Skip to main content

Theoretical Evaluation of Phosphine Effects in Cross-Coupling Reactions

  • Chapter
  • First Online:
Phosphorus Compounds

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 37))

Abstract

Cross-coupling reactions are one of the most useful reactions in organic synthesis. Among all the transition metal complexes developed as catalysts for this reaction those based on Pd are by far the most utilized ones. The most common stoichiometry of this family of catalyst is PdL2 with L = phosphine ligands. The effects of the phosphine ligands on the reaction mechanism evaluated by means of theoretical calculations are reviewed in these lines. How the nature of the phosphine ligand affects each of the elementary processes involved in a cross-coupling reaction, namely oxidative addition, transmetalation and reductive elimination will be exposed separately. The transmetalation process has its own particular mechanistic details depending on the cross-coupling reaction; those for the Suzuki–Miyaura and Stille reactions will be described here. The dichotomy between the monophosphine and bisphosphine reaction pathways will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For Pd complexes containing the ligand L = PCy3, Hartwig et al. concluded that the reaction would take place from Pd(PCy3)3 (the major species under reaction conditions) via reversible dissociation of one phosphine ligand to generate the Pd(PCy3)2 species. Then, this species would react irreversibly with PhI. However, the mechanism for this reaction could not be confirmed whether it would occur through either the pathway A or the pathway B.

References

  1. Cornils B, Herrmann WA (2002) Applied homogeneous catalysis with organometallic compounds. Wiley-VCH, Weinheim

    Google Scholar 

  2. Hagen J (2006) Industrial catalysis: a practical approach, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Miura M (2004) Rational ligand design in constructing efficient catalyst systems for Suzuki–Miyaura coupling. Angew Chem Int Ed 43:2201–2203

    CAS  Google Scholar 

  4. Chen W, Li R, Han B, Li B-J, Chen Y-C, Wu Y, Ding L-S, Yang D (2006) The design and synthesis of bis(thiourea) ligands and their application in Pd-catalyzed Heck and Suzuki reactions under aerobic conditions. Eur J Org Chem 1177–1184

    Google Scholar 

  5. Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77:313–348

    CAS  Google Scholar 

  6. Brown TL, Lee KJ (1993) Ligand steric properties. Coord Chem Rev 128:89–116

    CAS  Google Scholar 

  7. Dias PB, de Piedade MEM, Martinho Simões JA (1994) Bonding and energetics of phosphorus (III) ligands in transition metal complexes. Coord Chem Rev 135(136):737–807

    Google Scholar 

  8. Bunten KA, Chen L, Fernandez AL, Poë AJ (2002) Cone angles: Tolman’s and Plato’s. Coord Chem Rev 233(234):41–51

    Google Scholar 

  9. Kühl O (2005) Predicting the net donating ability of phosphines- do we need sophisticated theoretical methods? Coord Chem Rev 249:693–704

    Google Scholar 

  10. Kamer PCJ, van Leeuwen PWNM, Reek JNH (2001) Wide bite angle diphosphines: Xantphos ligands in transition metal complexes and catalysis. Acc Chem Res 34:895–904

    CAS  Google Scholar 

  11. Wang Y, Wang J, Su J, Huang F, Jiao L, Liang Y, Yang D, Zhang S, Wender PA, Yu Z-X (2007) A computational designed Rh(I)-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO for the synthesis of cyclooctenones. J Am Chem Soc 129:10060–10061

    CAS  Google Scholar 

  12. Houk KN, Cheong PH-Y (2008) Computational prediction of small-molecule catalysts. Nature 455(7211):309–313

    CAS  Google Scholar 

  13. Ananikov VP, Orlov NV, Kabeshov MA, Beletskaya IP, Starikova ZA (2008) Stereodefined synthesis of a new type of 1,3-dienes by ligand-controlled carbon-carbon and carbon-heteroatom bond formation in nickel-catalyzed reaction of diaryldichalcogenides with alkynes. Organometallics 27:4056–4061

