Skip to main content

Phosphorus Based Macrocyclic Ligands: Synthesis and Applications

  • Chapter
  • First Online:
Phosphorus Compounds

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 37))

Abstract

Phosphorus based macrocyclic ligand chemistry in respect of the effectiveness of synthetic approaches, 3D structures, coordination and supramolecular system design, as well as application in catalysis has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedersen CJ (1987) The discovery of crown ethers. Noble Lecture 497–511

    Google Scholar 

  2. Cram DJ (1987) The design of molecular hosts, guests, and their complexes. Noble Lecture 419–437

    Google Scholar 

  3. Lehn J-M (1987) Supramolecular chemistry—scope and perspectives molecules, supermolecules, molecular devices. Noble Lecture 444–491

    Google Scholar 

  4. Lehn J-M (1988) Supramolecular chemistry–scope and perspectives molecules, supermolecules molecular devices. (Noble lecture) Angew Chem Int Ed 27:89–112

    Google Scholar 

  5. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  6. Gloe K (2005) Macrocyclic chemistry. Springer, Dordrecht

    Google Scholar 

  7. Chapman RG, Sherman JC (1997) Templation and encapsulation in supramolecular chemistry. Tetrahedron 53:15911–15945

    CAS  Google Scholar 

  8. Haino T, Yanase M, Fukunaga C, Fukazawa Y (2006) Fullerene encapsulation with calix[5]arenes. Tetrahedron 62:2025–2035

    CAS  Google Scholar 

  9. Rao CNR, Muller A, Cheetham AK (2007) Nanomaterials chemistry: recent developments and new directions. Wiley-VCH, Weinheim

    Google Scholar 

  10. Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley-VCH, Weinhein

    Google Scholar 

  11. Stoddart JF, Colquhoun HM (2008) Big and little Meccano. Tetrahedron 64:8231–8263

    CAS  Google Scholar 

  12. Edwards PG, Ingold F, Liyanage SS, Newman PD, Wong W-K, ChenPendant Y (2001) Functionalised triphosphamacrocycles. Eur J Inorg Chem 2865

    Google Scholar 

  13. Bauer I, Gruner M, Goutal S, Habicher WD (2004) Staudinger reaction at in-bridgehead positions of phosphorus macrobicyclic compounds. Chem Eur J 10:4011

    CAS  Google Scholar 

  14. Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed Engl 35:1154–1196

    Google Scholar 

  15. Greig LM, Philp D (2001) Chem Soc Rev 30:287

    Google Scholar 

  16. Leininger S, Olenyuk B, Stang PG (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100:853–908

    CAS  Google Scholar 

  17. Swiegers G, Malefetse T (2002) Self-assembled nanoreactors. Coord Chem Rev 225:91–121

    CAS  Google Scholar 

  18. Caminade A-M, Majoral JP (1994) Synthesis of phosphorus-containing macrocycles and cryptands. Chem Rev 94:1183–1213

    CAS  Google Scholar 

  19. Caminade A-M, Majoral JP (1996) Phosphorhydrazide macrocycles and cryptands. Synlett 1019–1028

    Google Scholar 

  20. Pabel M, Wild B (1996) Rings containing phosphorus. In: Comp Hetecycl Chem II: 947–969

    Google Scholar 

  21. Pabel M, Wild SB (2001) Macro- and spiro-heterocycles. In: Mathey F (ed) Phosphorus-carbon heterocyclic chem: the rise of a new domain. Pergamon, Amsterdam

    Google Scholar 

  22. Bauer I, Habicher WD, Antipin IS et al (2004) Phosphorus macrocycles and cryptands. Russ Chem Bull 53:1402–1416

    CAS  Google Scholar 

  23. Edwards PG, Haigh R, Li D, Newman PD (2006) Template synthesis of 1,4,7-triphosphacyclononanes. J Am Chem Soc 128:3818–3830

    CAS  Google Scholar 

  24. Edwards PG, Whatton ML, Haigh R (2000) A new nine-membered triphosphorus macrocycle. Organometallics 19:2652–2654

    CAS  Google Scholar 

  25. Edwards PG, Whatton ML (2006) Template synthesis of 9-membered triphospha-macrocycles with rigid o-phenylene backbone functions. Dalton Trans 442–450

    Google Scholar 

  26. Albers T, Edwards PG (2007) Template synthesis of benzannulated triphosphacyclononanes—a new class of phosphacrowns via template assisted nucleophilic P–C bond formation. Chem Commun 858–860

    Google Scholar 

  27. Battle AR, Edwards PG, Haigh R et al (2007) Synthesis and characterization of Iron(II) complexes of 10- and 11-membered triphosphamacrocycles. Organometallics 26:377–386

    CAS  Google Scholar 

  28. Kyba EP, Hudson CW, McPhaul MJ et al (1977) Polyphosphino macrocyclic ligand systems. J Am Chem Soc 99:8053–8054

    CAS  Google Scholar 

  29. Kyba EP, John AM, Brown SB et al (1980) Triligating 11-membered rings containing tert-phosphino sites. Synthesis and structure. J Am Chem Soc 102:139

    CAS  Google Scholar 

  30. Kyba EP, Davis RE, Liu ST et al (1985) Structural characterization of tridentate 11-membered phosphino macrocyclic complexes of transition metals. Examples of octahedral, square-pyramidal and tetrahedral geometries. Inorg Chem 24:4629–4634

    CAS  Google Scholar 

  31. Kyba EP, Liu ST (1985) Phosphino macrocycles. 140. Synthesis of unusual phosphine ligands. Use of the 1-naphthylmethyl moiety as a P–H protecting group in the synthesis of a phosphino macrocycle that contains a secondary-phosphino ligating site. Inorg Chem 24:1613–1616

    CAS  Google Scholar 

  32. Diel BN, Brandt PF, Haltiwanger RC et al (1982) Metal-templated synthesis of a macrocyclic triphosphine-molybdenum complex, fac-(CO)3Mo(PHC3H6)3. J Am Chem Soc 104:4700–4701

    CAS  Google Scholar 

  33. Edwards PG, Fleming JS, Liyanage SS et al (1996) Primary alkenyl phosphine complexes of chromium and molybdenum; synthesis and characterisation of tricarbonyl(1,5,9-triphosphacyclododecane)chromium(0). J Chem Soc Dalton Trans 1801–1807

    Google Scholar 

  34. Coles SJ, Edwards PG, Fleming JS et al (1995) 1,5,9-Triphosphacyclododecane complexes of molybdenum and tungsten. Crystal structure of tricarbonyl[1,5,9-tris(isopropyl)-1,5,9-triphosphacyclododecane]-molybdenum(0). J Chem Soc Dalton Trans 1139–1145

    Google Scholar 

  35. Edwards PG, Fleming JS, Liyanage SS (1997) Chromium and molybdenum complexes of tertiary alkyl and pendant donor triphosphamacrocycles. J Chem Soc Dalton Trans 193–197

