Skip to main content

Low-Frequency Electronic Noise in the Back-Gated and Top-Gated Graphene Devices

  • Conference paper
  • First Online:
Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators

Abstract

Graphene, which is a planar single sheet of sp2-bonded carbon atoms arranged in honeycomb lattice with superior electrical and heat conducting properties, has been proposed as material for future electronic circuits, sensors and detectors. Practical applications of graphene devices require an acceptable level of the low-frequency 1/f γ electronic noise (f is frequency). We fabricated and investigated electronic noise characteristics in a set of back-gated and top-gated graphene field-effect transistors, which used single-layer and bi-layer graphene as the electrically conducting channel, and SiO2 and HfO2 as gate dielectrics. The Hooge parameter α H , which characterizes the noise level, for the single and bi-layer graphene devices is on the order of α H ∼ 10−4–10−3, which is comparable to that in the state-of-the-art devices made of conventional semiconductors. The generation – recombination (G-R) – type bulges in the noise spectra of some graphene devices suggest that the noise is of the carrier-number fluctuation origin and is caused by the charge carrier trapping and de-trapping by defects in graphene and SiO2 layer. The obtained experimental results are important for electronic and sensor applications of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electrical field effect in atomically thin carbon films, Science, 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201–204, (2005).

    Article  CAS  Google Scholar 

  3. S. Stankovich, D.A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature, 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  4. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., 100, 016602 (2008).

    Article  CAS  Google Scholar 

  5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  6. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applictions in nanoelectronic circuits, Appl. Phys. Lett., 92, 151911 (2008).

    Article  Google Scholar 

  7. D. L. Nika, E. P. Pokatilov, A. S. Askerov and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413 (2009).

    Article  Google Scholar 

  8. D. L. Nika, S. Ghosh, E. P. Pokatilov and A. A. Balandin, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite, Appl. Phys. Lett., 94, 203103 (2009).

    Article  Google Scholar 

  9. A. Naeemi and J. D. Meindl, Conductance modeling for graphene nanoribbon (GNR) interconnects, IEEE Electron. Dev. Lett., 28, 428 (2007).

    Article  CAS  Google Scholar 

  10. Q. Shao, G. Liu, D. Teweldebrhan and A.A. Balandin, “High-temperature quenching of electrical resistance in graphene interconnects,”Appl. Phys. Lett., 92, 202108 (2008).

    Article  Google Scholar 

  11. I. W. Frank, D.M. Tanenbaum, A.M. van der Zande and P.L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B, 25, 2558 (2007).

    Article  CAS  Google Scholar 

  12. J. Zou and A. Balandin, Phonon heat conduction in a semiconductor nanowire, J. Appl. Phys., 89, 2932 (2001).

    Article  CAS  Google Scholar 

  13. T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson and A. K. Geim, Macroscopic Graphene Membranes and Their Extraordinary Stiffness, Nano Lett, 8, 2442 (2008).

    Article  CAS  Google Scholar 

  14. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson & K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652 (2007).

    Article  CAS  Google Scholar 

  15. A. A. Balandin, Noise and Fluctuation Control in Electronic Devices (Los Angeles; American Scientific Publishers, 2002).

    Google Scholar 

  16. Y. M. Lin, and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett., 8, 2119–2125 (2008).

    Article  CAS  Google Scholar 

  17. Q. Shao, G. Liu, D. Teweldebrhan, A. A. Balandin, S. Rumyantsev, M. Shur and D. Yan, Flicker noise in bilayer graphene transistors, IEEE Electron. Dev. Lett., 30, 288 (2009).

    Article  CAS  Google Scholar 

  18. F. Parvizi, D. Teweldebrhan, S. Ghosh, I. Calizo, A.A. Balandin, H. Zhu and R. Abbaschian, Properties of graphene produced by the high pressure – high temperature growth process,Micro Nano Lett., 3, 29 (2008).

    Article  CAS  Google Scholar 

  19. I. Calizo, F. Miao, W. Bao, C. N. Lau, and A. A. Balandin, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices, Appl. Phys. Lett., 91, 071913 (2007).

    Article  Google Scholar 

  20. I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass, Appl. Phys. Lett., 91, 201904 (2007).

    Article  Google Scholar 

  21. I. Calizo, D. Teweldebrhan, W. Bao, F. Miao, C.N. Lau and A.A. Balandin, Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates, J. Phys.: Conf. Ser., 109, 012008 (2008).

    Article  Google Scholar 

  22. I. Calizo, S. Ghosh, F. Miao, W. Bao, C.N. Lau and A.A. Balandin, Raman nanometrology of graphene: Temperature and substrate effects, Solid State Commun., 149, 1132 (2009).

    Article  CAS  Google Scholar 

  23. D. Teweldebrhan and A.A. Balandin, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94, 013101 (2009).

    Article  Google Scholar 

  24. A. L. McWhorter, Semiconductor Surface Physics, p. 207 (Philadelphia; University of Pennsylvania Press, 1957).

    Google Scholar 

Download references

Acknowledgments

The work at UCR was supported, in part, by DARPA – SRC Focus Center Research Program (FCRP) through its Center on Functional Engineered Nano Architectonics (FENA) and Interconnect Focus Center (IFC), and by AFOSR award A9550-08-1-0100 on the Electron and Phonon Engineered Nano and Heterostructures. The work at RPI was supported by the National Science Foundation under I/UCRC “Connection One” and by IFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Balandin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Liu, G., Shao, Q., Balandin, A.A., Stillman, W., Shur, M., Rumyantsev, S. (2010). Low-Frequency Electronic Noise in the Back-Gated and Top-Gated Graphene Devices. In: Gusev, E., Garfunkel, E., Dideikin, A. (eds) Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3807-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3807-4_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3805-0

  • Online ISBN: 978-90-481-3807-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics