Skip to main content

Phosphine Acetylenic Macrocycles and Cages: Synthesis and Reactivity

  • Chapter
  • First Online:
Book cover Phosphorus Compounds

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 37))

Abstract

The syntheses, structural properties, and reactivities are reviewed for phosphine-acetylenic macrocycles and cages. These compounds are of current interest for their phosphorus-containing π-conjugated molecular frameworks. A distinction is made between organic compounds, in which the building blocks are assembled by consecutive transformations, and organometallic structures, in which the coordinative ability of phosphorus is employed to assemble the monomeric building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner T, Réau R (2006) Organophosphorus π-conjugated materials. Chem Rev 106:4681–4727

    CAS  Google Scholar 

  2. Hissler M, Dyer PW et al (2005) The rise of organophosphorus derivatives in π-conjugated materials chemistry. Top Curr Chem 250:127–163

    CAS  Google Scholar 

  3. Hissler M, Lescop C et al (2005) Organophosphorus π-conjugated materials: the rise of a new field. J Organomet Chem 690:2482–2487

    CAS  Google Scholar 

  4. Hissler M, Dyer PW et al (2003) Linear organic π-conjugated systems featuring the heavy group 14 and 15 elements. Coord Chem Rev 244:1–44

    CAS  Google Scholar 

  5. Hightower SE, Corcoran RC et al (2005) Unusual, bifurcated photoreactivity of a rhenium(I) carbonyl complex of triethynylphosphine. Inorg Chem 44:9601–9603

    CAS  Google Scholar 

  6. Ochida A, Ito H et al (2006) Using triethynylphosphine ligands bearing bulky end caps to create a holey catalytic environment: application to gold(I)-catalyzed alkyne cyclizations. J Am Chem Soc 128:16486–16487

    CAS  Google Scholar 

  7. Ochida A, Sawamura M (2007) Phosphorus ligands with a large cavity: synthesis of triethynylphosphines with bulky end caps and application to the rhodium-catalyzed hydrosilylation of ketones. Chem Asian J 2:609–618

    CAS  Google Scholar 

  8. Kondoh A, Yorimitsu H et al (2007) Synthesis of bulky phosphines by rhodium-catalyzed formal [2 + 2 + 2] cycloaddition reactions of tethered diynes with 1-alkynylphosphine sulfides. J Am Chem Soc 129:6996–6997

    CAS  Google Scholar 

  9. Van Assema SGA, Tazelaar CGJ et al (2008) Phospha-scorpionate complexes by click chemistry using phenyl azide and ethynylphosphine oxides. Organometallics 27:3210–3215

    Google Scholar 

  10. Lammertsma K (2003) Phosphinidenes. Top Curr Chem 229:95–119

    CAS  Google Scholar 

  11. Mathey F (1988) The organic chemistry of phospholes. Chem Rev 88:429–453

    CAS  Google Scholar 

  12. Huy NHT, Perrier E et al (2006) The use of phosphirenes as conjugating spacers in polythiophene chains. Organometallics 25:5176–5179

    CAS  Google Scholar 

  13. Huy NHT, Ricard L et al (2001) Stepwise building of polyphosphirene chains. Angew Chem Int Ed 40:1253–1255

    CAS  Google Scholar 

  14. Marinetti A, Mathey F et al (1982) Generation and trapping of terminal phosphinidene complexes. Synthesis and X-ray crystal structure of stable phosphirene complexes. J Am Chem Soc 104:4484–4485

    CAS  Google Scholar 

  15. Borst MLG, Bulo RE et al (2005) 3H-Benzophosphepine complexes: versatile phosphinidene precursors. J Am Chem Soc 127:16985–16999

    CAS  Google Scholar 

  16. Regitz M, Hoffman A et al (1995) Phosphaalkynes—starting point for the synthesis of phosphorus-carbon cage compounds. In: Stang PJ, Diederich F (eds) Modern acetylene chemistry, 1st edn. VCH, Weinheim

    Google Scholar 

  17. Regitz M (1990) Phosphaalkynes: new building blocks in synthetic chemistry. Chem Rev 90:191–213

    CAS  Google Scholar 

  18. Regitz M (1994) Organophosphorus compounds. 75. Phosphaalkynes—new building blocks in heterocyclic chemistry. J Heterocyc Chem 31:663–677

