Skip to main content

Microbial Mats from Wind Flats of the Southern Baltic Sea

  • Chapter
  • First Online:
Microbial Mats

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 14))

Abstract

The Baltic Sea covers an area of 377,000 km² and is the world’s largest brackish-water ecosystem. In geological terms, the Baltic Sea is quite young and its development began with the thawing of the Weichselian ice sheet after the last glaciation 15,000 years BP (before present). Because the connection to the North Sea was mostly temporary, the salinity conditions changed often. For the last 8,000 years BP, the salinity regime remained more or less unchanged and brackish (Björck, 1995). The catchment area is 1.6 million square kilometers. The annual input of riverine and precipitation freshwater is about 660 km3, while further 475 km3 of saline water flows in from the North Sea. The discharge of brackish water into the North Sea over the small straits between Denmark and Sweden averages 950 km3 (Björck, 1995). Apart from these small connections, the Baltic Sea is surrounded by land. This has a great impact on the salinity regime. Through the inflow of saline bottom water from the North Sea, salty and oxygen-rich water is delivered. Thus, the salinity of the freshwater-influenced surface water decreases from 25–15 PSU in the western part, to 8–6 PSU in the central Baltic Sea and down to 2 PSU in the Bottnian Gulf in the north–east (Matthäus, 1996). Therefore, the Baltic Sea can be characterized as a very large estuary. Despite this horizontal salinity gradient, the conditions in the Baltic Sea are very different from those in estuaries because of missing tides. The tidal range is extremely low with 12–15 cm, but wind direction and wind speed may temporarily induce high waves and change sea water levels (Brosin, 1965; Lass and Magaard, 1996). Consequently, salinity levels at any point do not vary much, resulting in a rather stable vertical salinity gradient, but strong horizontal salinity gradients along the shore line structure the benthic fauna and flora profoundly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bairoch, A. (2000) The ENZYME database in 2000. Nucleic Acids Res. 28: 304–305.

    Article  PubMed  CAS  Google Scholar 

  • Bebout, B.M. and Garcia-Pichel, F. (1995) UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61: 4215–4222.

    PubMed  CAS  Google Scholar 

  • Bebout, B.M., Paerl, H.W., Bauer, J.E., Canfield, D.E. and Des Marais, D.J. (1992) Nitrogen cycling in microbial mat communities: the quantitative importance of N-fixation and other sources of N for primary productivity, In: L.J. Stal and P. Caumette (eds.) Microbial Mats – Structure, Development and Environmental Significance. Springer, Heidelberg, pp. 265–272.

    Google Scholar 

  • Billerbeck, M., Roy, H., Bosselmann, K. and Huettel, M. (2007) Benthic photosynthesis in submerged Wadden Sea intertidal flats. Estuar. Coastal Shelf Sci. 71: 704–716.

    Article  Google Scholar 

  • Björck, S. (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quatern. Int. 27: 19–40.

    Article  Google Scholar 

  • Brosin, H.J. (1965) Hydrographie und Wasserhaushalt der Boddenkette südlich des Darß und des Zingst, In: Veröffentlichungen des Geographischen Instituts der Karl-Marx Universität Leipzig, Vol. XVIII/ 3, Akademie Verlag, Berlin, pp. 280–380.

    Google Scholar 

  • Castenholz, R.W. and Garcia-Pichel, F. (2000) Cyanobacterial responses to UV-radiation, In: B.A. Whitton and M. Potts (eds.) Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer, Dordrecht, pp. 591–611.

    Google Scholar 

  • Chróst, R.J. (1990) Microbial ectoenzymes in aquatic environments, In: J. Overbeck and R.J. Chróst (eds.) Aquatic Microbial Ecology: Biochemical Molecular Approaches. Springer, New York, pp. 47–48.

    Google Scholar 

  • Cohen, Y. (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions, In: Y. Cohen and E. Rosenberg (eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DC, pp. 22–36.

    Google Scholar 

  • Cohen, Y. and Rosenberg, E. (eds.) (1989) Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Cole, J.J. (1982) Interaction between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13: 291–314.

