Skip to main content

Microbial Mats in Antarctica as Models for the Search of Life on the Jovian Moon Europa

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 14))

Abstract

The discovery of extreme environments with organisms adapted to these conditions has made them useful analogies for the presence of life beyond the Earth, whether autochthonous, or by the transport of microorganisms between different bodies of the solar system. This latter possibility has been known as the hypothesis of panspermia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Blanc, M. and the LAPLACE consortium (2008) LAPLACE: a mission to Europa and the Jupiter System, Astrophysical Instruments and Methods, in press. A digital version can be consulted in http://www.ictp.it/~chelaf/ss186.html (Team members full list is available at http://www.ictp.it/~chelaf/ss164.html).

  • Baumstark-Khan, C. and Facius, R. (2002) Life under conditions of ionizing radiations, In: G. Horneck and C. Baumstark-Khan (eds.) Astrobiology: The Quest for the Conditions of Life. Springer, Dordrecht, The Netherlands, pp. 261–296.

    Google Scholar 

  • Canfield, D.E., Olesen, C.A. and Cox, R.P. (2006) Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochim. Cosmochim. Acta 70: 548–561.

    Article  CAS  Google Scholar 

  • Canfield, D.E. and Des Marais, D.J. (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473.

    Article  PubMed  CAS  Google Scholar 

  • Chela-Flores, J. (2006) The sulfur dilemma: are there biosignatures on Europa’s icy and patchy surface? Int. J. Astrobiol. 5: 17–22.

    Article  CAS  Google Scholar 

  • Chela-Flores, J. and Kumar, N. (2008) Returning to Europa: can traces of surficial life be detected? Int. J. Astrobiol. 7: 263–269.

    Article  CAS  Google Scholar 

  • Christner, B.C., Roysto-Bishop, G., Foreman, C.M., Arnold, B.R., Tranter, M., Welh, K.A., Lyons, W.B., Tspain, A.I., Studinger, M. and Priscu, J.C. (2006) Liminological conditions in subglacial Lake Vostok, Antarctica. Limnol. Occeanogr. 51: 2485–2501.

    Article  Google Scholar 

  • Chyba, C. (2000) Energy for microbial life on Europa. Nature 403: 381–383.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y. (1984) Oxygenic photosynthesis, anoxygenic photosynthesis and sulfate reduction in cyanobacterial mats, In: M.J. Klug and C.A. Reddy (eds.) Current Perspectives in Microbial Ecology. ASM Press, Washington, DC, pp. 435–441.

    Google Scholar 

  • Cohen, Y. and Rosenberg, E. (1989) Microbial Mats. Physiological Ecology of Benthic Microbial Communities. ASM Press, Washington, DC, 494 pp.

    Google Scholar 

  • Cooper, J.F., Johnson, R.E., Mauk, B.H., Garrett, H.B. and Gehrels, N. (2001) Energetic ion and electron radiation of the icy Galelian satellites. Icarus 149: 133–159.

    Article  CAS  Google Scholar 

  • Davey, M.E. and O’Toole, G.A. (2000) Microbial biofilms from ecology and molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847–867.

    Article  PubMed  CAS  Google Scholar 

  • Doran, P.T., Wharton, R.A. Jr. and Berry Lyons, W. (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolimnol. 10: 85–114.

    Article  PubMed  CAS  Google Scholar 

  • Doran, P.T. Stone, W., Priscu, J., McKay, C., Johnson, A. and Chen, B. (2007) Environmentally Non-Disturbing Under-ice Robotic ANtarctiC Explorer (ENDURANCE). American Geophysical Union, Fall Meeting, abstract #P52A-05.

    Google Scholar 

  • Farquhar, J. and Wing, B.A. (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213: 1–13.

    Article  CAS  Google Scholar 

  • Fauville, A., Mayer, B., Frömmichen, F., Friese, K. and Veizer, J. (2004) Chemical and isotopic evidence for accelerated bacterial sulphate reduction in acid mining lakes after addition of organic carbon: laboratory batch experiments. Chem. Geol. 204: 325–344.

    Article  CAS  Google Scholar 

  • Greenberg, R. (2005) Europa – The Ocean Moon. Springer and Praxia Publishing, Chichester, 328 pp.