    CAS  Google Scholar 

  19. Nixon JF (1995) Phospha-alkynes, RC≡P: new building blocks in inorganic and organometallic chemistry. Chem Soc Rev 24:319–328

    CAS  Google Scholar 

  20. Bergsträsser U (2004) Product class 6: phosphaalkynes (alkylidynephosphines). Sci Synth 19:427–444

    Google Scholar 

  21. Lynam JM (2007) Recent advances in the chemistry of phosphaalkynes: building blocks for novel organophosphorus compounds. Organomet Chem 33:170–178

    CAS  Google Scholar 

  22. Mathey F (2003) Phospha-organic chemistry: panorama and perspectives. Angew Chem Int Ed 42:1578–1604

    CAS  Google Scholar 

  23. Wettling T, Schneider J et al (1989) Tetra-tert-butyltetraphosphacubane: the first thermal cyclooligomerization of a phosphaalkyne. Angew Chem Int Ed Engl 28:1013–1014

    Google Scholar 

  24. Fink J, Rösch W et al (1986) 2-Dewar phosphinines—a new class of compounds containing two-coordinate phosphorus. Angew Chem Int Ed Engl 25:280–282

    Google Scholar 

  25. Blatter K, Rösch W et al (1987) Isomerization reactions in the system dewar-phosphinine/phosphaprismane/phosphabenzvalene/phosphinine. Angew Chem Int Ed Engl 26:85–86

    Google Scholar 

  26. Elvers A, Heinemann FW et al (1999) 1-Triorganylstannyl-1,2,4-triphosphole: a versatile starting material for phosphorus-rich cage compounds and π-complexes. Chem Eur J 5:3143–3153

    CAS  Google Scholar 

  27. Al-Ktaifani MM, Bauer W et al (2002) Hexaphosphapentaprismane: a new gateway to organophosphorus cage compound chemistry. Chem Eur J 8:2622–2633

    CAS  Google Scholar 

  28. Scott LT, DeCicco GJ et al (1983) Decamethyl[5]pericyclyne. A novel homoconjugated cyclic polyacetylene. J Am Chem Soc 105:7760–7761

    CAS  Google Scholar 

  29. Scott LT, DeCicco GJ et al (1985) Pericyclynes of order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. J Am Chem Soc 107:6546–6555

    CAS  Google Scholar 

  30. Scott LT, Cooney MJM (1995) Macrocyclic homoconjugated polyacetylenes. In: Stang PJ, Diederich F (eds) Modern acetylene chemistry, 1st edn. VCH, Weinheim

    Google Scholar 

  31. Diederich F (2001) Carbon-rich acetylenic scaffolding: rods, rings and switches. Chem Commun 219–227

    Google Scholar 

  32. Nielsen MB, Diederich F (2002) The art of acetylenic scaffolding: rings, rods, and switches. Chem Rec 2:189–198

    CAS  Google Scholar 

  33. Kivala M, Mitzel F et al (2006) Two-dimensional acetylenic scaffolding: extended donor-substituted perethynylated dehydroannulenes. Chem Asian J 1:479–489

    CAS  Google Scholar 

  34. Nielsen MB, Diederich F (2005) Conjugated oligoenynes based on the diethynylethene unit. Chem Rev 105:1837–1867

    CAS  Google Scholar 

  35. Maraval V, Chauvin R (2006) From macrocyclic oligo-acetylenes to aromatic ring carbo-mers. Chem Rev 106:5317–5343

    CAS  Google Scholar 

  36. Manini P, Amrein W et al (2002) Expanded cubane: synthesis of a cage compound with a C56 core by acetylenic scaffolding and gas-phase transformations into fullerenes. Angew Chem Int Ed 41:4339–4343

    CAS  Google Scholar 

  37. Rubin Y, Parker TC et al (1998) Acetylenic cyclophanes as fullerene precursors: formation of C60H6 and C60 by laser desorption mass spectrometry of C60H6(CO)12. Angew Chem Int Ed 37:1226–1229

    CAS  Google Scholar 

  38. Tobe Y, Nakagawa N et al (1998) [16.16.16](1,3,5)Cyclophane-tetracosayne (C60H6): a precursor to C60 fullerene. J Am Chem Soc 120:4544–4545