    Google Scholar 

  36. Coles SJ, Edwards PG, Fleming JS et al (1996) The liberation, characterisation and X-ray crystal structure of 1,5,9-triphospha-1,5,9-tris(2-propyl)cyclododecane. Chem Commun 293–294

    Google Scholar 

  37. Jones DJ, Edwards PG, Tooze RP et al (1999) The template synthesis of triaryl functionalised 1,5,9-triphosphacyclododecane on molybdenum using organocopper reagents. J Chem Soc Dalton Trans 1045–1046

    Google Scholar 

  38. Coles SJ, Edwards PG, Fleming JS et al (1995) Triphosphorus macrocycle complexes of divalent group 6 transition metals. Crystal structure of bromotricarbonyl-[1,5,9-tris(isopropyl)-1,5,9-triphosphacyclododecane]-molybdenum(II) tetraphenylborate. J Chem Soc Dalton Trans 4091–4097

    Google Scholar 

  39. Price AJ, Edwards PG (2000) A new template for the synthesis of triphosphorus macrocycles. Chem Commun 899–900

    Google Scholar 

  40. Edwards PG, Abdul Malik KM, Ooi L et al (2006) Iron complexes of facially capping triphosphorus macrocycles. Dalton Trans 433–441

    Google Scholar 

  41. Bayler A, Canty AJ, Edwards PG et al (2000) Trimethyl-palladium(IV) and -platinum(IV) complexes containing phosphine donor ligands, including studies of 1,5,9-triethyl-1,5,9-triphosphacyclodecane and X-ray structural studies of palladium(II) and palladium(IV) complexes. J Chem Soc Dalton Trans 3325–3330

    Google Scholar 

  42. Baker RJ, Edwards PG, Farley RD et al (2003) Low valent carbonylvanadium complexes of the triphosphorus macrocycle 12[ane]P3Et3. DaltonTrans 944–948

    Google Scholar 

  43. Baker RJ, Davies PC, Edwards PG et al (2002) Early transition metal complexes of triphosphorus macrocycles. Eur J Inorg Chem 1975–1984

    Google Scholar 

  44. Baker RJ, Edwards PG (2002) Transition metal complexes of triphosphorus macrocycles: a new class of homogeneous olefin polymerisation catalysts. J Chem Soc Dalton Trans 2960–2965

    Google Scholar 

  45. Baker RJ, Edwards PG, Gracia-Mora J et al (2002) Manganese and rhenium triphosphorus macrocycle complexes and reactions with alkenes. J Chem Soc Dalton Trans 3985–3992

    Google Scholar 

  46. Scott LT, Unno M (1990) Novel heterocycles comprising alternating phosphorus atoms and alkyne units. J Am Chem Soc 112:7823–7825

    CAS  Google Scholar 

  47. Kyba EP, Davis RE, Hudson CW et al (1981) Tetradentate 14-membered tert-phosphino-containing macrocycles. J Am Chem Soc 103:3868–3875

    CAS  Google Scholar 

  48. Bartsch R, Hietkamp S, Morton S et al (1983) Reactions of coordinated ligands. 12. Single-stage template syntheses of tetradentate macrocyclic phosphine complexes. Inorg Chem 22:3624–3632

    CAS  Google Scholar 

  49. Bartsch R, Hietkamp S, Peters H et al (1984) Reactions of coordinated ligands. 13. Template syntheses of 14- to 16-membered tetraphosphacycloalkanes using bis(tertiary phosphines) with protected carbonyl groups in the alkyl side chains. Inorg Chem 23:3304–3309

    CAS  Google Scholar 

  50. Diel BN, Brandt PF, Haltiwanger RC et al (1989) Metal-templated synthesis of macrocyclic (triphosphine)molybdenum complexes. Inorg Chem 28:2811–2816

    CAS  Google Scholar 

  51. DelDonno TA, Rosen W (1977) Preparation of a tetraphosphine macrocyclic ligand. J Am Chem Soc 99:8051–8052

    CAS  Google Scholar 

  52. DelDonno TA, Rosen W (1978) Studies of a 15-membered tetraphosphorus macrocyclic ligand. Inorg Chem 17:3714–3716

    Google Scholar 

  53. Toulhoat C, Vidal M, Vincens M (1993) Polyoxydes de polyphosphines bicycliques alkyles sur le phosphore. Phosphorus Sulfur Silicon 78:119–132

    CAS  Google Scholar 

  54. Vincens M, Gong-Cheng F, Toulhoat C et al (1988) Synthese de nouveaux oxydes de tetraphosphines macrocycliques. Tetrahedron Lett 29:6247–6248

    CAS  Google Scholar 

  55. Li GQ, Govind R (1995) Synthesis and characterization of a tetraphosphine macrocyclic ligand and its manganese(II) complexes. Inorg Chim Acta 231:225–228

    CAS  Google Scholar 

  56. Bauer EB, Ruwwe J, Martín-Alvarez JM et al (2000) Olefin metatheses in metal coordination spheres: novel trans-spanning bidentate and facially-spanning tridentate macrocyclic phosphine complexes. Chem Commun 2261–2262

    Google Scholar 

  57. Harnisch JA, Angelici RJ (2000) Gold and platinum benzenehexathiolate complexes as large templates for the synthesis of 12-coordinate polyphosphine macrocycles. Inorg Chim Acta 300–302:273–279

    Google Scholar 

  58. Smith RJ, Powell AK, Barnard N et al (1993) Copper and nickel complexes of the new phosphadithiamacrocycle 1-phenyl-1-phospha-4,7-dithiacyclononane. J Chem Soc Chem Commun 54–56

    Google Scholar 

  59. Blower PJ, Chadwick AV, Jeffery JC et al (1999) Synthesis and coordination chemistry of 1-phenyl-1-phospha-4,7-dithiacyclononane. Inorg Chim Acta 294:170–178

    CAS  Google Scholar 

  60. Blower PJ, Jeffery JC, Miller JR et al (1997) Template synthesis and reactions of tricarbonylmolybdenum phosphadithiamacrocyle complexes. Inorg Chem 36:1578–1582

    CAS  Google Scholar 

  61. Sowrey FE, Blower PJ, Jeffery JC et al (2002) The effect of substitution of a thioether donor by a phosphine donor in thiacrown complexes of iron. Inorg Chem Commun 5:832–836

    CAS  Google Scholar 

  62. Li JL, Meng JB, Wang YM et al (2001) Synthesis of phosphorus- and selenium-containing macrocycles and their complexation with Pd(II)Cl2. J Chem Soc Perkin Trans 1:1140–1146