    CAS  Google Scholar 

  14. Abe Y, Kuramoto K, Ehara M, Nakatsuji H, Suginome M, Murakami M, Ito Y (2008) A mechanism for the palladium-catalyzed regioselective silaboration of allene: a theoretical study. Organometallics 27:1736–1742

    CAS  Google Scholar 

  15. Maseras F, Morokuma K (1995) IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1055–1179

    Google Scholar 

  16. Ujaque G, Maseras F (2004) Applications of hybrid DFT/molecular mechanics to homogeneous catalysis. Struct Bond 112:117–149

    CAS  Google Scholar 

  17. Bo C, Maseras F (2008) QM/MM methods in inorganic chemistry. Dalton Trans 2911–2919

    Google Scholar 

  18. Carbo JJ, Maseras F, Bo C, van Leeuwen WNM (2001) Unraveling the origin of regioselectivity in rhodium diphosphine catalyze hydroformylation. A DFT QM/MM study. J Am Chem Soc 123:7630–7637

    CAS  Google Scholar 

  19. Garcia-Cuadrado D, de Mendoza P, Braga AAC, Maseras F, Echavarren AM (2007) Proton-abstraction mechanism in the palladium-catalyzed intramolecular arylation: substituents effects. J Am Chem Soc 129:6880–6886

    CAS  Google Scholar 

  20. Liu S, Saidi O, Berry N, Ruan J, Pettman A, Thomson N, Xiao J (2009) Electron-deficient phosphines accelerate the Heck reaction of electron-rich olefins in ionic liquids. Lett Org Chem 6:60–64

    CAS  Google Scholar 

  21. Moncho S, Ujaque G, Lledos A, Espinet P (2008) When are tricoordinated PdII species accessible? Stability trends and mechanistic consequences. Chem Eur J 14:8986–8994

    CAS  Google Scholar 

  22. de Meijere A, Diederich F (2004) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim

    Google Scholar 

  23. Cross-Coupling reactions: A practical guide (2001) No 219. In: Miyaura N (ed) Topics in current chemistry. Springer, Berlin

    Google Scholar 

  24. Buchwald SL (ed) (2008) Cross-coupling. Acc Chem Res 41(special issue):1439–1564

    Google Scholar 

  25. Tamao K, Hiyama T, Negishi E (eds) (2002) 30 years of cross-coupling reaction. J Organomet Chem 653(special issue):1–303

    Google Scholar 

  26. Phapale VB, Cardenas DJ (2009) Nickel-catalyzed Negishi cross-coupling reactions: scope and mechanisms. Chem Soc Rev 38:1598–1607

    CAS  Google Scholar 

  27. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4489

    CAS  Google Scholar 

  28. Xue L, Lin Z (2010) Theoretical aspects of palladium-catalyzed carbon-carbon cross-coupling reactions. Chem Soc Rev 39:1692

    CAS  Google Scholar 

  29. Kosugi M, Sasazawa K, Shimizu Y, Migita T (1977) Reactions of allyltin compounds. 3. Allylation of aromatic halides with allyltributyltin in presence of tetrakis(triphenylphosphine)palladium(0). Chem Lett 3:301–302

    Google Scholar 

  30. Stille JK (1986) The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew Chem Int Ed 25:508–524

    Google Scholar 

  31. Miyaura N, Yamada K, Suzuki A (1979) New stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 36:3437–3440

    Google Scholar 

  32. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    CAS  Google Scholar 

  33. Negishi E, King AO, Okukado N (1977) Selective carbon-carbon bond formation via transition-metal catalysis. 3. Highly selective synthesis of unsymmetrical biaryls and diarylmethanes by nickel-catalyzed or palladium-catalyzed reaction of aryl derivatives and benzylzinc derivatives with aryl halides. J Org Chem 42:1821–1823

    CAS  Google Scholar 

  34. Fuentes B, García-Melchor M, Lledos A, Maseras F, Casares JA, Ujaque G, Espinet P (2010) Palladium round trip in the Negishi coupling of trans-[PdMeCl(PMePh2)2] with ZnMeCl: An experimental and DFT study of the transmetalation step. Chem Eur J 16:8596–8599

    CAS  Google Scholar 

  35. Braga AAC, Ujaque G, Maseras F (2008) Mechanism of palladium-catalyzed cross-coupling reactions. In: Morokuma K, Musaev DG (eds) Computational modeling for homogeneous and enzymatic catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  36. Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc Chem Res 33:314–321

    CAS  Google Scholar 

  37. Galardon E, Ramdeehul S, Brown JM, Cowley A, Hii KK, Jutand A (2002) Profund steric control of reactivity in aryl halide addition to bisphosphane palladium(0) complexes. Angew Chem Int Ed 41:1760–1763

    CAS  Google Scholar 

  38. Hartwig JF (2007) Electronic effects on reductive elimination to form carbon-carbon and carbon-heteroatom bonds from palladium(II) complexes. Inorg Chem 46:1936–1947

    CAS  Google Scholar 

  39. Yandulov DV, Tran NT (2007) Aryl-Fluoride reductive elimination from Pd(II): Feasibility assessment from theory and experiment. J Am Chem Soc 129:1342–1358

    CAS  Google Scholar 

  40. Senn HM, Ziegler T (2004) Oxidative addition of aryl halides to palladium(0) complexes: A density-functional study including solvation. Organometallics 23:2980–2988

    CAS  Google Scholar 

  41. Gossen LJ, Koley D, Hermann HL, Thiel W (2005) Mechanistic pathways for oxidative addition of aryl halides to palladium(0) complexes: A DFT study. Organometallics 24:2398–2410

    Google Scholar 

  42. Lam KC, Marder TB, Lin Z (2007) DFT studies on the effect of the nature of the aryl halide Y-C6H4-X on the mechanism of its oxidative addition to Pd0L versus Pd0L2. Organometallics 26:758–760

    CAS  Google Scholar 

  43. Casado AL, Espinet P (1998) Mechanism of the Stille reaction. 1. The transmetalation step. Coupling of R1I and R2SnBu3 catalyzed by trans-[PdR1IL2] (R1 = C6Cl2F3; R2 = vinyl, 4-methoxyphenyl; L = AsPh3). J Am Chem Soc 120:8978–8985

    CAS  Google Scholar 

  44. Sicre C, Braga AAC, Maseras F, Cid MM (2008) Mechanistic insights into the transmetalation step of a Suzuki-Miyaura reaction of 2(4)-bromopyridines: Characterization of an intermediate. Tetrahedron 64:7437–7443

    CAS  Google Scholar 

  45. Liu Q, Lan Y, Liu J, Li G, Wu Y-D, Lei A (2009) Revealing a second transmetalation step in the Negishi coupling and its competition with reductive elimination: Improvement in the interpretation of the mechanism of biaryl synthesis. J Am Chem Soc 131:10201–10210

    CAS  Google Scholar 

  46. Littke AF, Fu GC (2002) Palladium-catalyzed coupling reactions of aryl chlorides. Angew Chem Int Ed 41:4176–4211

    CAS  Google Scholar 

  47. Wolfe JP, Singer RA, Yang BH, Buchwald SL (1999) Highly active palladium catalysts for Suzuki coupling reactions. J Am Chem Soc 121:9550–9561

    CAS  Google Scholar 

  48. Zapf A, Ehrentraut A, Beller M (2000) A new highly efficient catalyst system for the coupling of nonactivated and deactivated aryl chlorides with arylboronic acids. Angew Chem Int Ed 39:4153–4155

    CAS  Google Scholar 

  49. Fleckenstein CA, Plenio H (2010) Sterically demanding trialkylphosphines for palladium-catalyzed cross-coupling reactions- alternatives to Pt-Bu3. Chem Soc Rev 39:694–711

    CAS  Google Scholar 

  50. Kantchev EAB, O’Brien CJ, Organ MG (2007) Palladium complexes of N-Heterocyclic carbenes as catalysts for cross-coupling reactions. A synthetic chemist’s perspective. Angew Chem Int Ed 46:2768–2813