    CAS  Google Scholar 

  39. Tobe Y, Nakagawa N et al (2001) Polyyne cyclization to form carbon cages: [16.16.16](1,3,5)Cyclophane-tetracosayne derivatives C60H6 and C60Cl6 as precursor to C60 fullerene. Tetrahedron 57:3629–3636

    CAS  Google Scholar 

  40. Yarosh OG, Zhilitskaya LV et al (2005) Novel highly unsaturated macrocyclic and macrobicyclic silahydrocarbons containing Si3H bonds and exocyclic vinyl groups. Russ J Gen Chem 75:1094–1097

    CAS  Google Scholar 

  41. Yarosh OG, Zhilitskaya LV et al (2004) Novel acyclic and macrocyclic highly unsaturated silahydrocarbons. Russ J Gen Chem 74:1496–1500

    CAS  Google Scholar 

  42. Kwon E, Sakamoto K et al (2004) Synthesis and structures of sila-macrobicyclic compounds: syn and anti isomers of hexasilabicyclo[12.8.8]triacontane. Silicon Chem 1:391–395

    Google Scholar 

  43. Unno M, Saito T et al (2001) Synthesis and crystal structures of silapericyclynes. Bull Chem Soc Jpn 74:2407–2413

    CAS  Google Scholar 

  44. Unno M, Negeshi K et al (2001) Extended silapericyclynes. Chem Lett 30:340–341

    Google Scholar 

  45. Unno M, Saito T (1999) Silapericyclyne, (Ph2SiC≡C)6: spontaneous conformational resolution of boat- and chair-‘exploded’ cyclohexane. Chem Lett 28:1235–1236

    Google Scholar 

  46. Voronkov MG, Yarosh OG et al (1990) Highly unsaturated macrocyclic silicohydrocarbons. J Organomet Chem 389:1–22

    CAS  Google Scholar 

  47. Bortolin R, Brown SSD et al (1989) Peficyclynosilanes: single crystal X-ray structure of dodecamethyl(6)pericyclynosilane, (Me2SiC≡C)6. Inorg Chim Acta 158:137–139

    CAS  Google Scholar 

  48. Hengge E, Baumegger A (1989) Synthese und eigenschaften einiger ethinylsilane. J Organomet Chem 369:C39–C42

    CAS  Google Scholar 

  49. Gleiter R, Schäfer W et al (1985) Evidence for a strong σ/π interaction in 3,4,7,8-tetrasilacycloocta-1,5-diyne and 3,4,7,9,11,12-hexasilacyclododecal-1,5,9-triyne. J Am Chem Soc 107:3046–3050

    CAS  Google Scholar 

  50. Voronkov MG, Yarosh NO (2003) Cyclogermasilethynes. Russ J Gen Chem 73:1555–1556, for some thiapericyclenes, see ref [18]

    CAS  Google Scholar 

  51. Dillon KD, Mathey F et al (1998) Phosphorus, the carbon copy. Wiley, Chichester

    Google Scholar 

  52. Scott LT, Unno M (1990) Novel heterocycles comprising alternating phosphorus atoms and alkyne units. J Am Chem Soc 112:7823–7825

    CAS  Google Scholar 

  53. Van Assema SGA, Kraikivskii PB et al (2007) Building blocks for phospha[n]pericyclynes. J Organomet Chem 692:2314–2323

    Google Scholar 

  54. Shiozowa R, Sakamoto K (2003) Synthesis and structures of cyclic ethynylphosphine ligands. Chem Lett 32:1024–1025

    Google Scholar 

  55. Cooney MJM (1993) PhD Dissertation, University of Nevada, Reno

    Google Scholar 

  56. Märkl G, Zollitsch T et al (2000) Polyphospha[m]cyclo[n]carbons (m + n = 15, 20, 25, 30, 40). Chem Eur J 6:3806–3820

    Google Scholar 

  57. Baechler RD, Mislow K (1970) The effect of structure on the rate of pyramidal inversion of acyclic phosphines. J Am Chem Soc 92:3090–3093