    Google Scholar 

  63. Kyba EP, Chou SS (1980) 11-Membered macrocycles containing the diars moiety. J Am Chem Soc 102:7012–7014

    CAS  Google Scholar 

  64. Fox MA, Campbell KA, Kyba EP (1981) Electrochemical behavior of metal tricarbonyl complexes of several tridentate macrocycles containing soft (P,S) ligating sites. Inorg Chem 20:4163–4165

    CAS  Google Scholar 

  65. Kyba EP, Brown SB (1980) Group 6 transition-metal complexes of two macrocycles containing tertiary-phosphino and -amino ligating sites. Inorg Chem 19:2159–2162

    CAS  Google Scholar 

  66. Liu C-Y, Cheng M-C, Peng S-M et al (1994) Coordination of an amino-phosphino macrocycle with (η5-cyclopentadienyl)- and (η5-pentamethylcyclopentadienyl)-iron complexes. J Organomet Chem 468:199–203

    CAS  Google Scholar 

  67. Ekici S, Nieger M, Glaum R et al (2003) A strategy for the synthesis of phosphorus-containing macrocycles–ligands for exceptional coordination geometries. Angew Chem Int Ed 42:435–438

    CAS  Google Scholar 

  68. Ekici S, Gudat D, Nieger M et al (2002) Kinetically controlled protonation of a cyclic phosphamethanide complex to a ph-phosphonium ylide. Angew Chem Int Ed 41:3367–3371

    CAS  Google Scholar 

  69. Fryzuk MD, Love JB, Rettig S (1996) Facile P2N2 macrocycle formation promoted by lithium templating. The X-ray crystal structures of syn-Li2(thf)(P2N2) and anti-Li2(thf)2(P2N2) [P2N2=PhP(CH2SiMe2NSiMe2CH2)2PPh. J Chem Soc Chem Commun 2783–2784

    Google Scholar 

  70. Fryzuk MD, Giesbrecht GR, Rettig S (1998) Pyramidal inversion at phosphorus facilitated by the presence of proximate lewis acids. Coordination chemistry of group 13 elements with the macrocyclic bis(amidophosphine) ligand [P2N2] ([P2N2]) [PhP(CH2SiMe2NSiMe2CH2)2PPh]). Inorg Chem 37:6928–6934

    CAS  Google Scholar 

  71. Fryzuk MD, Giesbrecht GR, Rettig S et al (1999) Synthesis and characterization of Group 13 hydrides and metal-metal bonded dimers stabilized by the macrocyclicbis(amidophosphine) ligand [P2N2] ([P2N2]-[PhP(CH2SiMe2NSiMe2CH2)2PPh]). J Organomet Chem 591:63–70

    CAS  Google Scholar 

  72. Fryzuk MD, Kozak CM, Bowdridge MR et al (2001) Macrocyclic complexes of niobium(III): synthesis, structure, and magnetic behavior of mononuclear and dinuclear species that incorporate the [P2N2] system. Organometallics 20:3752–3761

    CAS  Google Scholar 

  73. Fryzuk MD, Kozak CM, Bowdridge MR et al (2002) Cyclohexadienyl niobium complexes and arene hydrogenation catalysis. Organometallics 21:5047–5054

    CAS  Google Scholar 

  74. Fryzuk MD, Love JB, Rettig S (1998) Synthesis and structure of zirconium(IV) complexes stabilized by the bis(amido-phosphine) macrocycle [P2N2]{[P2N2])PhP(CH2SiMe2NSiMe2CH2)2PPh}. Organometallics 17:846–853

    CAS  Google Scholar 

  75. Fryzuk MD, Love JB, Rettig S et al (1997) Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275:1445–1447

    CAS  Google Scholar 

  76. Morello L, Ferreira MJ, Patrick BO et al (2008) Side-on bound dinitrogen complex of zirconium supported by a P2N2 macrocyclic ligand. Inorg Chem 47:1319–1323

    CAS  Google Scholar 

  77. Fryzuk MD, Kozak CM, Bowdridge MR et al (2002) Nitride formation by thermolysis of a kinetically stable niobium dinitrogen complex. J Am Chem Soc 124:8389–8397

    CAS  Google Scholar 

  78. Basch H, Musaev DG, Morokuma K et al (1999) Theoretical predictions and single-crystal neutron diffraction and inelastic neutron scattering studies on the reaction of dihydrogen with the dinuclear dinitrogen complex of zirconium [P2N2]Zr(P2N2)Zr[P2N2](P2N2) PhP(CH2SiMe2NSiMe2CH2)2PPh. J Am Chem Soc 121:523–528

    CAS  Google Scholar 

  79. Morello L, Love JB, Patrick BO et al (2004) Carbon-nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J Am Chem Soc 126:9480–9481

    CAS  Google Scholar 

  80. Ohki Y, Fryzuk MD (2007) Dinitrogen activation by group 4 metal complexes. Angew Chem Int Ed 46:3180–3183

    CAS  Google Scholar 

  81. Fryzuk MD (2003) Activation and functionalization of molecular nitrogen by metal complexes. Chem Rec 3:2–11

    CAS  Google Scholar 

  82. Seidel WW, Summerscales OT, Patrick BO et al (2009) Activation of white phosphorus by reduction in the presence of a zirconium diamidodiphosphine macrocycle: formation of a bridging square-planar cyclo-P4 unit. Angew Chem Int Ed 48:115–117

    CAS  Google Scholar 

  83. Marques de Oliveira IA, Pla-Roca M, Escriche L et al (2006) New membrane for copper-selective electrode incorporating a new thiophosphoril-containing macrocycle as neutral carrier. Mater Sci Eng C 26:394–398

    CAS  Google Scholar 

  84. Casabo J, Escriche L, Perez-Jimenez C et al (1996) Application of a new phosphadithiamacrocycle to ClO4–selective CHEMFET and ion-selective electrode devices. Anal Chim Acta 320:63–68

    CAS  Google Scholar 

  85. Errachid A, Perez-Jimenez C, Casabo J et al (1997) Perchlorate-selective MEMFETs and ISEs based on a new phosphadithiamacrocycle. Sens Actuators B: Chem B43:206–210

    Google Scholar 

  86. Kyba EP, Chou S-SP (1981) Phosphino-macrocycles. 8. High-dilution syntheses of 14-membered tetradentate macrocycles incorporating the diars moiety. J Organomet Chem 46:860–863

    CAS  Google Scholar 

  87. Kyba EP, Alexander DC, Hoehn A (1982) Phosphinomacrocycles. Part 12. (Tertiary phosphinomacrocycle)cobalt(II) halide coordination chemistry. Identification and interconversion of four types of complexes. Organometallics 1:1619–1623

    CAS  Google Scholar 

  88. Kyba EP, Clubb CN, Larson SB et al (1985) Synthesis of 14-membered phosphorus-sulfur P2S2 and P3S macrocycles which contain the 1-thio-2-(phenylphosphino)benzene moiety. Determination of stereochemistries of the free ligands and of a platinum(II) complex. J Am Chem Soc 107:2141–2148