    Google Scholar 

  • Johnston, D.T., Farquhar, J. and Canfield, D.E. (2007) Sulfur isotope insights into microbial sulfate reduction: when microbes meet models. Geochim. Cosmochim. Acta 71: 3929–3947.

    Article  CAS  Google Scholar 

  • Jørgensen, B.B. (1982a) Mineralisation of organic matter in the sea bed–the role of sulphate ­reduction. Nature 296: 643–645.

    Article  Google Scholar 

  • Jørgensen, B.B. (1982b) Ecology of bacteria of sulfur cycle with special reference to anoxic–oxic interface environments. Philos. Trans. R. Soc. Lond. B 298: 543–562.

    Article  Google Scholar 

  • Kaplan, I.R. and Rittenberg, S.C. (1964) Microbiological fractionation of sulfur isotopes. J. Gen. Microbiol. 34: 195–212.

    PubMed  CAS  Google Scholar 

  • Kaplan, I.R. (1975) Stable isotopes as a guide to biogeochemical processes. Proc. R. Soc. Lond. B 189: 183–211.

    Article  CAS  Google Scholar 

  • Konhauser, K. (2007) Introduction to Geomicrobiology. Blackwell, Oxford, pp. 235–259.

    Google Scholar 

  • Lisle, J.T. and Priscu, J.C. (2004) The occurrence of lysogenic bacteria and microbial aggregates in the lakes of McMurdo dry valleys, Antarctica. Microb. Ecol. 47: 427–439.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D.R., Phillips E.J.P., Lonergan D.J. and Widman P.K. (1995) Fe(III) and S (0) reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61: 2132–2138.

    PubMed  CAS  Google Scholar 

  • Mikell, A.T., Parker B.C. and Simmons, G.M. Jr. (1984) Response of an Antarctic lake heterotrophic community to high dissolved oxygen. Appl. Environ. Microbiol. 47: 1062–1066.

    PubMed  CAS  Google Scholar 

  • Minz, D., Fisbain, S., Green, S.J., Muyzer, G., Cohen, Y., Rittmann B.E. and Stahl, D.A. (1999) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemoline in contrast to eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65: 4659–4665.

    PubMed  CAS  Google Scholar 

  • Ono, S. (2008) Multiple-sulfur isotope biosignatures. Space Sci. Rev. Springer, Dordrecht, 135: 203–220.

    Google Scholar 

  • Oren, A. (2008) Life at low water activity. Halophilic microorganisms and their adaptations. Biochem. 30(4): 10–13.

    CAS  Google Scholar 

  • Parker, B.C. (1982) Comparative ecology of plankton communities in seven antarctic oasis lakes. J. Plankton Res. 4: 271–286.

    Article  Google Scholar 

  • Parker, B.C., Simmons, G.M. Jr., Seaburg, K.G. and Wharton, R.A. Jr. (1980) Ecological comparisons of oasis lakes and soils. Antarct. J. U.S. 15: 167–170.

    Google Scholar 

  • Parker, B.C., Simmons, Jr., G.M., Gordon Love, F., Wharton, Jr., R.A. and Seaburg, K.G. (1981) Modern stromatolites in Antarctic dry valley lakes. BioScience 31: 656–661.

    Article  Google Scholar 

  • Parker, B.C. and Wharton, R.A. (1985) Physiological ecology of blue green algal mats (modern stromatolites) in Antarctic oasis lakes. Arch. Hyrobiol. Suppl. 71: 31–348.

    Google Scholar 

  • Pernthaler, A., Dekas, A.E., Brown. T., Goffredi, S.K., Embaye, T. and Orphan, V.J. (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc. Natl. Acad. Sci. USA 105: 7052–7057.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. and Widdel, F. (1982) The bacteria of the sulphur cycle. Philos. Trans. R. Soc. Lond. B 298: 433–441.

    Article  CAS  Google Scholar 

  • Postgate, J.R. (1984) The Sulphate-Reducing Bacteria, 2nd ed. Cambridge University Press, ­Cambridge, pp. 1–208.

    Google Scholar 

  • Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, C.F., Krishtein, J.D. and Avci, R. (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Priscu, J.C., Bell, R.E., Bulat, S.A., Ellis-Evans, C.J., Kennicutt, M.C., Lukin, V.V., Petit, J.-R., ­Powell, R.D., Siegert, M.J. and Tabacco, I. (2003) An international plan for Antarctica subglacial lake exploration. Polar Geogr. 27: 69–83.