    CAS  Google Scholar 

  58. Rauk A, Allen LC et al (1970) Pyramidal inversion. Angew Chem Int Ed Engl 9:400–414

    CAS  Google Scholar 

  59. Van Assema SGA, De Jong GB et al (2007) Acetylene-substituted phosphane oxides: building blocks for macrocycles. Eur J Org Chem 2405–2412

    Google Scholar 

  60. Laporte F, Mercier F et al (1994) Tetraphosphorus macrocycles from phosphole tetramers. J Am Chem Soc 116:3306–3311

    CAS  Google Scholar 

  61. Adams CJ, Bruce ML et al (1993) Cluster chemistry LXXXVII. Some homo- and hetero-nuclear complexes derived from C2(PPh2)2: crystal structures of Re3(μ-H)3(μ-dppa)(CO)10 {dppa = C2(PPh2)2}, Re3(μ-H)3(CO)11{PPh2[μ-C2Ru2(μ-PPh2)(CO)6]} and Os3Ru25–C2PPh2)(μ-PPh2)(CO)13. J Organomet Chem 447:91–101

    CAS  Google Scholar 

  62. Lee J, Humphrey MG (1993) Mixed-metal cluster chemistry. Site-selective reactions of CpWIr3(CO)11 with PPh3 and bidentate phosphines: X-ray crystal structures of CpWIr3(μ-dppe)(μ-CO)3(CO)6, CpWIr3(μ-dppm)(μ-CO)3(CO)6, and CpWIr3(μ-dppa)(μ-CO)3(CO)6. Organometallics 12:3468–3473

    CAS  Google Scholar 

  63. Hong FE, Huang YL et al (1999) Preparation of a new cobalt-containing diphosphine ligand and its reaction towards dicobalt octacarbonyl; X-ray crystal structure of [Co2(CO)4(μ-CO)2{μ-P, P-(μ-PPh2C≡CPPh2)Co2(CO)6}]. Inorg Chem Commun 2:450–452

    CAS  Google Scholar 

  64. Rodewald D, Schulzke C et al (1995) Alkyne-niobium(I) complexes with functionalized alkynes: synthesis, structure and reactivity. J Organomet Chem 498:29–35

    CAS  Google Scholar 

  65. Ward BC, Templeton JL (1980) Nuclear magnetic resonance studies of alkynes as four-electron donor ligands in monomeric tungsten(II) complexes. J Am Chem Soc 102:1532–1538

    CAS  Google Scholar 

  66. Melník M, Sundberg M et al (1983) Study of copper(II) propionate adducts with diphenylphosphinoacetylene and bis(diphenylphosphino)acetylene. Acta Chim Scan A 37:659–662

    Google Scholar 

  67. Went MJ (1995) Multidentate ligands bound via alkyne and group 15 or 16 donor sites. Polyhedron 4:465–481

    Google Scholar 

  68. Oberhauser W, Bachman C et al (1997) Binuclear palladium(II), platinum(II) and platinum(IV) complexes containing 1,2-bis(diphenylphosphino)acetylene: different orientations of the diphosphine-bridges due to metal-phosphorus dπ–dπ back bonding. Inorg Chim Acta 256:223–234

    CAS  Google Scholar 

  69. Powell AK, Went MJ (1992) Phosphorus donor chemistry of [W(CO)(Ph2PC≡CPPh2)(S2CNEt2)2]. J Chem Soc Dalton Trans 439–445

    Google Scholar 

  70. Nickel TM, Yau SYW et al (1989) A new chelating ligand: co-ordination chemistry of [W(CO)(Ph2PC≡CPPh2)(S2CNEt2)2]. J Chem Soc Chem Commun 775–776

    Google Scholar 

  71. Hong FE, Chang YL et al (2004) Preparation and NMR studies of cobalt-containing diphosphine ligand chelated W, Ru, Au and Pd complexes: Suzuki cross-coupling reactions and carbonylation catalyzed by the Pd complex. Dalton Trans 157–165

    Google Scholar 

  72. Carty AJ, Efraty A (1968) Evidence for metal–phosphorus d πd π bonding from ν(C≡C) Raman shifts in complexes of bis(diphenylphosphino)acetylene. Chem Commun 1559–1561

    Google Scholar 

  73. Carty AJ, Efraty A (1968) A new class of palladium and platinum complexes: diphosphine bridged M2X4L2 species. (L = bis diphenylphosphinoacetylene). Inorg Nucl Chem Lett 4:427–431