    CAS  Google Scholar 

  51. Marion N, Nolan SP (2008) Well-defined N-Heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. Acc Chem Res 41:1440–1449

    CAS  Google Scholar 

  52. Ahlquist M, Fristrup P, Tanner D, Norrby P-O (2006) Theoretical evidence for low-ligated palladium(0): [Pd–L] as the active species in oxidative addition. Organometallics 25:2066–2073

    CAS  Google Scholar 

  53. Li Z, Fu Y, Guo Q-X, Liu L (2008) Theoretical study on monoligated Pd-catalyzed cross-coupling reactions of aryl chlorides and bromides. Organometallics 27:4043–4049

    CAS  Google Scholar 

  54. Ariafard A, Yates BF (2009) Subtle balance of ligand steric effects in Stille transmetalation. J Am Chem Soc 131:13981–13991

    CAS  Google Scholar 

  55. Barrios-Landeros F, Carrow BP, Hartwig JF (2009) Effect of ligand steric properties and halide identity on the mechanism for oxidative addition of haloarenes to trialkylphosphine Pd(0) complexes. J Am Chem Soc 131:8141–8154

    CAS  Google Scholar 

  56. Ahlquist M, Norrby P-O (2007) Oxidative addition of aryl chlorides to monoligated palladium(0): A DFT-SCRF study. Organometallics 26:550–553

    CAS  Google Scholar 

  57. Jover J, Fey N, Purdie M, Lloyd-Jones GC, Harvey JN (2010) A computational study of phosphine ligand effects in Suzuki-Miyaura coupling. J Mol Catal A 324:39–47

    CAS  Google Scholar 

  58. Fey N, Tsipis AC, Harris SE, Harvey JN, Orpen AG, Mansson RA (2006) Development of a ligand knowledge base, Part 1: Computational descriptors for phosphorus donor ligands. Chem Eur J 12:291–302

    CAS  Google Scholar 

  59. Fey N, Orpen GA, Harvey JN (2009) Building ligand knowledge bases for organometallic chemistry: Computational description of phosphorus(III)-donor ligands and the metal-phosphorus bond. Coord Chem Rev 253:704–722

    CAS  Google Scholar 

  60. Fey N (2010) The contribution of computational studies to organometallic catalysis: descriptors, mechanisms and models. Dalton Trans 39:296–310

    CAS  Google Scholar 

  61. Corbet J-P, Mignani G (2006) Selected patented cross-coupling reaction technologies. Chem Rev 106:2651–2710

    CAS  Google Scholar 

  62. Stille JK, Lau KS (1977) Mechanisms of oxidative addition of organic halides to group-8 transition metal complexes. Acc Chem Res 10:434–442

    CAS  Google Scholar 

  63. Feliz M, Freixa Z, van Leeuwen PWNM, Bo C (2005) Revisiting the methyl iodide oxidative addition to rhodium complexes: A DFT study of the activation parameters. Organometallics 24:5718–5723

    CAS  Google Scholar 

  64. Diefenbach A, de Jong GT, Bickelhaupt FM (2005) Activation of H–H, C–H, C–C and C–Cl bonds by Pd and PdCl. Understanding anion assistance in C–X bond activation. J Chem Theory Comput 1:286–298

    CAS  Google Scholar 

  65. Rodriguez N, Ramirez de Arellano C, Asensio G, Medio-Simon M (2007) Palladium-catalyzed Suzuki-Miyaura reaction involving a secondary sp3 carbon: Studies of stereochemistry and scope of the reaction. Chem Eur J 13:4223–4229

    CAS  Google Scholar 

  66. Gourlaouen C, Ujaque G, Lledos A, Medio-Simon M, Asensio G, Maseras F (2009) Why is the Suzuki–Miyaura cross-coupling of sp3 carbons in α-Bromo sulfoxide systems fast and stereoselective? A DFT study on the mechanism. J Org Chem 74:4049–4054