    CAS  Google Scholar 

  89. Kyba EP, Davis RE, Fox MA et al (1987) Phosphinomacrocycles. 16. Complexation of the nickel(II) triad with 14-membered macrocyclic P4-nSn (n = 2, 1, 0) ligands. Study of the effects on coordination of the relative configuration at the phosphines and the number and placement of thioether sites. Inorg Chem 26:1647–1658

    CAS  Google Scholar 

  90. Leung P-H, Liu A, Mok KF et al (1999) Synthesis and coordination chemistry of a 14-membered macrocyclic ligand containing one phosphorus, two sulfur and one ambidentate sulfoxide donor sets. J Chem Soc Dalton Trans Inorg Chem 8:1277–1282

    Google Scholar 

  91. Riker-Nappier J, Meek DW (1974) Nickel(II) complexes of two new phosphorus-nitrogen macrocyclic ligands. J Chem Soc Chem Commun 442–443

    Google Scholar 

  92. Scanlon LG, Tsao YY, Toman K et al (1982) Synthesis and characterization of the macrocyclic complexes [Ni(Me)2[14]dienatoN2P2)]PF6 and [Ni(Me2[16]dieneN2P2)](PF6)2. Crystal structure of [Ni(Me2[16]dieneN2P2)](PF6) .2 0.5H20. Inorg Chem 21:1215–1221

    CAS  Google Scholar 

  93. Jones TL, Willis AC, Wild SB (1992) Metal template synthesis of a 14-membered trans–P2S2 chelating macrocycle. Inorg Chem 31:1411–1416

    CAS  Google Scholar 

  94. Marty W, Schwartzenbach G (1970) Synthesis of heterocycles in the ligand sphere of metal ions. Chimia 24:431–433

    CAS  Google Scholar 

  95. Naumov RN, Karasik AA, Sinyashin OG et al (2004) Unexpected formation of a novel macrocyclic tetraphosphine: (RSSR)-1,9-dibenzyl-3,7,11,15-tetramesityl-1,9-diaza-3,7,11,15-tetraphosphacyclohexadecane. Dalton Trans 357–358

    Google Scholar 

  96. Naumov RN, Karasik AA, Kozlov AV et al (2008) Stereoselective synthesis and interconversions of 1,9-diaza-3,7,11,15-tetraphosphacyclohexadecanes. Phosphorus Sulfur Silicon Relat Elements 183:456–459

    CAS  Google Scholar 

  97. Karasik AA, Naumov RN, Spiridonova YS et al (2007) Synthesis, molecular structure and coordination chemistry of the first 1-aza-3,7-diphosphacyclooctanes. Z Anorg Allg Chem 633:205–210

    CAS  Google Scholar 

  98. Naumov RN, Karasik AA, Kanunnikov KB et al (2008) Synthesis of novel chiral macrocyclic tetraphosphine–1,9-di-R,R(and S,S)-α-methylbenzyl-3,7,11,15-tetramesityl-1,9-diaza–3,7,11,15–(RSSR)-tetraphosphacyclohexadecane. Mendeleev Commun 18:80–81

    CAS  Google Scholar 

  99. Ciampolini M, Nardi N, Zanobini F et al (1983) Sexidentate phosphorus containing macrocyclic ligands. Synthesis of 1,10-dipropyl-4,7,13,16-tetraphenyl-1,10-diaza-4,7,13,16-tetraphospha-cyclooctadecane. Inorg Chim Acta 76:L17–L19

    CAS  Google Scholar 

  100. Ciampolini M, Nardi N, Dapporto P et al (1984) Synthesis and characterisation of the five diastereoisomers of 4,7,13,16-tetraphenyl-1,10-dithia-4,7,13,16-tetraphosphacyclooctadecane: Crystal structure of the nickel bromide complex of the β-isomer. J Chem Soc Dalton Trans 575–579

    Google Scholar 

  101. Ciampolini M, Nardi N, Dapporto P et al (1984) Macrocyclic polyphosphane ligands. Cobalt(II) and nickel(II) complexes of (4RS, 7RS, 13RS, 16RS)-Tetraphenyl-1,10-dithia-4,7,13,16-tetraphosphacyclo-octadecane and crystal structure of the nickel dibromide complex. J Chem Soc Dalton Trans 995–998

    Google Scholar 

  102. Mealli C, Sabat M, Zanobini F et al (1985) Macrocyclic polyphosphane ligands. Iron(II), cobalt(II) and nickel(II) complexes of (4RS,7RS,13SR,16SR)-tetraphenyl-1,10-dipropyl-1,10-diaza-4,7,13,16-tetraphosphacyclo-octadecane: crystal structures of their tetraphenylborate derivatives. J Chem Soc Dalton Trans 479–485

    Google Scholar 

  103. Maerkl G, Hoferer M (1992) [18]-1,4,10,13-Tetraoxa-7,16-diphosphino-kronenether. [18]-1,4,10,13-Tetrathia-7,16-diphosphino-kronenether. Tetrahedron Lett 33:3621–3624

    CAS  Google Scholar 

  104. Blower PJ, Jeffery JC, MacLean E et al (2004) Synthesis and coordination chemistry of a diphospha-tetrathia macrocycle, 1,10-diphenyl-1,10-diphospha-4,7,13,16-tetrathiacyclooctadecane. Inorg Chim Acta 357:4129–4138

    CAS  Google Scholar 

  105. van Zon A, Torny GL, Frijins JHG (1983) Chemistry of crown ethers. Part XXII. Synthesis and complexing properties of monophospha-crown ethers. Recl Trav Chim Pays-Bas 102:326–330

    Google Scholar 

  106. Wei L, Bell A, Warner S, Williams ID et al (1986) Aza- and oxaphosphands.A new class of hard/soft binucleating phosphine macrocycles. J Am Chem Soc 108:8302–8303

    CAS  Google Scholar 

  107. Theil A, Hitce J, Retailleau P et al (2006) A synthetic approach to macrocyclic, chiral phosphane derivatives with crown-ether-like structures. Eur J Org Chem 154–161

    Google Scholar 

  108. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    CAS  Google Scholar 

  109. Dalley NK, Kou X, Bartsch RA et al (2003) Synthesis of new cyclophane host molecules and crystal structures of their compounds with hydrocarbon guests. J Incl Phen Macrocycl Chem 45:139–148

    CAS  Google Scholar 

  110. Dalley NK, Kou X, Bartsch RA et al (1997) Synthesis of a new cyclophane host and crystal structures of its compounds with neutral guests. J Incl Phen Mol Recogn Chem 29:323–334

    CAS  Google Scholar 

  111. Bartsch RA, Kus P, Dalley NK et al (2002) A novel cyclophane–anthracene complex. Tetrahedron Lett 43:5017–5019

    CAS  Google Scholar 

  112. Escriche L, Casabo J, Muns V et al (2006) New phosphathiamacrocycles containing polypypiridine units. Polyhedron 25:801–808