    CAS  Google Scholar 

  74. Carty AJ, Efraty A (1969) Coordination complexes of acetylene diphosphines. II. Diphosphine bridged palladium(II) and platinum(II) derivatives. Can J Chem 47:2573–2578

    CAS  Google Scholar 

  75. Shin KS, Noh DY (2004) Binuclear platinum(II) building-blocks for the metal-coordinated self-assembly: (dithiolate)Pt(μ-dppa)2Pt(dithiolate) where dppa = bis(diphenylphosphino)acetylene. Bull Korean Chem Soc 25:130–132

    CAS  Google Scholar 

  76. Clark HC, Fergusson G et al (1985) Synthesis of heterobimetallic bis(dipheny1phosphino)acetylene-bridged palladium–platinum complexes. Crystal and molecular structure of [PdPtCl4(Ph2PC≡CPPh2)2]·2CHCl3. Inorg Chem 24:3924–3928

    CAS  Google Scholar 

  77. Clark HC, Manzer LE (1973) Reactions of (π-1,5-cuclooctadiene)organo-platinum(II) compounds and the synthesis of perfluoroalkylplatinum complexes. J Organomet Chem 59:411–428

    CAS  Google Scholar 

  78. Martin-Redondo MP, Scoles L et al (2005) Metal-templated diyne cyclodimerization and cyclotrimerization. J Am Chem Soc 127:5038–5039

    CAS  Google Scholar 

  79. Weelock KS, Nelson JH et al (1970) Zerovalent and divalent palladium and platinum complexes with phosphinoacetylenes. Inorg Chim Acta 4:399–403

    Google Scholar 

  80. Xu D, Murfee HJ et al (2000) Photoluminescent macrocyclic Pd(II) and Pt(II) dimeric complexes with Ph2P–C≡C–PPh2 spacer. J Organomet Chem 596:53–63

    CAS  Google Scholar 

  81. Clark HC, Kapoor PN et al (1984) Mixed ligand complexes of platinum(0) containing diphosphines. J Organomet Chem 265:107–115

    CAS  Google Scholar 

  82. Falvello LR, Fornies J et al (2001) Some platinum(II) complexes containing bis(diphenylphosphino)acetylene PPh2C≡CPPh2: synthesis, characterisation and crystal structures. J Chem Soc Dalton Trans 2132–2140

    Google Scholar 

  83. Praingam N, Anderson GK et al (2007) Base-promoted synthesis of monometallic and bimetallic platinum complexes containing chelating O,O- or S,S-donor ligands. Inorg Chim Acta 360:1767–1770

    CAS  Google Scholar 

  84. Bolinger CM, Rauchfuss TB (1982) Template syntheses of 1,2-alkene dichalcogenide chelates via the addition of activated acetylenes to dicyclopentadienyltitanium pentachalcogenides. Inorg Chem 21:3947–3954

    CAS  Google Scholar 

  85. Noh DY, Shin KS et al (2007) Synthesis, X-ray crystal structure and luminescence properties of binuclear platinum(II) complex with PtP2S2 core and acetylenic bridge. Bull Korean Chem Soc 28:343–346

    CAS  Google Scholar 

  86. Anderson WA, Carty AJ et al (1969) Coordination complexes of acetylene diphosphines. Part III. Silver(I) and mercury(II) complexes. Can J Chem 47:3361–3366

    CAS  Google Scholar 

  87. James SL, Xu X et al (2003) Phosphine-based coordination cages and nanoporous coordination polymers. Macromol Symp 196:187–199

    CAS  Google Scholar 

  88. Lozano E, Nieuwenhuyzen M et al (2001) Ring-opening polymerisation of silver-diphosphine [M2L3] coordination cages to give [M2L3] coordination polymers. Chem Eur J 7:2644–2651

    CAS  Google Scholar 

  89. James SL, Lozano E et al (2000) Triply-bridged diphos disilver helical complexes [Ag22-dppa-P,P′)3(anion)2] [dppa = bis(diphenylphosphino)acety-lene]. Chem Commun 617–618

    Google Scholar 

  90. Carty AJ, Efraty A et al (1969) Some new diphosphine-bridged nickel carbonyl and cyclopentadienyl compounds. Can J Chem 47:1429–1431