    CAS  Google Scholar 

  67. Miyaura N (2002) Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(II) complexes. J Organomet Chem 653:54–57

    CAS  Google Scholar 

  68. Smith GB, Dezeny GC, Hughes DL, King AO, Verhoeven TR (1994) Mechanistic studies of the Suzuki cross-coupling reaction. J Org Chem 59:8151–8156

    CAS  Google Scholar 

  69. Matos K, Soderquist JA (1998) Alkylboranes in the Suzuki–Miyaura coupling: stereochemical and mechanistic studies. J Org Chem 63:461–470

    CAS  Google Scholar 

  70. Braga AAC, Morgon NH, Ujaque G, Maseras F (2005) Computational characterization of the role of the base in the Suzuki–Miyaura cross-coupling reaction. J Am Chem Soc 127:9298–9307

    CAS  Google Scholar 

  71. Braga AAC, Ujaque G, Maseras F (2006) A DFT study of the full catalytic cycle of the Suzuki-Miyaura cross-coupling on a model system. Organometallics 25:3647–3658

    CAS  Google Scholar 

  72. Braga AAC, Morgon NH, Ujaque G, Lledos A, Maseras F (2006) Computational study of the transmetalation process in the Suzuki-Miyaura cross-coupling of aryls. J Organomet Chem 691:4459–4466

    CAS  Google Scholar 

  73. Sumimoto M, Iwane N, Takahama T, Sakaki S (2004) Theoretical study of trans-metalation process in palladium-catalyzed borylation of iodobenzene with diboron. J Am Chem Soc 126:10457–10471

    CAS  Google Scholar 

  74. Gooβen LJ, Koley D, Hermann HL, Thiel W (2005) The palladium-catalyzed cross-coupling reaction of carboxylic anhydrides with arylboronic acids: a DFT study. J Am Chem Soc 127:11102–11114

    Google Scholar 

  75. Gooβen LJ, Koley D, Hermann HL, Thiel W (2006) Palladium monophosphine intermediates in catalytic cross-coupling reactions: a DFT study. Organometallics 25:54–67

    Google Scholar 

  76. Martin R, Buchwald SL (2008) Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res 41:1461–1473 (references therein)

    CAS  Google Scholar 

  77. Barder TE, Walker SD, Martinelli JR, Buchwald SL (2005) Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of the ligand structure. J Am Chem Soc 127:4685–4696

    CAS  Google Scholar 

  78. Christmann U, Vilar R (2005) Monoligated palladium species as catalyst in cross-coupling reactions. Angew Chem Int Ed 44:366–374

    CAS  Google Scholar 

  79. Joshaghani M, Faramarzi E, Rafiee E, Daryanavard M, Xiao J, Baillie C (2006) Efficient Suzuki cross-coupling reactions using bulky phosphines. J Mol Catal A 259:35–40

    CAS  Google Scholar 

  80. Huang Y-L, Weng C-M, Hong F-E (2008) Density functional studies on palladium-catalyzed Suzuki-Miyaura cross-coupling reactions assisted by N- or P-chelating ligands. Chem Eur J 14:4426–4434

    CAS  Google Scholar 

  81. Chang C-P, Weng C-M, Hong F-E (2010) Preparation of cobalt sandwich diphosphine ligand [(η5–C5H4 iPr)Co(η4–C4(PPh2)2Ph2)] and its chelated palladium complex: application of diphosphine ligand in the preparation of mono-substituted ferrocenylarenes. Inorg Chim Acta 363:412–417

    CAS  Google Scholar 

  82. Espinet P, Echavarren AM (2004) The mechanisms of the Stille reaction. Angew Chem Int Ed 43:4704–4734

    CAS  Google Scholar 

  83. Ye J, Bhatt RK, Falck JR (1994) Stereospecific palladium/copper cocatalyzed cross-coupling of α-alkoxy- and α-aminostannanes with acyl chlorides. J Am Chem Soc 116:1–5

    CAS  Google Scholar 

  84. Labadie JW, Stille JK (1983) Mechanisms of the palladium-catalyzed couplings of acid chlorides with organotin reagents. J Am Chem Soc 105:6129–6137