    CAS  Google Scholar 

  113. Cafeo G, Garozzo D, Kohnke FH et al (2004) From calixfurans to heterocyclophanes containing isopyrazole units. Tetrahedron 60:1895–1902

    CAS  Google Scholar 

  114. Simons RS, Garrison JC, Kofron WG et al (2002) Synthesis and structural characterization of two bis-imidazolium-linked cyclophanes: precursors toward ‘carbeneporphyrinoid’ ligands. Tetrahedron Lett 43:3423–3425

    CAS  Google Scholar 

  115. Rajakumar P, Dhanasekaran M (2002) Synthesis of intra-annularly functionalized cationic pyridinophanes. Tetrahedron 58:1355–1359

    CAS  Google Scholar 

  116. Mathey F, Mercier F, Le Floch P (1999) New carbon-phosphorus macrocycles. Phosphorus Sulfur Silicon Relat Elem 144–146:251–256

    Google Scholar 

  117. Edwards PG, Fleming JS, Liyanage SS (1996) Stereoselective synthesis of 1,5,9-triphosphacyclododecane and tertiary derivatives. Inorg Chem 35:4563–4568

    CAS  Google Scholar 

  118. Vriezema DM, Aragones MC, Elemans JAAW et al (2005) Self-assembled nanoreactors. Chem Rev 105:1445–1490

    CAS  Google Scholar 

  119. Ohkuma T, Noyori R (2004) In: Beller M, Bolm C (eds) Transition metals for organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  120. Goedheijt MS, Kamer PC, Reek NH et al (2004) In: Cornils B, Herrmann WA (eds) Aqueous-phase organometallic catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  121. Pamies O, Net G, Widhalm M et al (1999) Rhodium cationic complexes using macrocyclic diphosphines as chiral ligands: application in asymmetric hydroformylation. J Organomet Chem 587:136–143

    CAS  Google Scholar 

  122. Ignat’eva SN, Balueva AS, Karasik AA et al (2007) Synthesis of novel paracyclophanes with linear P,N-containing spacers. Russ Chem Bull 56:1828–1837 (Izv RAN, ser Chim (2007) 56:1760–1770)

    Google Scholar 

  123. Prevote D, Galliot C, Caminade A-M et al (1995) Tricoordinated phosphorus-containing macrocycles: new synthetic strategies. Heteroat Chem 6:313–318

    CAS  Google Scholar 

  124. Bauer I, Habicher WD (2002) Phosphite macrocycles of varying size. Tetrahedron Lett 43:5245–5248

    CAS  Google Scholar 

  125. Bauer I, Habicher WD (1997) Synthesis of new phosphorus-containing macrocycles. Phosphorus Sulfur Silicon Relat Elem 130:89–105

    CAS  Google Scholar 

  126. Bauer I, Habicher WD, Jones PG et al (1998) Synthesis of symmetric macrocyclic phosphoramidites. Phosphorus Sulfur Silicon Relat Elem 143:19–31

    CAS  Google Scholar 

  127. Blokhin YI, Kornilov KN, Volchenkova YV (2009) Synthesis of the first unsymmetrical macroheterocycle containing endocyclic phosphorus atoms from pyrocatechol and hydroquinone. Russ J Gen Chem 79:200–202 (Zhurnal Obshchei Khimii (2009) 79:212–214)

    CAS  Google Scholar 

  128. Blokhin YI, Kornilov KN, Volchenkova YV (2009) Synthesis of unsymmetrical phosphorus-containing macrocycles on the basis of hydroquinone, 4,4′-(propane-2,2-diyl)diphenol, and resorcinol. Russ J Org Chem 45:900–903 (Zhurnal Organicheskoi Khimii (2009) 45:912–915)

    CAS  Google Scholar 

  129. Predvoditelev DA, Strebkova EV, Malenkovskaya MA et al (2007) Design of phosphorus-containing macrocycles on the basis of dipentaerythritol. Zhurnal Organicheskoi Khimii 43:638–639

    Google Scholar 

  130. Rasadkina EN, Slitikov PV, Evdokimenkova YB et al (2003) Macrocyclic systems on the basis of phosphorus acids and 2,7-dihydroxynaphthalene. Russ J Gen Chem 73:1208–1212 (Zhurnal Obshchei Khimii (2003) 73:1279–1283)

    CAS  Google Scholar 

  131. Nifant’ev EE, Rassadkina EN et al (2001) Dioxaphosphacyclanes. synthesis and chemical properties. Russ J Gen Chem 71:179–187 (Zh Obsch Chim (2001) 71:203-212)

    Google Scholar 

  132. Predvoditelev DA, Malenkovskaya MA, Nifant’ev EE (2006) New phosphorus-containing macroheterocyclic cavitands. Russ J Gen Chem 76:1205–1209 (Zhurnal Obshchei Khimii (2006) 76:1254–1259)

    CAS  Google Scholar 

  133. Maslennikova VI, Sotova TY, Vasyanina LK et al (2007) Regiodirected phosphorylation of 2,20,7,70-tetrahydroxydinaphthylmethane. Tetrahedron 63:4162–4171

    CAS  Google Scholar 

  134. Nifantyev EE, Slitikov PV, Rasadkina EN (2007) Synthesis of arylenephosphamacrocycles using tri- and pentavalent phosphorus compounds. Uspehi Khimii 76:362

    Google Scholar 

  135. Mizuta T, Aotani T, Imamura Y et al (2008) Structure and properties of the macrocyclic tridentate ferrocenylphosphine ligand (-PhPC5H4FeC5H4-)3. Organometallics 27:2457–2463

    CAS  Google Scholar 

  136. Widhalm M (1990) Axial-chiral macrocyclic diphosphines. Monatshefte Chem 121:1053–1057

    CAS  Google Scholar 

  137. Widhalm M, Kratky C (1992) Synthesis and x-ray structure of binaphthyl-based macrocyclic diphosphines and their nickel(II) and palladium(II) complexes. Chem Ber 125:679–689

    CAS  Google Scholar 

  138. Widhalm M, Klintschar G (1994) Synthesis and stereochemistry of chiral macrocycles including a 1,2-bis(phenylphosphanyl)benzene unit. Chem Ber 127:1411–1426

    CAS  Google Scholar 

  139. Widhalm M, Klintschar G (1994) Relative and absolute configurations of diastereomeric macrocyclic diphosphine ligands and their Ni(II) complexes. Tetrahedron Asym 5:189–192

    CAS  Google Scholar 

  140. Widhalm M, Wimmer P, Klintschar G (1996) Macrocyclic diphosphine ligands in asymmetric carbon-carbon bond-forming reactions. J Organomet Chem 523:167–178