    Article  Google Scholar 

  • Connor, M.S., Teal, J.M. and Valiela, I. (1982) The effect of feeding by mud snails, Ilyanassa obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community. J. Exp. Mar. Biol. Ecol. 65: 39–45.

    Article  Google Scholar 

  • Cook, P.L.M., Revill, A.T., Clementson, L.A. and Volkman, J.K. (2004) Carbon and nitrogen cycling in intertidal mudflats of a temperate Australian estuary. III Sources of organic matter. Mar. Ecol. Progr. Ser. 280: 55–72.

    Article  CAS  Google Scholar 

  • Cottrell, M.T. and Kirchman, D.L. (2000) Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66: 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  • Eisma, D. (1998) Wind flats deposits, In: D. Eisma, P.L. Boer, G.C. de Cadee, K. Dijkema, H. Ridderinkhof and C. Philippart (eds.) Intertidal Deposits: River Mouths, Tidal Flats and Coastal Lagoons. CRC Press LLC, Washington, DC, pp. 309–316.

    Google Scholar 

  • Garcia-Pichel, F., Prufert-Bebout, L. and Muyzer, G. (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol. 62: 3284–3292.

    PubMed  CAS  Google Scholar 

  • Herndl, G.J. (1992) Marine snow in the Northern Adriatic Sea: possible causes and consequences for a shallow ecosystem. Mar. Microb. Food Webs 6: 149–172.

    Google Scholar 

  • Heyl, K. (2007) Hydrolytische Aktivität in einer mikrobiellen Matte im Windwatt “Bock” der südlichen Ostsee. Diploma-thesis, University of Rostock.

    Google Scholar 

  • Javor, B.J. and Castenholz, R.W. (1984) Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 149–170.

    Google Scholar 

  • Jensen, L.M. (1983) Phytoplankton release of extracellular organic carbon, molecular weight composition, and bacterial assimilation. Mar. Ecol. Progr. Ser. 11: 39–48.

    Article  CAS  Google Scholar 

  • Kamjunke, N., Köhler, B., Wannicke, N. and Tittel, J. (2008) Algae as competitors for glucose with heterotrophic bacteria. J. Phycol. 44: 616–623.

    Article  CAS  Google Scholar 

  • Karsten, U. (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (Cyanobacteria) from benthic microbial mats: response to salinity change. J. Phycol. 19: 501–506.

    Article  Google Scholar 

  • Karsten, U., Maier, J. and Garcia-Pichel, F. (1998) Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquat. Microb. Ecol. 16: 37–44.

    Article  Google Scholar 

  • Kern, C. (2008) Untersuchung zum Vorkommen und Grazing heterotropher Protozoen in einer mikrobiellen Matte im Windwatt “Bock”, Zingst. Diploma-thesis, University of Rostock.

    Google Scholar 

  • Kube, J. (1992) Das Makrozoobenthos des Windwatts am Bock – Szenario des Jahres 1991. Diploma-thesis, University of Rostock.

    Google Scholar 

  • Lass, H.U. and Magaard, L. (1996) Wasserstandsschwankungen und Seegang, In: G. Rheinheimer (ed.) Meereskunde der Ostsee. Springer, Berlin, pp. 68–74.

    Google Scholar 

  • Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72: 3685–3695.

    Article  PubMed  CAS  Google Scholar 

  • Llobet-Brossa, E., Roselló-Mora, R. and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64: 2691–2696.

    PubMed  Google Scholar 

  • Lodders, N., Stackebrandt, E. and Nübel, U. (2005) Frequent genetic recombination in natural populations of the marine cyanobacterium Microcoleus chthonoplastes. Environ. Microbiol. 7: 434–442.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, R., Pringault, O., de Wit, R., de Beer, D. and Jonkers, H.M. (2006) Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat: a microsensor study. FEMS Microbiol. Ecol. 57: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. (2009) Brock Biology of Microorganisms, 12th ed. Pearson/Benjamin Cumings, San Fransisco, CA.