    CAS  Google Scholar 

  85. Casares JA, Espinet P, Salas G (2002) 14-electron T-shape [PdRXL] complexes: evidence or illusion? Mechanistic consequences for the Stille reaction and related processes. Chem Eur J 8:4843–4853

    CAS  Google Scholar 

  86. Napolitano E, Farina V, Persico M (2003) The Stille reaction: a density functional analysis of the transmetalation and the importance of coordination expansion at Tin. Organometallics 22:4030–4037

    CAS  Google Scholar 

  87. Farina V, Krishnan B (1991) Large rate accelerations in the Stille reaction with tri-2-furylphosphine and triphenylarsine as palladium ligands: mechanistic and synthetic implications. J Am Chem Soc 113:9585–9595

    CAS  Google Scholar 

  88. Amatore C, Bahsoun AA, Jutand A, Meyer G, Ntepe AN, Ricard L (2003) Mechanism of the Stille reaction catalyzed by palladium ligated to arsine ligand: PhPdI(AsPh3)(DMF) is the species reacting with vinylstannane in DMF. J Am Chem Soc 125:4212–4222

    CAS  Google Scholar 

  89. Alvarez R, Faza ON, Lopez CS, de Lera AR (2006) Computational characterization of a complete palladium-catalyzed cross-coupling process: The associative transmetalation in the Stille reaction. Org Lett 8:35–38

    CAS  Google Scholar 

  90. Nova A, Ujaque G, Maseras F, Lledos A, Espinet P (2006) A critical analysis of the cyclic and open alternatives of the transmetalation step in the Stille cross-coupling reaction. J Am Chem Soc 128:14571–14578

    CAS  Google Scholar 

  91. Ariafard A, Lin Z, Fairlamb IJS (2006) Effect of the leaving ligand X on transmetalation of organostannanes (vinylSnR3) with L n Pd(Ar)(X) in Stille cross-coupling reactions. A density functional theory study. Organometallics 25:5788–5794

    CAS  Google Scholar 

  92. Alvarez R, Perez M, Faza ON, de Lera AR (2008) Associative transmetalation in the Stille cross-coupling reaction to form dienes: Theoretical insights into the open pathway. Organometallics 27:3378–3389

    CAS  Google Scholar 

  93. Littke AF, Schwarz L, Fu GC (2002) Pd/P(t-Bu)3: a mild and general catalyst for Stille reactions of aryl chlorides and aryl bromides. J Am Chem Soc 124:6343–6348

    CAS  Google Scholar 

  94. Fazaeli R, Ariafard A, Jamshidi S, Tabatabaie ES, Pishro KA (2007) Theoretical studies of the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) (X = Me, H, Cl). J Organomet Chem 692:3984–3993

    CAS  Google Scholar 

  95. Perez-Temprano MH, Nova A, Casares JA, Espinet P (2008) Observation of a hidden intermediate in the Stille reaction. Study of the reversal of the transmetalation step. J Am Chem Soc 130:10518–10520

    CAS  Google Scholar 

  96. Tatsumi K, Hoffmann R, Yamamoto A, Stille JK (1981) Reductive elimination of d8-organotransition metal complexes. Bull Chem Soc Jpn 54:1857–1867

    CAS  Google Scholar 

  97. Low JJ, Goddard WA (1986) Theoretical studies of oxidative addition and reductive elimination. 2. Reductive coupling of H–H, H–C, and C–C bonds from palladium and platinum complexes. Organometallics 5:609–622

    CAS  Google Scholar 

  98. Low JJ, Goddard WA (1986) Theoretical studies of oxidative addition and reductive elimination. 3. C–H and C–C reductive coupling from palladium and platinum bis(phosphine) complexes. J Am Chem Soc 108:6115–6128

    CAS  Google Scholar 

  99. Ananikov VP, Musaev DG, Morokuma K (2002) Vinyl-vinyl coupling on late transition metals through C–C reductive elimination mechanism. A computational study. J Am Chem Soc 124:2839–2852

