Skip to main content

Entophysalis Mats as Environmental Regulators

  • Chapter
  • First Online:
Microbial Mats

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 14))

Abstract

Microbial mats on arid tropical coasts are complex interactive systems supported by oxygenic photosynthesis of cyanobacteria. The coccoid cyanobacterium Entophysalis major is recognized as one of the principal mat-forming microorganisms, which settles early in the lower intertidal ranges of wave-protected coasts, where it stabilizes sediment and forms organosedimentary platforms over large areas. It invades tidal creeks and modifies the drainage of tidal waters. The environmental invasiveness of Entophysalis is enhanced by copious production of hydrated extracellular polymers, also determining the pustular appearance of the mat surface. The environmental conditions are thereby changed at different scales and prepared for a succession of other mat-forming organisms: Schizothrix, forming pinnacle mats on drained surfaces and Microcoleus, forming flat mats in waterlogged depressions. In mid-tidal regions, these organisms are rearranged at a finer scale in response to changes introduced by extended exposure and water loss during low tides. In wave-exposed coasts, Entophysalis mats participate in the formation of intertidal stromatolites, while interacting with erosional events. Examples are taken from the coasts of Abu Dhabi, United Arab Emirates (UAE), and Shark Bay, Western Australia. Entophysalis morphotype and its participation in stromatolite formation have a long geological history. Its ancient counterpart Eoentophysalis belcherensis has been constructing stromatolites over 2,000 My ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed, R.M.M., Golubic, S., Garcia-Pichel, F., Camoin, G.F. and Sprachta, S. (2003) Characterization of microbialite-forming cyanobacteria in a tropical lagoon: Tikehau Atoll, Tuamotu, French Polynesia. J. Phycol. 39: 1–13.

    Article  Google Scholar 

  • Abed, R.M.M., Kohls, K., Schoon, R., Scherf, A.-K., Schacht, M., Palinska, K.A., Rullkötter, J. and Golubic, S. (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol. Ecol. 65: 449–462.

    Article  PubMed  CAS  Google Scholar 

  • Awramik, S.M., Margulis, L. and Barghoorn, E.S. (1976) Evolutionary processes in the formation of stromatolites, In: M.R. Walter (ed.) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp. 149–162.

    Chapter  Google Scholar 

  • Bühring, S.I., Smittenberg, R.H., Sachse, D., Lipp, J.S., Golubic, S., Sachs, J.P., Hinrichs, K.-U. and Summons, R.E. (2009) A hypersaline microbial mat from the Pacific Atoll Kirimati: insight into composition and carbon fixation using biomarker analyses and a 13C-labeling approach. Geobiology 7: 308–323.

    Article  PubMed  Google Scholar 

  • Burne, R.V. and Moore, L.S. (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2: 241–254.

    Article  Google Scholar 

  • Burns, B.P., Goh, F., Allen, M. and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  • Foster, J.S., Green, S.J., Ahrendt, S.R., Golubic, S., Reid, R.P., Hetherington, K.L. and Bebout, L. (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J. 3: 573–587.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 395–409.

    Article  CAS  Google Scholar 

  • Gautret, P., Camoin, G., Golubic, S. and Sprachta, S. (2004) Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau Atoll, French Polynesia. J. Sediment. Res. 74: 462–478.

    Article  CAS  Google Scholar 

  • Gautret, P., de Wit, R., Camoin, G. and Golubic, S. (2006) Are environmental conditions recorded by the organic matrices associated with precipitated calcium carbonate in cyanobacterial microbialites? Geobiology 4: 93–107.

    Article  CAS  Google Scholar 

  • Gischler, E., Gibson, M.A. and Oschmann, W. (2008) Giant Holocene freshwater microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology 55: 1293–1309.

    Article  CAS  Google Scholar 

  • Golubic, S. (1980) Early photosynthetic microorganisms and environmental evolution, In: R. Holmquist (ed.) Life Science and Space Research (COSPAR), Vol. 18. Pergamon, Oxford, pp. 101–107.

    Google Scholar 

  • Golubic, S. (1983) Stromatolites, fossil and recent: a case history, In: P. Westbroek and E.W. Jong (eds.) Biomineralization and Biological Metal Accumulation. D. Reidel Publishing, Dordrecht, pp. 313–326.

    Chapter  Google Scholar 

  • Golubic, S. (1985) Microbial mats and modern stromatolites in Shark Bay, Western Australia, In: D.E. Caldwell, J.A. Brierley and C.L. Brierley (eds.) Planetary Ecology. Van Nostrand Reinhold, New York, pp. 3–16.