    CAS  Google Scholar 

  141. Yan Y-Y, Widhalm M (1998) Synthesis and application of macrocyclic binaphthyl ligands with extended chiral bias. Tetrahedron Asym 9:3607–3610

    CAS  Google Scholar 

  142. Kaufhold O, Stasch A, Pape T et al (2009) Metal template controlled formation of [11]ane-P2CNHC macrocycles. J Am Chem Soc 131:306–317

    CAS  Google Scholar 

  143. Kaufhold O, Stasch A, Edwards PG (2007) Template controlled synthesis of a coordinated [11]ane-P2CNHC macrocycle. Chem Commun 1822–1824

    Google Scholar 

  144. Flores-Figueroa A, Pape T, Feldmann K-O et al (2010) Template-controlled synthesis of a planar [16]ane-P2CNHC2 macrocycle. Chem Commun 46:324–326

    CAS  Google Scholar 

  145. Theil A, Mauve C, Adeline M-T, Marinetti A et al (2006) Phosphorus-containing [2]catenanes as an example of interlocking chiral structures. Angew Chem Int Ed 45:2104–2107

    CAS  Google Scholar 

  146. Bond AD, Doyle EL, García F et al (2003) Exo-metal coordination by a tricyclic [{P(μ-N-2-NC5H4)}2(μ-O)]2 dimer in [{P(μ-N-2-NC5H4)}2(μ-O)]2{CuCl·(C5H5N)2}4 {2-NC5H4 = 2-pyridyl, C5H5N = pyridine). Chem Commun 2990–2991

    Google Scholar 

  147. Gonzlez-Calera S, Eisler DJ, Morey JV et al (2008) The selenium-based hexameric macrocycle [(Se =)P(μ-NtBu)2P(μ-Se)]6. Angew Chem Int Ed 47:1111–1114

    Google Scholar 

  148. Bashall A, Doyle EL, Tubb C et al (2001) The tetrameric macrocycle [{P(μ-NtBu)}2NH]4. Chem Commun 2542–2543

    Google Scholar 

  149. Garcia F, Goodman JM, Kowenicki RA et al (2004) Selection of a pentameric host in the host–guest complexes {[{[P(μ-NtBu)]2(μ-NH)}5]·I}−[Li(thf)4]+ and [{[P(μ-NtBu)]2(μ-NH)}5]·HBr·THF. Chem Eur J 10:6066–6072

    CAS  Google Scholar 

  150. Bashall A, Bond AD, Doyle EL et al (2002) Templating and selection in the formation of macrocycles containing [{P(-NtBu)2}(-NH)]n frameworks: observation of halide ion coordination. Chem Eur J 8:3377–3385

    CAS  Google Scholar 

  151. Doyle EL, Riera L, Wright DS (2003) Toroidal main group macrocycles: new opportunities for cation and anion coordination. Eur J Inorg Chem 3279–3289

    Google Scholar 

  152. Garcıa F, Kowenicki RA, Kuzu I et al (2005) The first complex of the pentameric phosphazane macrocycle [{P(l-NtBu)}2(l-NH)]5 with a neutral molecular guest: Synthesis and structure of [{P(l-NtBu)}2(l-NH)]5(CH2Cl2)2. Inorg Chem Commun 8:1060–1062

    Google Scholar 

  153. Garcıa F, Kowenicki RA, Kuzu I et al (2004) The formation of dimeric phosph(III)azane macrocycles [{P(μ-NtBu)}2·LL]2 [LL = organic spacer]. Dalton Trans 2904–2909

    Google Scholar 

  154. Dodds F, Garcia F, Kowenicki RA et al (2005) Synthesis and structure of the calixarene-like phosph(III)azane macrocycle [{P(μ-NtBu)}2{1,5-(NH)2C10H6}]3. Chem Commun 3733–3735

    Google Scholar 

  155. Dodds F, García F, Kowenicki RA et al (2005) The folded, tetrameric phosph(III)azane macrocycle [{P(μ-NtBu)}2{1,4-(NH)2C6H4}]4. Chem Commun 5041–5043

    Google Scholar 

  156. Gonce F, Caminade AM, Majoral JP et al (1992) Synthesis and x-ray structure of the first unsymmetric macrocycle containing three inequivalent phosphorus atoms. Bull Soc Chim Fr 129:237–241

    CAS  Google Scholar 

  157. Gonce F, Caminade AM, Boutonnet F et al (1992) Design of new tools for macrocyclic synthesis. Applications to the preparation of polyphosphorus macrocycles. J Org Chem 57:970–975

    CAS  Google Scholar 

  158. Matano Y, Nakabuchi T, Miyajima T et al (2006) Phosphole-containing hybrid calixpyrroles: new multifunctional macrocyclic ligands for platinum(II) ions. Organometallics 25:3105–3107

    CAS  Google Scholar 

  159. Nakabuchi T, Matano Y, Imahori H (2008) Synthesis, structures, and coordinating properties of phosphole-containing hybrid calixpyrroles. Organometallics 27:3142–3152

    CAS  Google Scholar 

  160. Matano Y, Miyajima T, Nakabuchi T et al (2006) Phosphorus-containing hybrid calixphyrins: promising mixed-donor ligands for visible and efficient palladium catalysts. J Am Chem Soc 128:11760–11761

    CAS  Google Scholar 

  161. Matano Y, Fujita M, Miyajima T et al (2009) Meso-substituent effects on redox properties of the 5,10-porphodimethene- type P,S,N2-hybrid calixphyrins and their metal complexes. Organometallics 28:6213–6217

    CAS  Google Scholar 

  162. Matano Y, Miyajima T, Ochi N et al (2008) Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition-metal complexes. J Am Chem Soc 130:990–1002

    CAS  Google Scholar 

  163. Matano Y, Nakabuchi T, Miyajima T et al (2006) Synthesis of a phosphorus-containing hybrid porphyrin. Org Lett 8:5713–5716

    CAS  Google Scholar 

  164. Matano Y, Nakashima M, Nakabuchi T et al (2008) Monophosphaporphyrins: oxidative π-extension at the peripherally fused carbocycle of the phosphaporphyrin ring. Org Lett 10:553–556

    CAS  Google Scholar 

  165. Matano Y, Nakabuchi T, Fujishige S et al (2008) Redox-coupled complexation of 23-phospha-21-thiaporphyrin with group 10 metals: a convenient access to stable core-modified isophlorin-metal complexes. J Am Chem Soc 130:16446–16447

    CAS  Google Scholar 

  166. Laporte F, Mercier F, Ricard L et al (1994) Tetraphosphorus macrocycles from phosphole tetramers. J Am Chem Soc 116:3306–3311

    CAS  Google Scholar 

  167. Mercier F, Laporte F, Ricard L et al (1997) The use of a ten-membered tetraphosphole macrocycle to increase the lifetime of a palladium catalyst. Angew Chem Int Ed Engl 36:2364–2366