    Article  Google Scholar 

  • Rabus, R., Hansen, T. and Widdel, F. (2006) Dissimilatory sulfate- and sulfur reducing prokaryotes, In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokarotes. Vol. 2: Ecophysiology and Biochemistry. Springer, New York, pp. 659–768.

    Google Scholar 

  • Rothschild, L.J. and Mancinelli, R.L. (2001) Life in extreme environments. Nature 409: 1092–1101.

    Article  PubMed  CAS  Google Scholar 

  • Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol Rev. 61: 262–280.

    PubMed  CAS  Google Scholar 

  • Schink, B. (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81: 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Schink, B. and Stams, A.J.M. (2002) Syntrophism among prokaryotes, In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokarotes. Vol. 2: Ecophysiology and Biochemistry. Springer, New York, pp. 309–335.

    Google Scholar 

  • Schulze-Makuch, D. and Irwin, L.N. (2002) Energy cycling and hypothetical organisms in Europa’s Ocean. Astrobiology 2: 105–121.

    Article  PubMed  CAS  Google Scholar 

  • Seckbach, J. and Chela-Flores, J. (2007) Extremophiles and chemotrophs as contributors to astrobiological signatures on Europa: a review of biomarkers of sulfate-reducers and other microorganisms, In: R.B. Hoover, G.V. Levin, A.Y. Rozanov and P.C.W. Davies (eds.) Instruments, Methods, and Missions for Astrobiology X. Proc. SPIE 6694: 66940W.

    Google Scholar 

  • Seckbach, J. and Oren, A. (2007) Oxygenic photosynthetic microorganisms in extreme environments, In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, The Netherlands, pp. 4–25.

    Google Scholar 

  • Shen, Y. and Buick, R. (2004) The antiquity of sulfate reduction. Earth-Sci. Rev. 64: 243–272.

    Article  CAS  Google Scholar 

  • Siegert, M.J., Carter, S., Tabacco, I., Popov, S. and Blankenship, D.D. (2005) A revised inventory of Antarctic subglacial lakes. Antarctic Sci. 17: 453–460.

    Article  Google Scholar 

  • Siegert, M.J., Tranter, M., Ellis-Evans, J.C., Priscu, J.C. and Lyons, W.B. (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol. Process. 17: 795–814.

    Article  Google Scholar 

  • Siegert, M.J., Ellis-Evans, J.C., Tranter, M., Mayer, C., Petit, J.R., Salamatin, A. and Priscu, J.C. (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414: 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, G.M. Jr, Parker, B.C., Allnut, F.T.C., Brown, D., Cathey, D. and Seaburg, K.G. (1979) Ecological comparison of oasis lakes and soils. Antarctic J. U.S. 14: 181–183.

    Google Scholar 

  • Smith, A., Crawford, I.A., Gowen, R.A., Ball, A.J., Barber, S.J., Church, P., Coates, A.J., Gao, Y., Griffiths, A.D., Hagermann, A., Phipps, A., Pike, W.T., Scott, R., Sheridan, S., Sweeting, M., ­Talboys, D., Tong, V., Wells, N., Biele, J., Chela-Flores, J., Dabrowski, B., Flannagan, J, Grande, M., Grygorczuk, J., Kargl, G., Khavroshkin, O.B., Klingelhoefer, G., Knapmeyer, M., Marczewski, W., McKenna-Lawlor, S., Richter, L., Rothery, D.A., Seweryn, K., Ulamec, S., Wawrzaszek, R., Wieczorek, M. and Wright, I.P. (2008) LunarEX – a proposal to cosmic vision. Exp. Astron. 10.1007/s10686-008-9109-6 (August 21, 2008).

    Google Scholar 

  • Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytolog. 131: 1–32.

    Article  CAS  Google Scholar 

  • Stone, R. (1999) Paleobiology: permafrost comes alive for Siberian researchers. Science 286: 36.

    PubMed  Google Scholar 

  • Stoylar, S., Dien, S.V., Hillesland, K.L., Pinel, N., Lie, T.J., Leigh, J.A. and Stahl, D.A. (2007) Metabolic modeling of a mutualistic microbial community. Mol. Systems Biol. 3(92): 1–13.

    Google Scholar 

  • Sze, S.M. (1988) VLSI Technology. McGraw-Hill, New York, p. 333.

