, Morrison DE, Parkin IP (2000) Liquid-mediated metathetical synthesis of binary and ternary transition-metal pnictides. Polyhedron 19:829–833

    CAS  Google Scholar 

  124. Lukehart CM, Milne SB, Stock SR (1998) Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors. Chem Mater 10:903–908

    CAS  Google Scholar 

  125. Jarvis RF Jr, Jacubinas RM, Kaner RB (2000) Self-propagating metathesis routes to metastable group 4 phosphides. Inorg Chem 39:3243–3246

    CAS  Google Scholar 

  126. Gregg KA, Perera SC, Lawes G, Shinozaki S, Brock SL (2006) Controlled synthesis of MnP nanorods: effect of shape anisotropy on magnetization. Chem Mater 18:879–886

    CAS  Google Scholar 

  127. Odile JP, Soled S, Castro CA, Wold A (1978) Crystal growth and characterization of the transition-metal phosphides copper diphosphide, nickel diphosphide, and rhodium triphosphide. Inorg Chem 17:283–286

    CAS  Google Scholar 

  128. Takacs L, Mandal SK (2001) Preparation of some metal phosphides by ball milling. Mater Sci Eng A 304–306:429–433

    Google Scholar 

  129. Henkes AE, Schaak RE (2007) Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem Mater 19:4234–4242

    CAS  Google Scholar 

  130. Shatruk MM, Kovnir KA, Shevelkov AV, Popovkin BA (2000) Ag3SnP7: ein Polyphosphid mit einer einzigartigen (P7)-Kette und einem neuartigen Ag3Sn-Heterocluster. Angew Chem 112:2561–2562

    Google Scholar 

  131. Shatruk MM, Kovnir KA, Shevelkov AV, Popovkin BA (2000) Ag3SnP7: a polyphosphide with a unique (P7) chain and a novel Ag3Sn heterocluster. Angew Chem Int Ed 39:2508–2509

    CAS  Google Scholar 

  132. Braun DJ, Jeitschko W (1978) Über Polyphosphide von Chrom, Mangan, Ruthenium und Osmium. Synthese und Kristallstruktur von RuP4 und OsP4. Z Anorg Allg Chem 445:157–166

    CAS  Google Scholar 

  133. Kloc C, Lux-Steiner MC, Keil M, Baumann JR, Doell G, Bucher E (1990) Growth and characterization of CuP2 single crystals. J Cryst Growth 106:635–642

    CAS  Google Scholar 

  134. Zhang Z, Yang J, Nuli Y, Wang B, Xu J (2005) CoP x synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ion 176:693–697

    CAS  Google Scholar 

  135. Park C-M, Sohn H-J (2008) Tetragonal zinc diphosphide and its nanocomposite as an anode for lithium secondary batteries. Chem Mater 20:6319–6324

    CAS  Google Scholar 

  136. Jeitschko W, Donohue PC (1975) High-pressure MnP4, a polyphosphide with Mn–Mn pairs. Acta Crystallogr B31:574–580

    CAS  Google Scholar 

  137. Barry BM, Gillan EG (2008) Low-temperature solvothermal synthesis of phosphorus-rich transition-metal phosphides. Chem Mater 20:2618–2620

    CAS  Google Scholar 

  138. Barry BM, Gillan EG (2009) A general and flexible synthesis of transition-metal polyphosphides via PCl3 elimination. Chem Mater 21:4454–4461

    CAS  Google Scholar 

  139. Loevvik OM, Prytz O (2004) Density-functional band-structure calculations for La-, Y- and Sc-filled CoP3-based skutterudite structures. Phys Rev B 70:195119/1–195119/6

    Google Scholar 

  140. Watcharapasorn A, DeMattei RC, Feigelson RS, Caillat T, Borshchevsky A, Snyder GJ, Fleurial JP (1999) Preparation and thermoelectric properties of some phosphide skutterudite compounds. J Appl Phys 86:6213–6217

    CAS  Google Scholar 

  141. Wang K, Yang J, Xie J, Wang B, Wen Z (2003) Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ball-milling. Electrochem Commun 5:480–483

    CAS  Google Scholar 

  142. Tirado JL (2003) Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater Sci Eng R40:103–136

    CAS  Google Scholar 

  143. Alcantara R, Tirado JL, Jumas JC, Monconduit L, Olivier-Fourcade J (2002) Electrochemical reaction of lithium with CoP3. J Power Sources 109:308–312

    CAS  Google Scholar 

  144. Silva DCC, Crosnier O, Ouvrard G, Greedan J, Safa-Sefat A, Nazar LF (2003) Reversible lithium uptake by FeP2. Electrochem Solid-State Lett 6:A162–A165

    CAS  Google Scholar 

  145. Pralong V, Souza DCS, Leung KT, Nazar LF (2002) Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochem Commun 4:516–520

    CAS  Google Scholar 

  146. Gillot F, Boyanov S, Dupont L, Doublet ML, Morcrette M, Monconduit L, Tarascon JM (2005) Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries. Chem Mater 17:6327–6337

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gómez-Ruiz, S., Hey-Hawkins, E. (2011). Metal Complexes with Anionic Polyphosphorus Chains as Potential Precursors for the Synthesis of Metal Phosphides. In: Peruzzini, M., Gonsalvi, L. (eds) Phosphorus Compounds. Catalysis by Metal Complexes, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3817-3_4

Download citation

Publish with us

Policies and ethics