    CAS  Google Scholar 

  168. Deschamps E, Ricard L, Mathey F (1995) Synthesis and X-ray crystal structural analysis of a tetraphosphole macrocycle. J Chem Soc Chem Commun 1561

    Google Scholar 

  169. Avarvari N, Maigrot N, Ricard L et al (1999) Synthesis and X-ray crystal structures of silacalix[n]phosphinines: the first sp2-based phosphorus macrocycles. Chem Eur J 5:2109–2118

    CAS  Google Scholar 

  170. Mézailles N, Maigrot N, Hamon S et al (2001) Mixed phosphinine-ether macrocycles. J Org Chem 66:1054–1056

    Google Scholar 

  171. Mézailles N, Avarvari N, Maigrot N et al (1999) Gold(I) and gold(0) complexes of phosphinine-based macrocycles. Angew Chem Int Ed 38:3194–3197

    Google Scholar 

  172. Ferro VR, Omar S, González-Jonte RH et al (2003) The donating and accepting properties of ortho-Si(CH3)3 phosphinine macrocycles. Heteroat Chem 14:160–169

    CAS  Google Scholar 

  173. Balueva AS, Kuznetsov RM, Litvinov IA et al (2000) Cyclo-bis{1-[p-(p-phenylenomethyl)phenyl]-3,7-diphenyl-1,5,3,7-diazadiphosphacyclooctane} as the first representative of a new type of nitrogen-containing macroheterocyclic phosphines. Mendeleev Commun 10:120–121

    Google Scholar 

  174. Kuznetsov RM, Balueva AS, Litvinov IA et al (2002) Synthesis of new macrocyclic aminomethylphosphines based on 4, 4’-diaminodiphenylmethane and its derivatives. Russ Chem Bull 51:151–156

    CAS  Google Scholar 

  175. Balueva AS, Kuznetsov RM, Ignat’eva SN et al (2004) Self-assembly of novel macrocyclic aminomethylphosphines with hydrophobic intramolecular cavities. Dalton Trans 442–447

    Google Scholar 

  176. Kulikov DV, Karasik AA, Balueva AS et al (2007) The first representative of a 36-membered P,N,O-containing cyclophane. Mendeleev Commun 17:195–196

    CAS  Google Scholar 

  177. Karasik AA, Balueva AS, Naumov RN et al (2008) An effective methodology of P,N-macrocycles design. Phosphorus Sulfur Silicon Relat Elem 183:583–585

    CAS  Google Scholar 

  178. Kulikov DV, Balueva AS, Karasik AA et al (2008) Novel 36- and 38-membered P,N-containing cyclophanes with large hydrophobic cavities. Phosphorus Sulfur Silicon Relat Elem 183:667–668

    CAS  Google Scholar 

  179. Karasik AA, Kulikov DV, Balueva AS et al (2009) A P,N-containing cyclophane with a large helical hydrophobic cavity: a prospective precursor for the design of a molecular reactor. Dalton Trans 3:490–494

    Google Scholar 

  180. Sinyashin OG, Karasik AA, Hey-Hawkins E (2008) New synthetic approaches to chiral cyclic and macrocyclic phosphine ligands. Phosphorus Sulfur Silicon Relat Elem 183:445–448

    Google Scholar 

  181. Balueva AS, Kulikov DV, Kuznetsov RM et (2008) Synthesis of 13,17,53,57-tetraphenyl-13,17,53,57-tetrathio-3,7-dithia-1,5(1,5)-di(1,5-diaza-3,7-diphosphacyclooctana)-2,4,6,8(1,4)-tetrabenzenacyclooctaphane with a conical-like intramolecular cavity. J Incl Phen Macrocyclic Comp 60:321–328

    Google Scholar 

  182. Latypov SK, Kozlov AV, Hey-Hawkins E, Balueva AS, Karasik AA, Sinyashin OG (2010) Structure, conformation and dynamics of p, n-containing cyclophanes in solution. J Phys. Chem A 114:2588–2596

    CAS  Google Scholar 

  183. Xu W, Rourke JP, Vittal JJ et al (1995) Transition metal rimmed-calixresorcinarene complexes. Inorg Chem 34:323–329

    CAS  Google Scholar 

  184. Xu W, Vittal JJ, Puddephatt RJ (1995) Inorganic inclusion chemistry: a novel anion inclusion system. J Am Chem Soc 117:8362–8371

    CAS  Google Scholar 

  185. Vollbrecht A, Neda I, Thönnessen H et al (1997) Synthesis, structure, and reactivity of tetrakis(O,O-phosphorus)-bridged calix[4]resorcinols and their derivatives. Chem Ber 130:1715–1720

    CAS  Google Scholar 

  186. Dietrich B, Hosseini MW, Lehn JM et al (1985) Synthesis of macrobicyclic polyamines by direct macrobicyclisation via tripode-tripode coupling. Helv Chim Acta 68:289–299

    CAS  Google Scholar 

  187. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    CAS  Google Scholar 

  188. Lokey RS, Iverson RL (1995) Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375:303–305

    CAS  Google Scholar 

  189. Gillard RE, Raymo FM, Stoddart JF (1997) Controlling self-assembly. Chem Eur J 3:1933–1940

    CAS  Google Scholar 

  190. Vögtle F, Neumann PJ (1970) The 2,11,20-triaza[3,3,3](1,3,5)cyclophane system. J Chem Soc Chem Commun 1464–1465

    Google Scholar 

  191. Vögtle F, Lichtenthaler RG (1972) Cyclophanes possessing cavities. Angew Chem Int Ed Engl 11:535–536

    Google Scholar 

  192. Lichtenthaler RG, Vögtle F (1973) Vielfach überbrückte aromatische Verbindungen, 6. Dreifach verbrückte Cyclophane. Chem Ber 106:1319–1327

    CAS  Google Scholar 

  193. Vögtle F, Hohner G (1975) Triply clamped helical triphenylmethane systems. Angew Chem Int Ed Engl 14:497–498

    Google Scholar 

  194. Anelli PL, Montanari F, Quici S (1983) Triply bridged polyoxapolyaza-heterophanes derived from 2,4,6-trichloro s-triazine. A new strategy in the synthesis of possible receptors of charged and/or neutral species. J Chem Soc Chem Commun 194–195

    Google Scholar 

  195. Dietrich B, Guilhem J, Lehn JM et al (1984) Molecular recognition in anion coordination chemistry. structure, binding constants and receptor-substrate complementarity of a series of anion cryptates of a macrobicyclic receptor molecule. Helv Chim Acta 67:91–104

    CAS  Google Scholar 

  196. Heyer D, Lehn JM (1986) Anion coordination chemistry—synthesis and anion binding features of cyclophane type macrobicyclic anion receptor molecules. Tetrahedron Lett 27:5869–5872