    CAS  Google Scholar 

  100. Ananikov VP, Musaev DG, Morokuma K (2005) Theoretical insight into the C–C coupling reactions of the vinyl, phenyl, ethynyl, and methyl complexes of palladium and platinum. Organometallics 24:715–723

    CAS  Google Scholar 

  101. Choueiry D, Negishi E-I (2002) Pd(0) and Pd(II) complexes containing phosphorus and other group 15 atom ligands. In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis. Wiley, New York

    Google Scholar 

  102. Ozawa F, Ito T, Nakamura Y, Yamamoto A (1981) Mechanisms of thermal decomposition of trans- and cis-Dialkylbis(tertiary phosphine)palladium(II). Reductive elimination and trans to cis isomerization. Bull Chem Soc Jpn 54:1868–1880

    CAS  Google Scholar 

  103. Ozawa F, Kurihara K, Yamamoto T, Yamamoto A (1985) Alteration of reaction course in thermolysis of cis-diethylbis(tertiary phosphine)palladium(II) from reductive elimination to β-elimination process induced by addition of tertiary phosphine ligand. Bull Chem Soc Jpn 58:399–400

    CAS  Google Scholar 

  104. Brown JM, Cooley NA (1988) Carbon-carbon bond formation through organometallic elimination reactions. Chem Rev 88:1031–1046

    CAS  Google Scholar 

  105. Macgregor SA, Neave GW, Smith C (2003) Theoretical studies on C-heteroatom bond formation via reductive elimination from group 10 M(PH3)2(CH3)(X) species (X = CH3, NH2, OH, SH) and the determination of metal-X bond strengths using density functional theory. Faraday Discuss 124:111–127

    CAS  Google Scholar 

  106. Negishi E, Takahashi T, Akiyoshi K (1987) Palladium-catalyzed -or promoted reductive carbon–carbon coupling. Effects of phosphines and carbon ligands. J Organomet Chem 334:181–194

    CAS  Google Scholar 

  107. Zuidema E, van Leeuwen PWNM, Bo C (2005) Reductive elimination of organic molecules from palladium-diphosphine complexes. Organometallics 24:3703–3710

    CAS  Google Scholar 

  108. Ananikov VP, Musaev DG, Morokuma K (2007) Critical effect of phosphane ligands on the mechanism of carbon-carbon bond formation involving palladium(II) complexes: a theoretical investigation of reductive elimination from square-planar and T-shape species. Eur J Inorg Chem 5390–5399

    Google Scholar 

  109. Ariafard A, Yates BF (2009) In-depth insight into the electronic and steric effects of phosphine ligands on the mechanism of the R–R reductive elimination from (PR3)2PdR2. J Organomet Chem 694:2075–2084

    CAS  Google Scholar 

  110. Watson L, Eisenstein O (2002) Entropy explained: the origin of some simple trends. J Chem Educ 79:1269–1277

    CAS  Google Scholar 

  111. Perez-Rodriguez M, Braga AAC, Garcia-Melchor M, Perez-Temprano M, Casares JA, Ujaque G, de Lera AR, Alvarez R, Maseras F, Espinet P (2009) C–C reductive elimination in palladium complexes, and the role of coupling additives A DFT study supported by experiment. J Am Chem Soc 131(10):3650–3655

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Ph.D. students and postdocs who have contributed to developing this research topic in our groups. Fruitful collaborations with experimental groups (Pablo Espinet, Gregorio Asensio, Rosana Alvarez and Angel Rodríguez de Lera) are also acknowledged. The Spanish MICINN is gratefully acknowledged for funding this research through projects CTQ2008-06866-C02-01, CTQ2008-06866-C02-02 and Consolider-Ingenio 2010 (CSD2007-00006 and CSD2006-0003).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

García-Melchor, M., Ujaque, G., Maseras, F., Lledós, A. (2011). Theoretical Evaluation of Phosphine Effects in Cross-Coupling Reactions. In: Peruzzini, M., Gonsalvi, L. (eds) Phosphorus Compounds. Catalysis by Metal Complexes, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3817-3_3

Download citation

Publish with us

Policies and ethics