    Google Scholar 

  91. Hogarth G, Norman T (1996) Linking metal centres with bis(diphenylphosphino)acetylene (dppa): syntheses and molecular structures of [{Mo(CO)4(μ-dppa)}2] and [{Mo(CO)3}2(μ-dppa)2]. Polyhedron 15:2859–2867

    CAS  Google Scholar 

  92. Baker PK, Armstrong EM (1990) Mono- and dinuclear phosphine coordinated 1,4-bis(diphenylphosphino)ethyne seven-coordinate complexes of molybdenum(II) and tungsten(II). Polyhedron 9:801–804

    CAS  Google Scholar 

  93. Howard KE, Rauchfuss TB (1986) Organometallic derivatives of the tetrathiometallates: syntheses, structures, and reactions of MS4[Rh(COD)]2 and MS4[(C5H5)Ru(PPh3)]2 (M = Mo, W). J Am Chem Soc 108:297–299

    CAS  Google Scholar 

  94. Peli G, Rizzato S et al (2005) Carbonyl complexes of Rh(I) and Ir(I) and P-donor ligands as useful “building blocks” for the self-assembly of new organometallic polymers. Cryst Eng Commun 7:575–577

    CAS  Google Scholar 

  95. Vogels CM, Decken A et al (2006) Rhodium(I) acetylacetonato complexes containing phosphinoalkynes as catalysts for the hydroboration of vinylarenes. Can J Chem 84:146–153

    CAS  Google Scholar 

  96. Li L, Reginato N et al (2003) The synthesis and structural characterization of linear and macrocyclic bis(dinitrosyliron) complexes supported by bis(phosphine) bridging ligands. J Can Chem 81:468–475

    CAS  Google Scholar 

  97. Eaton GR, Holm RH (1971) Bridged binuclear bis-dithiolene complexes of iron and cobalt. Inorg Chem 10:805–811

    Google Scholar 

  98. Bechtold HC, Rehder D (1979) The coordinative properties of cis/trans-1,4-diphosphabutene and 1,4-diphosphabutyne in carbonylvanadium compounds. J Organomet Chem 172:331–339

    Google Scholar 

  99. Xu D, Khin KT et al (2001) Metallocyclic receptors with ReI/OsII-based moieties: molecular photophysics and selective molecular sensing. Chem Eur J 7:2425–2434

    CAS  Google Scholar 

  100. Xu D, Hong B (2000) Investigation of electronic communication and guest inclusion using photoluminescent macrocyclic receptors with RuII centers and Ph2P–C≡C–C≡C–PPh2 spacers. Angew Chem Int Ed 39:1826–1829

    CAS  Google Scholar 

  101. Bennett MA, Byrnes MJ et al (2007) Bis(acetylacetonato)ruthenium(II) complexes containing alkynyldiphenylphosphines. Formation and redox behaviour of [Ru(acac)2(Ph2PC≡CR)2] (R = H, Me, Ph) complexes and the binuclear complex cis-[{Ru(acac)2}2(μ-Ph2PC≡CPPh2)}2]. J Chem Soc Dalton Trans 1677–1686

    Google Scholar 

  102. Liu YC, Li CI et al (2006) Syntheses and structural characterization of dicopper(I) bis(diphenylphosphino)acetylene complexes containing tricyclic, cyclic and linear frameworks. Inorg Chim Acta 359:2361–2368

    CAS  Google Scholar 

  103. Kui SCF, Kuang JS et al (2006) Self-assembly of a highly stable, topologically interesting metallamacrocycle by bridging gold(I) ions with pyridyl-2,6-diphenyl2- and diphosphanes. Angew Chem Int Ed 45:4663–4666

    CAS  Google Scholar 

  104. Viau L, Willis AC et al (2007) Ruthenium cluster chemistry: monodentate bis(diphenylphosphino)acetylene-ligated cluster modules in chain and dendrimer formation. J Organomet Chem 692:2086–2091

    CAS  Google Scholar 

  105. Johnson BFG, Sanderson KM et al (2000) Electron-beam induced formation of nanoparticle chains and wires from a ruthenium cluster polymer. Chem Commun 1317–1318