    Google Scholar 

  • Tamaru, Y., Takani, Y., Yoshida, T. and Sakamoto, T. (2005) Crucial role of extracellular polysaccharides in dessication and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327–7333.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 pp.

    Google Scholar 

  • Vincent, W.F. (2007) Cold tolerance in cyanobacteria, In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, pp. 289–301.

    Google Scholar 

  • Wharton, R.A. Jr., Parker, B.C. and Simmons, G.M. Jr. (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22: 355–365.

    Article  Google Scholar 

  • Widdel, F. (1988) Microbiology and ecology of sulfate and sulfur reducing bacteria, In: A.J.B. Zehnder (ed.) Biology of Anaerobic Organisms. Wiley, New York, pp. 469–585.

    Google Scholar 

  • Zolotov, M.Y. and Shock, E.L. (2003) On energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. J. Geophys. Res. 108 (E4): 3.1–3.9.

    Article  Google Scholar 

Download references

Acknowledgments

This work was done in part under the framework of the Associate Scheme of the Abdus Salam ICTP (Junior Associate Dr. Suman Dudeja).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Dudeja .

Editor information

Editors and Affiliations

Appendices

Appendix A

A1. SIGNIFICANCE OF THE δ34S PARAMETER

Sulfur is one of the key elements of life. Sulfur exists in four stable isotropic forms: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). Sulfur isotope ratios are typically reported in the delta notation, as deviations with respect to the standard that is the troilite of the Cañon Diablo meteorite (CDT):

$$\delta^x S = \left[^{(x S/^{32} S)_{sample}}\left/_{(^x S/^{32} S)_{std}}\right. -1 \right] \times 10^{3} [0\left/00, CDM\right.]$$
(1)

where x = 33, 34 or 36. As pointed out (Kaplan, 1975; Chela-Flores, 2006), metabolic pathways of sulfur bacteria have enzymes that preferentially select the isotope 32S over 34S. This implies that where there is an abundance of sulfur bacteria, the value of the δ34S parameter would be negative. Bacterial (dissimilatory) sulfate reduction (BSR) is a naturally occurring process. Under anaerobic conditions, sulfate is used by bacteria as an electron acceptor for oxidation of organic carbon (from pyruvate, lactate, formate, ethanol, methanol, amongst others), according to the following generalized reaction,

$$ 2<CH_2O> +SO_4^{2-} (aq) + 2H^+(aq) + 2CO_2(g) +H_2S(g) + 2H_2O$$
(2)

The above reaction is also called “sulfate respiration.” The product H2S in the above reaction is highly enriched in 32S. According to a model (Farquhar and Wing, 2003, Johnston et al., 2007) the parameter\\( {{\delta }^{\text{34}}}{{\text{S}}_{{\text{SO}}_4^{2 - }}} - {{\delta }}^{\text{34}}{{\text{S}}_{{{\text{H}}_{\text{2}}}{\text{S}}}} \),

$$ {\delta}^{34}{S}_{SO_{4}^{2-}}-{\delta }^{34}{S}_{H{_2}S}= \left[\frac{({^34}S/^{32}S)_{SO_{4}^{2-}}-\left({^34}S/^{32}S \right)_{H_{2}S}}{(^34S/^32S)_{std}}\right] $$
(3)

(The model has been referred to as the “the Rees–Farquhar model”.) The above parameter is initially negative, becomes less negative in the process of sulfate respiration. Indeed, by the metabolic activity of SRB, the quantity ( 34S/ 32S )SO42– \( {{(^{34}}{\text{S}}{/^{32}}{\text{S}})_{{\text{SO}}_4^{2 - }}} \) becomes less negative, while ( 34S/ 32S )H2S \( {{(^{34}}{\text{S}}{/^{32}}{\text{S}})_{{{\text{H}}_{\text{2}}}{\text{S}}}} \)becomes more negative. This basically means that during the process of sulfate respiration the isotope 32 S increases in the product H2S and is reduced in \( _4^{2 - } \). Accelerated sulfate reduction by bacterial communities is known to occur in the presence of organic carbon (Fauville et al., 2004).