    Google Scholar 

  • Golubic, S. (2000) Microbial landscapes: Abu Dhabi and Shark Bay, In: L. Margulis, C. Matthews and A. Haselton (eds.) Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth. MIT Press, Boston, MA, pp. 117–138.

    Google Scholar 

  • Golubic, S. and Hofmann, H.J. (1976) Comparison of modern and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J. Paleontol. 50: 1074–1082.

    Google Scholar 

  • Golubic, S. and Seong-Joo, L. (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur. J. Phycol. 34: 339–348.

    Article  Google Scholar 

  • Golubic, S., Seong-Joo, L. and Browne, K.M. (2000) Cyanobacteria: architects of sedimentary structures, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 57–67.

    Google Scholar 

  • Grotzinger, J.P. and Rothman, D.H. (1996) An abiotic model for stromatolite morphogenesis. Nature 383: 423–425.

    Article  CAS  Google Scholar 

  • Hofmann, H.J. (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50: 1040–1073.

    Google Scholar 

  • Kalkowsky, E. (1908) Oolith und stromatolith im norddeutschen Buntsandstein. Zeitschr. Deut. Geol. Ges. 60: 68–125.

    Google Scholar 

  • Kawaguchi, T. and Decho, A. (2002) In situ imaging using two-photon and confocal laser scanning microscopy of bacteria and extracellular polymeric secretions (EPS) within marine stromatolites. Mar. Biotechnol. 4: 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Kinsman, D.J.J. and Park, R.K. (1976) Algal belt and coastal sabkha evolution, Trucial Coast, Persian Gulf, In: M.R. Walter (ed.) Stromatolites: Developments in Sedimentology. Elsevier, Amsterdam, pp. 421–433.

    Chapter  Google Scholar 

  • Logan, B.W. (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J. Geol. 69: 517–588.

    Article  Google Scholar 

  • MacIntyre, I.G., Reid, R.P. and Steneck, R.S. (1996) Growth history of stromatolites in a Holocene fringing reef, Stocking Island, Bahamas. J. Sediment. Res. 66: 231–242.

    Google Scholar 

  • Palmisano, A.C., Summons, R.E., Cronin, S.E. and Des Marais, D.J. (1989) Lipophilic pigments from cyanobacterial (blue-green-algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia. J. Phycol. 25: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Papineau, D., Walker, J.J., Mojzsis, S.J. and Pace, N.R. (2005) Composition and structure of microbial communities in stromatolites of Hamelin pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71: 4822–4832.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, D.M., Aspden, R.J., Visscher, P.T., Consalvey, M., Andres, M.S., Decho, A.W., Stolz, J. and Reid, P. (2008) Light-dependent biostabilisation of sediments by stromatolite assemblages. PLoS ONE 3: e3176.

    Article  PubMed  Google Scholar 

  • Planavsky, N. and Ginsburg, R.N. (2009) Taphonomy of modern marine Bahamian microbialites. Palaios 24: 5–17.

    Article  Google Scholar 

  • Reid, R.P., James, N.P., Macintyre, I.G., Dupraz, C.P. and Burne, R.V. (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49: 299–324.

    Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F. and Des Marais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Richert, L., Golubic, S., De Le Gue, R., Herve, A. and Payri, C. (2006) Cyanobacterial populations that build ‘kopara’ microbial mats in Rangiroa, Tuamotu Archipelago, French Polynesia. Eur. J. Phycol. 41: 259–279.

    Article  CAS  Google Scholar 

  • Schopf, J.W. and Klein, C. (eds.) (1992) The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, Cambridge, 1348 pp.

    Google Scholar 

  • Seilacher, A. and Pflüger, F. (1994) From biomats to benthic agriculture: a biohistoric revolution, In: W.E. Krumbein, D.M. Peterson and L.J. Stal (eds.) Biostabilization of Sediments. Bibliotheks- und Informationssystem der Carl von Ossietzky Universität, Oldenburg, pp. 97–105.

    Google Scholar 

  • Seong-Joo, L., Golubic, S. and Zhang, Y. (1999) Paleoenvironmental distribution of silicified microfossil assemblages from Gaoyuzhuang Formation, North China. Acta Micropalaeontologica Sinica 16: 247–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stjepko Golubic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Golubic, S., Abed, R.M.M. (2010). Entophysalis Mats as Environmental Regulators. In: Seckbach, J., Oren, A. (eds) Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3799-2_12

Download citation

Publish with us

Policies and ethics