    Google Scholar 

  106. Chen JL, Zhang LY et al (2003) Syntheses, structures, and redox properties of dimeric triruthenium clusters bridged by bis(diphenylphosphino)acetylene and -ethylene. Inorg Chem 43:1481–1490

    Google Scholar 

  107. Housecroft CE, Rheingold AL et al (1998) Towards linked clusters: reactions of [Ru6(CO)17B]-with dppm and [ClAu(L–L)AuCl] (L–L=bis(diphenylphosphino)-alkanes, -ethene and -ethyne, and the crystal structure of [HRu6(CO)15(P,P′-dppm)B] (dppm=bis(diphenylphosphino)methane). J Organomet Chem 565:105–114

    CAS  Google Scholar 

  108. Adams CJ, Bruce MI et al (1998) Carbonyl substitution reactions of ruthenium cluster complexes containing dicarbon (C2) ligands: X-ray structures of Ru55–C2)(μ-SMe)2(μ-PPh2)2(CO)10(L) [L=CNBut, P(OMe)3]. J Organomet Chem 561:97–107

    CAS  Google Scholar 

  109. Bruce MI, Humphrey PA et al (1997) Acetylenic phosphines bridging two cluster units: molecular structure of {Ru3(μ-H)(μ3–C2But)(CO)8}2(μ-dppa) [dppa = C2(PPh2)2]. Austr J Chem 50:535–538

    CAS  Google Scholar 

  110. Louattani E, Suades J et al (1996) Synthesis of a zwitterionic P-coordinated complex with bis(diphenylphosphino)acetylene. Organometallics 15:468–471

    CAS  Google Scholar 

  111. Osella D, Hanzlík J (1993) Electronic interactions in multicluster arrays. An electrochemical approach. Part III. Inorg Chim Acta 213:311–317

    CAS  Google Scholar 

  112. Sappa E (1988) Bis(diphenylphosphino)acetylene as a bridging ligand between homo- and hetero-metallic clusters. J Organomet Chem 352:327–336

    CAS  Google Scholar 

  113. Bettenhausen M, Eichhöfer A et al (1999) Synthese und strukturen neuer selenido- und selenolatoverbrückter kupfercluster: [Cu38Se13(SePh)12(dppb)6] (1), [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2] (2), [Cu36Se5(SePh)26(dppa)4] (3), [Cu58Se16(SePh)24(dppa)6] (4) und [Cu3(SeMes)3(dppm)] (5). Z Anorg Allg Chem 625:593–601

    CAS  Google Scholar 

  114. Semmelmann M, Fenske D et al (1998) Copper-chalcogenide clusters stabilised with linear bidentate phosphine ligands. J Chem Soc Dalton Trans 2541–2545

    Google Scholar 

  115. Sevillano P, Fuhr O et al (2007) Synthese und struktur von [Au10Se5(dppa)4{Co2(CO)5}4]. Z Anorg Allg Chem 633:1783–1786

    CAS  Google Scholar 

  116. Amoroso AJ, Johnson BFG et al (1992) The use of bis(diphenylphosphinoacetylene) and its digold derivative as linking groups in osmium cluster chemistry. Crystal structures of [{Os3(CO)11}2(dppa)], [Os3(CO)10(dppa)]2 and [Os4H(CO)12Au(dppa)]2 (dppa = Ph2PC≡CPPh2). J Organomet Chem 440:219–231

    CAS  Google Scholar 

  117. Johnson BFG, Lewis J et al (1990) Synthesis and characterisation of linked triosmium clusters using the bis(diphenylphosphino)acetylene ligand. J Organomet Chem 397:C28–C30

    CAS  Google Scholar 

  118. Amoroso AJ, Lewis J et al (1993) Mixed-metal clusters containing osmium and gold. In: Welch AJ, Chapman SK (eds) The chemistry of the copper and zinc triads, 1st edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  119. Galsworthy JR, Housecroft CE et al (1995) Unexpected gold-containing boride clusters formed from the reactions of [RhRu3H(η5-C5Me5)(CO)9BH] with gold(I) phosphine derivatives: crystal structures of [RhRu3H(η5-C5Me5)(CO)9B {Au(PPh3)}2(AuCl)]·CH2Cl2 and [RhRu3H(η5-C5Me5)(CO)9B{Au2(dppf)} (AuCl)]·CH2Cl2 [dppf = 1,1′-bis(diphenylphosphino)ferrocene]. J Chem Soc Dalton Trans 2639–2647