    CAS  Google Scholar 

  197. Friedrichsen BP, Whitlock HW (1989) Concave functionality: intracavity phosphine oxide as a locus of complexation. J Am Chem Soc 111:9132–9134

    CAS  Google Scholar 

  198. Friedrichsen BP, Powell DR, Whitlock HW (1990) Sterically encumbered functional groups: an investigation of endo versus exo phosphoryl complexation using proton and phosphorus-31 NMR. J Am Chem Soc 112:8931–8941

    CAS  Google Scholar 

  199. Osvath P, Sargeson AM (1993) Synthesis of a large cavity homoleptic thioether cage and its cobalt(III) complex. J Chem Soc Chem Commun 40–42

    Google Scholar 

  200. Houalla D, Moureau L, Skouta S et al (1995) New macrocycles containing bicyclophosphorane moieties Iv1. macrocycles issued from polyethyleneglycols and triethanolamine. Phosphorus Sulfur Silicon Relat Elem 103:199–204

    CAS  Google Scholar 

  201. Pascal RA, West AP, van Engen D (1990) Synthesis and structure of an in-phosphaphane: enforced interaction of a phosphine and an aromatic ring. J Am Chem Soc 112:6406–6407

    CAS  Google Scholar 

  202. L′Esperance RP, West AP, van Engen D et (1991) in-Cyclophanes containing second-row elements poised above aromatic rings. J Am Chem Soc 113:2672–2676

    Google Scholar 

  203. West AP, Smyth N, Kraml CM et al (1993) Synthesis, molecular structure, and properties of in-phosphaphanes with substituted basal aromatic rings. J Org Chem 58:3502–3506

    CAS  Google Scholar 

  204. Bolm C, Barry K (1988) Sharpless synthesis of a C3-symmetric phospha[2.2.2]cyclophane. Tetrahedron Lett 29:5101–5104

    CAS  Google Scholar 

  205. Dell S, Ho DM, Pascal RA (1999) In- and out-cyclophanes bearing non-hydrogen bridgehead substituents. J Org Chem 64:5626–5633

    CAS  Google Scholar 

  206. Chen YT, Baldridge KK, Ho DM et al (1999) Interconversion and reactions of in- and out-isomers of a triarylphosphine-containing cyclophane. J Am Chem Soc 121:12082–12087

    CAS  Google Scholar 

  207. Naumov RN, Kozlov AV, Kanunnikov KB et al (2010) The first example of stereoselective self-assembly of a cryptand containing four asymmetric intracyclic phosphane groups. Tetrahedron Lett 51:1034–1037

    CAS  Google Scholar 

  208. Hoehn A, Geue RJ, Sargeson AM et al (1989) Phospha-capped cobalt(III) cage molecules: synthesis, properties, and structure Chem Commun 1644–1645

    Google Scholar 

  209. Parks JE, Wagner BE, Holm RH (1970) Three-dimensional macrocyclic encapsulation reactions. I. Synthesis of six-coordinate complexes with nonoctahedral stereochemistry. J Am Chem Soc 92:3500–3502

    CAS  Google Scholar 

  210. Bauer I, Rademacher O, Gruner M et al (2000) Synthesis and isolation of homeomorphous isomers of P-containing cryptands. Chem A Eur J 6:3043–3051

    CAS  Google Scholar 

  211. Bauer I, Frohlich R, Ziganshina AY et al (2002) Synthesis and structural peculiarities of homeomorphic phosphorus bridgehead macrobicyclic compounds and novel dioxaphospha[3.1.1.]p,m,p-cyclophanes. Chem A Eur J 8:5622–5629

    CAS  Google Scholar 

  212. Daebritz F, Theumer G, Gruner M et al (2009) New conformational flexible phosphane and phosphane oxide macrobicycles. Tetrahedron 65:2995–3002

    CAS  Google Scholar 

  213. Daebritz F, Jaeger A, Bauer I (2008) Synthesis, derivatization and structural characterization of a new macrobicyclic phosphane oxide cryptand. Eur J Org Chem 33:5571–5576

    Google Scholar 

  214. Mitjaville J, Caminade A-M, Mathieu R et al (1994) New synthetic strategies for phosphorus-containing cryptands and the first phosphorus spherand type compound. J Am Chem Soc 116:5007–5008

    CAS  Google Scholar 

  215. Zeng X, Hucher N, Reinaud O et al (2004) A novel receptor based on a C3v-symmetrical PN3-calix[6]cryptand. J Org Chem 69:6886–6889

    CAS  Google Scholar 

  216. Izzet G, Zeng X, Over D et al (2007) First Insights into the electronic properties of a Cu(II) center embedded in the PN3 cap of a calix[6]arene-based ligand. Inorg Chem 46:375–377

    CAS  Google Scholar 

  217. Over D, Lande A, Zeng X (2009) Replacement of a nitrogen by a phosphorus donor in biomimetic copper complexes: a surprising and informative case study with calix[6]arene-based cryptands. Inorg Chem 48:4317–4330

    CAS  Google Scholar 

  218. Skopek K, Hershberger C, Gladysz A (2007) Self-assembled nanoreactors. Coord Chem Rev 251:1723–1733

    CAS  Google Scholar 

  219. Shima T, Hampel F, Gladysz JA (2004) Molecular gyroscopes: Fe(CO)3 and {Fe(CO)2(NO)}+ rotators encased in three-spoke stators; facile assembly by alkene metatheses. Angew Chem Int Ed 43:5537–5540

    CAS  Google Scholar 

  220. Nawara AJ, Shima T, Hampel F et al (2006) Gyroscope-like molecules consisting of PdX2/PtX2 rotators encased in three-spoke stators: synthesis via alkene metathesis, and facile substitution and demetalation. J Am Chem Soc 128:4962–4963

    CAS  Google Scholar 

  221. Hess GD, Hampel F, Gladysz JA (2007) Octahedral gyroscope-like molecules with m(CO)3(X) rotators encased in three-spoked diphosphine stators: syntheses by alkene metathesis/hydrogenation sequences, structures, dynamic properties, and reactivities. Organometallics 26:5129–5131

    CAS  Google Scholar 

  222. Skopek K, Gladysz JA (2008) Syntheses of gyroscope-like molecules via three-fold ring closing metatheses of bis(phosphine) complexes trans-LyM(P((CH2)nCH=CH2)3)2, and extensions to bis(phosphite) complexes trans-Fe(CO)3(P(O(CH2)nCH=CH2)3)2. J Organomet Chem 693:857–866

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Karasik, A.A., Sinyashin, O.G. (2011). Phosphorus Based Macrocyclic Ligands: Synthesis and Applications. In: Peruzzini, M., Gonsalvi, L. (eds) Phosphorus Compounds. Catalysis by Metal Complexes, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3817-3_12

Download citation

Publish with us

Policies and ethics