Skip to main content

Ooid Accreting Diatom Communities from the Modern Marine Stromatolites at Highborne Cay, Bahamas

  • Chapter
  • First Online:
Microbial Mats

Abstract

The modern marine stromatolites at Highborne Cay, Bahamas are inhabited by diverse surface microbial communities. Although these communities are most often dominated by cyanobacteria (e.g., Schizothrix gebeleinii, Solentia sp., Oscillatoria sp. etc.), diatoms can be abundant and have been implicated in stromatolite biogenesis. We have identified two distinct surface diatom communities involved in sediment deposition: (1) a thick (0.5–1 cm) yellow surface layer (yellow fur) of the stalked diatoms Licmophora remulus, L. paradoxa, and Striatella unipunctata, and (2) a colorless cohesive surface layer (“pustular blanket”) formed by a tube-forming diatom with individual cells resembling Navicula. The stalks could be labeled with a lectin–FITC conjugate and observed with confocal scanning laser microscopy (CSLM). Ooids were seen trapped within a well-developed network of stalks at the surface and clusters of stalks oriented vertical to the surface were found to penetrate the subsurface to a depth of several centimeters. Interestingly, the tubular structures formed by the naviculid species did not stain with the lectin–FITC conjugate. Nevertheless, manual manipulations of the sediment indicated that this diatom community also trapped ooids. Rapid sediment accretion could be attributed to these two diatom surface communities. Observations over the past decade as well as intensive monitoring over a 3-year period (2005–2007) indicate, however, that these surface diatom communities occur only at particular times of the year and do not survive burial. In addition, the surface layer of diatom-trapped ooids readily erodes unless stabilized by subsequent infiltration of extracellular polymeric substances (EPS) secreting cyanobacteria (e.g., S. gebeleinii). These observations suggest a limited contribution of diatoms to stromatolite biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andres, M.S. and Reid, R.P. (2006) Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sed. Geol. 185: 319–328.

    Article  Google Scholar 

  • Awramik, S.M. and Riding, R. (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc. Natl. Acad. Sci. USA 85: 1327–1329.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M. and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131–145.

    Article  CAS  Google Scholar 

  • Desnues, C.G., Rodriguez-Brito, B., Rayhawk,, S., Kelley,, S., Tran, T., Haynes, M., Liu, H., Hall, D., Angly, F.E., Edwards, R.A., Thurber, R.V., Reid, R.P., Siefert, J., Souza, V., Valentine, D., Swan, B., Breitbart, M. and Rohwer, F. (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452: 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, J.E., Andres, M.S., Marinelli, R.L., Bowlin, E., Reid, R.P., Aspden, R.J. and Paterson, D.M. (2008) Wave and sediment dynanmics along a shallow sub-tidal sandy beach inhabited by modern marine stromatolites. Geobiology 6: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Foster, J.S., Green, S.J., Ahrendt, S.R., Golubic, S., Reid, R.P., Hetherington, K.L. and Bebout, L. (2010) Cyanobacterial diversity in marine stromatolites: evidence for redundant ecotypes. ISME J. (in press).

    Google Scholar 

  • Franks, J. (2007) Confocal and TEM analysis of microbial communities in modern marine stromatolites at Highborne Cay Bahamas. M.S. thesis, Duquesne University, 79 pp.

    Google Scholar 

  • Franks, J. and Stolz, J.F. (2009) Flat laminated microbial mat communities. Earth Sci. Rev. 96: 163–172.

    Article  CAS  Google Scholar 

  • Gaspar, A.G. (2007) Stromatolites: unique seascapes of the Bahamas – multiscale mapping and management guidelines for a living example of an ancient ecosystem. M.S. thesis, University of Miami, Coral Gables, 178 pp.

    Google Scholar 

  • Havemann, S.A. and Foster, J.S. (2008) Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl. Environ. Microbiol. 74: 7410–7421.

    Article  PubMed  CAS  Google Scholar 

  • Kromkamp, J.C., Perkins, R., Dijkman, N., Consalvey, M., Andres, M. and Reid, R.P. (2007) Can cyanobacteria survive burial? Aquat. Microb. Ecol. 48: 123–130.

    Article  Google Scholar 

  • Macintyre, I.G., Prufert-Bebout, L. and Reid, R.P. (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47: 915–921.

    Article  Google Scholar 

  • Paterson, D.M., Aspden, R.J., Visscher, P.T., Consalvey, M., Andres, M.S., Decho, A.W., Stolz, J. and Reid, R.P. (2008) Light dependent biostabilisation of sediments by stromatolite assemblages. PLoS ONE 3: e3176.

    Article  PubMed  Google Scholar 

  • Perkins, R.G., Kromkamp, J.C. and Reid, R.P. (2007) Importance of light and oxygen for photochemical reactivation in photosynthetic stromatolite communities after natural sand burial. Mar. Ecol. Prog. Ser. 349: 23–32.

    Article  Google Scholar 

  • Reid, R.P., Macintyre, I.G., Steineck, R.S., Browne, K.M. and Miller, T.E. (1995) Stromatolites in the Exuma Cays: uncommonly common. Facies 33: 1–18.

    Article  Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B., Dupraz, C., MacIntyre, I., Paerl, H.W., Pinckney, J., Prufert-Bebout, L., Steppe, T. and Des Marais, D. (2000) The role of microbes in accretion, lamination, and early lithification in modern marine stromatolites. Nature 406: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Riding, R.R. (1994) Stromatolite survival and change: the significance of Shark Bay and Lee Stocking Island subtidal columns, In: W.E. Krumbein, D.M. Paterson and L.J. Stal (eds.) Biostabilization of Sediments. Bibiotheks und Informationssystem der Unversitat Oldenburg, Oldenburg, pp. 183–202.

    Google Scholar 

  • Riding, R.R., Awramik, S.M., Winsborough, B.M., Griffin, K.M. and Dill, R.F. (1991) Bahaman giant stromatolites: microbial composition of surface mats. Geol. Mag. 128: 227–234.

    Article  Google Scholar 

  • Stolz, J.F. (1990) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSystems 23: 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Stolz, J.F. (2001) Structure in marine biofilms, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms: A Natural History of Life on Earth. Kluwer, Dordrecht, pp. 227–240.

    Google Scholar 

  • Stolz, J.F., Feinstein, T.N., Salsi, J., Visscher, P.T. and Reid, R.P (2001) TEM analysis of microbial mediated sedimentation and lithification in a modern marine stromatolite. Am. Mineral. 86: 826–833.

    CAS  Google Scholar 

  • Underwood, G.J.C. and Paterson, D.M. (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv. Bot. Res. 40: 184–240.

    Google Scholar 

  • Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G. and Thompson, J. Jr. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83: 1482–1491.

    CAS  Google Scholar 

  • Visscher, P.T., Reid, R.P. and Bebout, B.M. (2000) Microscale observations of sulfate reduction: ­correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922.

    Article  CAS  Google Scholar 

  • Winsborough, B.M. (2000) Diatoms and benthic microbial carbonates, In: R.R. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 76–83.

    Google Scholar 

  • Wustman, B.A., Gretz, M.R. and Hoagland, K.D. (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae) I. A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms. Plant Physiol. 113: 1059–1069.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge all the members of RIBS and support from the National Science Foundation. This is RIBS contribution #49.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Franks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Franks, J. et al. (2010). Ooid Accreting Diatom Communities from the Modern Marine Stromatolites at Highborne Cay, Bahamas. In: Seckbach, J., Oren, A. (eds) Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3799-2_14

Download citation

Publish with us

Policies and ethics