    Google Scholar 

  120. Hong FE, Chang H et al (2001) Preparation and characterization of a cyclic compound consisting of bis(diphenylphosphino)acetylene joined alkyne-bridged dicobalt fragments. Chem Lett 30:1130–1131

    Google Scholar 

  121. Aullón G, Hamidi M et al (2004) Chalcogen-chalcogen bonds in edge-sharing Square-planar d8 complexes. Are they possible? Inorg Chem 43:3702–3714

    Google Scholar 

  122. Nicolaou KC, Smith AL (1995) The enediyne antibiotics. In: Stang PJ, Diederich F (eds) Modern acetylene chemistry, 1st edn. VCH, Weinheim

    Google Scholar 

  123. Nicolaou KC, Zuccarello G et al (1988) Cyclic conjugated enediynes related to calicheamicins and esperamicins: calculations, synthesis, and properties. J Am Chem Soc 110:4866–4868

    CAS  Google Scholar 

  124. Basak A, Mandal S et al (2003) Chelation-controlled Bergman cyclization: synthesis and reactivity of enediynyl ligands. Chem Rev 103:4077–4094

    CAS  Google Scholar 

  125. Warner BP, Millar SP et al (1995) Controlled acceleration and inhibition of Bergman cyclization by metal chlorides. Science 269:814–816

    CAS  Google Scholar 

  126. Nicolaou KC, Dai WM (1991) Chemistry and biology of the enediyne anticancer antibiotics. Angew Chem Int Ed Engl 30:1387–1416

    Google Scholar 

  127. Coalter NL, Concolino TE et al (2000) Structure and thermal reactivity of a novel Pd(0) metalloenediyne. J Am Chem Soc 122:3112–3117

    CAS  Google Scholar 

  128. Schmitt EW, Huffmann JC et al (2001) Thermal reactivities of isostructural d10 metalloenediynes: metal-dependent Bergman cyclization. Chem Commun 167–168

    Google Scholar 

  129. Baumgartner T, Huynh K et al (2002) Metallochain cluster complexes and metallomacrocyclic triangles based on coordination bonds between palladium or platinum and diphosphinoacetylene ligands. Chem Eur J 8:4622–4632

    CAS  Google Scholar 

  130. Carty AJ, Efraty A (1968) Binuclear copper(I) complexes with bridging bis(diphenylphosphino)acetylene groups. Can J Chem 46:1598–1599

    CAS  Google Scholar 

  131. Carty AJ, Efraty A (1969) Coordination complexes of acetylene diphosphines. I. diphosphine-bridged binuclear copper(I) and gold(I) complexes of bis(diphenylphosphino)acetylene. Inorg Chem 8:543–550

    CAS  Google Scholar 

  132. Wallbank AI, Corrigan JF (2002) Triply bridged dicopper-bis(trimethylsilylchalcogenolates): synthesis and characterization of the series of helical complexes [(Me3SiE-Cu)2(μ-Ph2PC≡CPPh22 P)3] (E = S, Se, Te). Can J Chem 80:1592–1599

    CAS  Google Scholar 

  133. DeGroot MW, Corrigan JF (2006) Metal-chalcogenolate complexes with silyl functionalities: synthesis and reaction chemistry. Z Anorg Allg Chem 632:19–29

    CAS  Google Scholar 

  134. Bardaji M, De la Cruz MT et al (2005) Luminescent dinuclear gold complexes of bis(diphenylphosphano)acetylene. Inorg Chim Acta 358:1365–1372

    CAS  Google Scholar 

  135. Yeh WY, Peng SM et al (2003) Synthesis and reactivity of ditungsten helical complex W2(CO)6(μ-Ph2PC≡CPPh2)3. J Organomet Chem 671:145–149

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weymiens, W., Slootweg, J.C., Lammertsma, K. (2011). Phosphine Acetylenic Macrocycles and Cages: Synthesis and Reactivity. In: Peruzzini, M., Gonsalvi, L. (eds) Phosphorus Compounds. Catalysis by Metal Complexes, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3817-3_2

Download citation

Publish with us

Policies and ethics