    Google Scholar 

  • Marshall, K.C. (1989) Cyanobacterial-heterotrophic bacterial interaction, In: Y. Cohen and E. Rosenberg (eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DC, pp: 239–245.

    Google Scholar 

  • Martinez, J., Smith, D.C., Steward, G.F. and Azam, F. (1996) Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10: 223–230.

    Article  Google Scholar 

  • Martinez-Alonso, M., Mir, J., Caumette, P., Gaju, N., Guerrero, N. and Esteve, I. (2004) Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. Int. Microbiol. 9: 19–25.

    Google Scholar 

  • Matthäus, W. (1996) Temperatur, Salzgehalt und Dichte, In: G. Rheinheimer (ed.) Meereskunde der Ostsee. Springer, New York, pp. 75–81.

    Google Scholar 

  • Montuelle, B. and Volat, B. (1998) Impact of wastewater treatment plant discharge on enzyme activity in freshwater sediments. Ecotoxicol. Environ. Safety 40: 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., de Beer, D., Dublier, N. and Amann, R. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømo basin, Wadden Sea. Syst. Appl. Microbiol. 7: 333–348.

    Article  Google Scholar 

  • Mußmann, M., Kouske, I., Rabus, R. and Amann, R. (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mudflat of the Wadden Sea. Environ. Microbiol. 7: 405–418.

    Article  PubMed  Google Scholar 

  • Pattanaik, B., Roleda, M.Y., Schumann, R. and Karsten, U. (2008) Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. Planta 227: 907–916.

    Article  PubMed  CAS  Google Scholar 

  • Pinckney, J.L., Paerl, H.W. and Fitzpatrick, M. (1995) Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Progr. Ser. 123: 207–216.

    Article  Google Scholar 

  • Quesada, A. and Vincent, W.F. (1997) Stratagies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur. J. Phycol. 32: 335–342.

    Google Scholar 

  • Redfield A.C. (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton, In: R.J. Daniel (ed.) James Johnstone Memorial Volume. University Press of Liverpool, pp. 177–192.

    Google Scholar 

  • Reinhard, R. (1953) Der Bock, Entwicklung einer Sandbank zur neuen Ostsee-Insel, VEB Geographisch-Kartographische Anstalt Gotha, Gotha.

    Google Scholar 

  • Rengefors, K., Pettersson, K., Blenckner, T. and Anderson, T.M. (2001) Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J. Plankton Res. 23: 435–443.

    Article  CAS  Google Scholar 

  • Rippe, H. and Dierschke, V. (1997) Picking out the plum jobs: feeding ecology of curlews Numenius arquata in a Baltic Sea wind flat. Mar. Ecol. Progr. Ser. 159: 239–247.

    Article  Google Scholar 

  • Schlungbaum, G. and Baudler, H. (2001) Die Darß-Zingster Bodden, eine Studie. Schriftenreihe des Landesamtes für Umwelt. Nat. Geol. Mecklenburg-Vorpommern 1: 53–60.

    Google Scholar 

  • Schwarzer, K. (1996) Dynamik der Küste, In: G. Rheinheimer (ed.) Meereskunde der Ostsee. Springer, Berlin, pp. 25–33.

    Google Scholar 

  • Severin, I. (2005) Interaktion zwischen heterotrophen Bakterien und dem mattenbildenden Cyanobakterium Microcoleus chthonoplastes aus Nord- und Ostsee. Diploma-thesis, University of Rostock.

    Google Scholar 

  • Siegesmund, M., Johansen, J.R., Karsten, U. and Friedl, T. (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J. Phycol. 44: 1572–1585.

    Article  Google Scholar 

  • Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak, D.R. and Zeglin, L.H. (2008) Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11: 1252–1264.

    PubMed  Google Scholar 

  • Sirová, D., Vrba, J. and Rejmankova, E. (2006) Extracellular enzyme activities in benthic cyanobacterial mats: comparison between nutrient-enriched and control sites in marshes of northern Belize. Aquat. Microb. Ecol. 44: 11–20.