The relevance of the δ34S parameter for biogenic sulfur on the icy surface of Europa has been reviewed (Chela-Flores, 2006; Chela-Flores and Kumar, 2008). Life requires an input of energy and must be able to control the flow of energy through redox chemistry, which is a universal concept. As life is based on organic chemistry, such chemistry must be allowed to operate. An extremophile must either live within the extreme environmental parameters, or guard against the outside world in order to maintain these conditions. For example, certain cold-tolerant cyanobacteria (Vincent, 2007) have a variety of strategies to minimize stresses of freeze–up. Like sea-ice microbiota, the mat-forming species in the McMurdo Ice shelf form copious quantities of exopolymeric substances already referred to as EPS in Section 2. This material shows the flow of liquid water during freeze-up and thaw, and may also force crystal formation to occur well away from the cells. Experiments indicate that EPS is critical to surviving desiccation, as well as freeze-up (Tamaru et al., 2005). Also EPS are the source of organic carbon. We now examine the influence on temperature and radiation on biosignatures suitable for Europa and suggest a comparison with their counterparts on Earth.

a2. TEMPERATURE

The magnitude of isotope fractionation by microbial sulfate reduction also depends upon temperature (Kaplan and Rittenberg, 1964; Canfield et al., 2006). The isotope fractionation factor (a) is (Ono, 2008):

$$ {}^x{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} = \frac{{{{[{}^x{\text{so}}_4^{2 - }]} \mathord{\left/{\vphantom {{[{}^x{\text{so}}_4^{2 - }]} {[{}^{32}{\text{so}}_4^{2 - }]}}} \right.} {[{}^{32}{\text{so}}_4^{2 - }]}}}}{{{{[{}^x{{\text{H}}_{\text{2}}}{\text{S}}]} \mathord{\left/{\vphantom {{[{}^x{{\text{H}}_{\text{2}}}{\text{S}}]} {[{}^{32}{{\text{H}}_{\text{2}}}{\text{S}}]}}} \right.} {[{}^{32}{{\text{H}}_{\text{2}}}{\text{S}}]}}}} $$
(4)

where x = 33, 34, and 36. The isotope fractionation factor at equilibrium can be derived from the ratios of the partition function (Q),

$$ {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} = \frac{{{}^{34}Q{\text{so}}_4^{2 - }}}{{{}^{32}Q{\text{so}}_4^{2 - }}}\frac{{{}^{32}Q{{\text{H}}_{\text{2}}}{\text{s}}}}{{{}^{34}Q{{\text{H}}_{\text{2}}}{\text{s}}}} $$
(5)

The partition function is

$$ Q = \prod\limits_i {{u_i}} \exp \left[ {{\raise0.7ex\hbox{${ - {u_i}}$} \!\mathord{\left/{\vphantom {{ - {u_i}} {2]}}}\right.}\!\lower0.7ex\hbox{${2]}$}}} \right]\left[ {1 - \exp ( - {u_i})} \right] $$
(6)

where ui = \( {{h{\upsilon_i}} \mathord{\left/{\vphantom {{h{\upsilon_i}} {kT}}} \right.} {kT}} \) (h is the Planck constant, k is the Boltzmann constant, T is the temperature in kelvin and \( {\upsilon_i} \) is the ith vibrational frequency of the molecule). A plot (cf., Fig. 2) of 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \) as a function of temperature shows that as temperature decreases, the value of 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \) increases, which is a signature of biological process.

Figure 2.
figure 2

A plot of 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_{\text{4}}^{{\text{2 - }}}{\text{ - }}{{\text{H}}_{\text{2}}}{\text{S}}}} \) as a function of temperature shows that as temperature decreases the value of 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_{\text{4}}^{{\text{2 - }}} - {{\text{H}}_{\text{2}}}{\text{S}}}} \) increases, which is a signature of biological process. The temperature on the surface of Europa is about 110 K. This corresponds to 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \)∼15 while the temperature in the sea water below in contact with the ice is 270 K which corresponds to 1,000 × \( \times \)ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \) ∼4.5.