    Article  Google Scholar 

  • Stal, L. (1994) Microbial mats in coastal environments, In: L.J. Stal and P. Caumette (eds.) Microbial Mats – Structure, Development and Environmental Significance. Springer, Heidelberg, pp. 21–32.

    Google Scholar 

  • Stal, L. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131: 1–32.

    Article  CAS  Google Scholar 

  • Stal, L. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol. J. 20: 463–478.

    Article  CAS  Google Scholar 

  • Stal L. and Krumbein, W.E. (1985) Isolation and characterization of cyanobacteria from a marine microbial mat. Bot. Mar. 28: 351–365.

    Article  Google Scholar 

  • Stal, L. and Caumette, P. (eds.) (1994) Microbial Mats – Structure, Development and Environmental Significance. Springer, Heidelberg.

    Google Scholar 

  • Stal, L., van Gemerden, H. and Krumbein, W.E. (1985) Structure and development of a benthic marine microbial mat. FEMS Micobiol. Ecol. 74: 305-312.

    Google Scholar 

  • Sundbäck, K. (1983) Microphytobenthos on sand in shallow brackish water, Öresund, Sweden. Ph.D. thesis, University of Lund, Sweden.

    Google Scholar 

  • Underwood, G.J.C., Paterson, D.M. and Parkes, R.J. (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol. Oceanogr. 40: 1243–1253.

    Article  CAS  Google Scholar 

  • van Gemerden, H. (1993) Microbial mats: a joint venture. Mar. Geol. 113: 3–25.

    Article  Google Scholar 

  • Villbrandt, M., Stal, L.J. and Krumbein, W.E. (1990) Interactions between nitrogen-fixation and oxygenic photosynthesis in a marine microbial mat. FEMS Microbiol. Ecol. 74: 59–72.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. (1991) Extracellular enzymatic interactions: storage, redistribution and interspecific communication, In R.J. Chróst (ed.) Microbial Enzymes in Aquatic Environments. Springer, New York, pp. 6–28.

    Google Scholar 

  • Witkowski, A. (1990) Fossilization processes of the microbial mat developing in clastic sediments of the Puck Bay (Southern Baltic Sea, Poland). Acta Geol. Pol. 40: 1–27.

    Google Scholar 

  • Witkowski, A. (1991) Diatoms of the Puck Bay coastal shallows (Poland, Southren Baltic). Nordic J. Bot. 11: 689–701.

    Article  Google Scholar 

  • Witte, K. (2005) Untersuchungen zur Entwicklung von Ökotypen in dem Cyanobakterium Microcoleus chthonoplastes entlang der Salinitätsgradienten der Ostsee. Ph.D. thesis, University of Rostock.

    Google Scholar 

  • Witte, K., Woelfel, J. and Karsten, U. (2004) Das Vorkommen mikrobieller Matten an der Deutschen Ostseeküste am Beispiel des Windwatts “Großer Werder”. Rostocker Meeresbiologische Beiträge 12: 61–70.

    Google Scholar 

  • Woelfel, J. (2004) Saisonale Sukzession in der photoautotrophen Schicht mikrobieller Matten des Windwattes der Darß-Zingster Boddenkette. Diploma-thesis, University of Rostock.

    Google Scholar 

  • Woelfel, J., Schumann, R., Adler, S., Hübener, T. and Karsten, U. (2007) Diatoms inhabiting a wind flat of the Baltic Sea: species diversity and seasonal succession. Estuar. Coast. Shelf Sci. 75: 296–307.

    Article  Google Scholar 

  • Zubkov, M.V., Tarran, G.A. and Fuchs, B.M. (2004) Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiol. Ecol. 50: 153–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Heyl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heyl, K., Woelfel, J., Schumann, R., Karsten, U. (2010). Microbial Mats from Wind Flats of the Southern Baltic Sea. In: Seckbach, J., Oren, A. (eds) Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3799-2_16

Download citation

Publish with us

Policies and ethics