Below the ice, the evidence gathered by the Galileo mission suggests that there is an ocean of liquid water, which could in principle harvest sulfur bacteria. The temperature of such an underlying sea just in contact with the ice is estimated to be near 270 K. This temperature is appropriate for BSR as it is evident from Fig. 2. A surface temperature on the surface of Europa of about 110 K corresponds to 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \) ∼ 15, while the temperature in the sea water below in contact with the ice of temperature of the order of 270 K, corresponds to 1,000 × ln\( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \) ∼ 4.5. In comparison, the average temperature of the dry valley Antarctic lakes is in the range 273–280 K, which means that 1,000 × ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \) ∼ 3. The algal mats in these lakes are known to exist about 4 m below the surface of the frozen lakes and are also capable of lifting off, floating, and freezing in ice. These mats selectively remove a huge quantity (40–104 kg) of sulfur annually (discussed in Section 3.1). It may be speculated that similar algal mats, if they exist beneath the icy surface of Europa, may eventually be transported to the surface by surficial ablation from above (produced by the micrometeoroids and refreezing form below the ice layer, thus contributing to the surficial sulfur patches. It is interesting that Europa offers a wide temperature range suitable for a wide variety of microorganisms to exist. Moreover, low temperature favors enhanced biological activity of sulfate respiration. This would be reflected in the extremely high values of 1,000\( \times \)ln \( {}^{34}{\alpha_{{\text{so}}_4^{2 - } - {{\text{H}}_{\text{2}}}{\text{S}}}} \), or by highly negative values of \( {\delta^{34}}{{\text{S}}_{{\text{SO}}_4^{2 - }}} - {\delta^{34}}{{\text{S}}_{{{\text{H}}_{\text{2}}}{\text{S}}}} \). These effects are subject to measurement by miniature mass spectrometer in future missions (Blanc and the LAPLACE consortium, 2008). The possibility of highly negative δ34S value due to hydrothermal process is ruled out since extremely high temperatures (>550 K) is required for such a process. The possibility of bacterial life well below the sea underneath with temperatures exceeding 350 K cannot be ruled out since we know examples of sulfur-dependent extremophiles such as Sulfolobus acidocaldarius an archaea that flourishes at pH 3 and > 350 K in Yellowstone National Park (USA) (Rothschild and Mancinelli, 2001).

There are thermophiles among the bacteria (Bacillus, Clostridium, Thiobacillus, Desulfotomaculum), the archaea (Pyrococcus, Thermococcus, Thermoplasma, Sulfolobus), and the methanogens that exist in the temperature range 330–390 K. In contrast, the upper limit for eukaryotes is 330 K, a temperature suitable for some protozoa, algae, and fungi.

A3. SULFUR ION IMPLANTATION ON THE SURFACE OF EUROPA

On Europa, however, there is another source of sulfur, namely, the energetic sulfur ions coming from the nearby Jovian atmosphere. These energetic ions after striking the surface of Europa will penetrate a certain depth into the icy surface. If we assume that there are sulfur bacteria on the surface and below the icy crust of Europa and the initial value of the δ34S parameter is negative then this mechanism of ion implantation will change the value of the δ34S parameter and make it less negative or even positive. A probe on the surface of Europa that tries to measure the δ34S parameter would then wrongly detect the absence of sulfur bacteria. Consequently, it is important that the probe goes well beyond the maximum penetration depth of the ions to measure the δ34S parameter. For this it is essential to know the density distribution of the implanted ions as a function of depth as well as time of implantation. Based on the LSS (Lindhard, Scharff and Schiøt) theory of ion implantation, the implant profile in an amorphous material can be described by the equation (Sze, 1988):

$$ n(x) = {n_{\text{o}}}\exp \left( { - \frac{{{{(x - R{\text{p}})}^2}}}{{2\Delta R_{\text{p}}}}} \right) $$
(7)

where,\( {n_{\text{o}}}=\frac{\phi}{t}{\sqrt {2 \pi } \Delta R{\text{p}}},\phi \) f is the implanted dose, t is the time of implantation, R p is the projection range and is equal to the average distance an ion travels before it stops and ΔR p is the standard deviation of R p which is roughly 1/5R p from the known data for different ions and impact surface. The value of R p for sulfur ion for the Europan surface is 4.8 × 10−5cm and φ = 9.0× 106 (cm2 s)−1 (Cooper et al., 2001) (cf., Fig. 1). It is therefore clear from Fig. 1 that the implanted sulfur is heavily distributed around the maximum depth R p. This implies that a penetrator has to go beyond R p to measure biogenic sulfur without any contamination from implanted sulfur.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dudeja, S., Bhattacherjee, A.B., Chela-Flores, J. (2010). Microbial Mats in Antarctica as Models for the Search of Life on the Jovian Moon Europa. In: Seckbach, J., Oren, A. (eds) Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3799-2_28

Download citation

Publish with us

Policies and ethics