Skip to main content

The Boltzmann Kinetic Equation and Various Models

  • Chapter
Symmetries of Integro-Differential Equations

Part of the book series: Lecture Notes in Physics ((LNP,volume 806))

  • 1633 Accesses

Abstract

The chapter deals with applications of the group analysis method to the full Boltzmann kinetic equation and some similar equations. These equations form the foundation of the kinetic theory of rarefied gas and coagulation. They typically include special integral operators with quadratic nonlinearity and multiple kernels which are called collision integrals.

Calculations of the 11-parameter Lie group G 11 admitted by the full Boltzmann equation with arbitrary intermolecular potential and its extensions for power potentials are presented. The found isomorphism of these Lie groups with the Lie groups admitted by the ideal gas dynamics equations allowed one to obtain an optimal system of admitted subalgebras and to classify all invariant solutions of the full Boltzmann equation. For equations similar to the full Boltzmann equation complete admitted Lie groups are derived by solving determining equations. The corresponding optimal systems of admitted subalgebras are constructed and representations of all invariant solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the review [15].

  2. 2.

    The text follows [17], see also Chap. 2.

  3. 3.

    The theory of existence and uniqueness of a local solution of the Boltzmann equation can be found in [12, 13, 27].

  4. 4.

    See also Chap. 1.

  5. 5.

    See Appendix A.

  6. 6.

    The part of the optimal system of six and seven dimensional subalgebras of [36] is presented in Appendix A.

  7. 7.

    The operator X is considered as the equivalent canonical Lie–Bäcklund operator.

  8. 8.

    The previous results [29] obtained in this direction were far from being complete.

  9. 9.

    The spectral properties of the linearized system corresponding to (3.4.18) are substantially used in the proof.

References

  1. Bobylev, A.V.: On exact solutions of the Boltzmann equation. Dokl. AS USSR 225(6), 1296–1299 (1975)

    MathSciNet  ADS  Google Scholar 

  2. Bobylev, A.V.: On one class of invariant solutions of the Boltzmann equation. Dokl. AS USSR 231(3), 571–574 (1976)

    MathSciNet  ADS  Google Scholar 

  3. Bobylev, A.V.: The structure of spatially uniform normal solutions of the nonlinear Boltzmann equation for a gas mixture. Dokl. Akad. Nauk SSSR 250(2), 340–344 (1980)

    MathSciNet  ADS  Google Scholar 

  4. Bobylev, A.V.: The Boltzmann equation and group transformations. Math. Models Methods Appl. Sci. 3, 443–476 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V., Dorodnitsyn, V.A.: Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete Contin. Dyn. Syst. 24(1), 35–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobylev, A.V., Ibragimov, N.H.: Relationships between the symmetry properties of the equations of gas kinetics and hydrodynamics. J. Math. Model. 1(3), 100–109 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Bobylev, A.V., Caraffini, G.L., Spiga, G.: On group invariant solutions of the Boltzmann equation. J. Math. Phys. 37(6), 2787–2795 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Boltzmann, L.: Further studies on the thermal equilibrium among gas-molecules. Collected Works 1, 275–370 (1872)

    Google Scholar 

  9. Bunimovich, A.I., Krasnoslobodtsev, A.V.: Invariant-group solutions of kinetic equations. Meh. Zidkosti Gas. (4), 135–140 (1982)

    Google Scholar 

  10. Bunimovich, A.I., Krasnoslobodtsev, A.V.: On some invariant transformations of kinetic equations. Vestn. Moscow State Univ., Ser. 1., Mat. Meh. (4), 69–72 (1983)

    Google Scholar 

  11. Carleman, T.: Problemes Mathematiques Dans la Theorie Cinetique des Gas. Almqvist & Wiksell, Uppsala (1957)

    Google Scholar 

  12. Cercignani, C.: Theory and Application of the Boltzmann Equation. Chatto and Windus, London (1975)

    MATH  Google Scholar 

  13. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  14. Cherevko, A.A.: Optimal system subalgebras for the Lie algebra of generators admitted by the gas dynamics equations with the state equation p=f(s)ρ 5/3. Preprint of Institute of Hydrodynamics SO RAS, Novosibirsk, Russia (1996)

    Google Scholar 

  15. Ernst, M.H.: Nonlinear model—Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  16. Golovin, S.V.: Optimal system of subalgebras for the Lie algebra of generators admitted by the polytropic gas dynamics equations. Preprint of Institute of Hydrodynamics SO RAS, Novosibirsk, Russia (1996)

    Google Scholar 

  17. Grigoriev, Y.N., Meleshko, S.V.: Investigation of invariant solutions of the Boltzmann kinetic equation and its models. Preprint of Institute of Theoretical and Applied Mechanics (1986)

    Google Scholar 

  18. Grigoriev, Y.N., Meleshko, S.V.: Group analysis of the integro-differential Boltzmann equation. Dokl. AS USSR 297(2), 323–327 (1987)

    ADS  Google Scholar 

  19. Grigoriev, Y.N., Meleshko, S.V.: Group theoretical analysis of the kinetic Boltzmann equation and its models. Arch. Mech. 42(6), 693–701 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Grigoriev, Y.N., Meleshko, S.V.: Group analysis of kinetic equations. Russ. J. Numer. Anal. Math. Model. 9(5), 425–447 (1995)

    MathSciNet  Google Scholar 

  21. Grigoriev, Y.N., Meleshko, S.V.: The full Lie group and invariant solutions of the system of Boltzmann equations of a multicomponent gas mixture. Sib. Math. J. 38(3), 434–448 (1997)

    Article  Google Scholar 

  22. Grigoriev, Y.N., Meleshko, S.V.: Bobylev–Krook–Wu modes for multicomponent gas mixtures. Phys. Rev. Lett. 81(1), 93–95 (1998)

    Article  ADS  Google Scholar 

  23. Grigoriev, Y.N., Meleshko, S.V., Sattayatham, P.: Classification of invariant solutions of the Boltzmann equation. J. Phys. A, Math. Gen. 32, 337–343 (1999)

    Article  ADS  Google Scholar 

  24. Grigoriev, Y.N., Omel’yanchuk, M.: Qualitative properties of a certain kinetic model of binary gas. Sib. Math. J. 46(5), 813–825 (2005)

    Article  Google Scholar 

  25. Grigoryev, Y.N., Mikhalitsyn, A.N.: A spectral method of solving Boltzmann’s kinetic equation numerically. U.S.S.R. Comput. Math. Math. Phys. 23(6), 105–111 (1985)

    Article  Google Scholar 

  26. Grigoryev, Y.N., Mikhalitsyn, A.N.: Asymptotics of the Boltzmann kinetic equation for high-energy particles. Arch. Mech. 39(4), 303–313 (1986)

    Google Scholar 

  27. Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969)

    Google Scholar 

  28. Krook, M., Wu, T.T.: Formation of Maxwellian tails. Phys. Rev. Lett. 36(19), 1107–1109 (1976)

    Article  ADS  Google Scholar 

  29. Krook, M., Wu, T.T.: Exact solutions of the Boltzmann’s equation for multicomponent systems. Phys. Rev. Lett. 38(18), 991–993 (1977)

    Article  ADS  Google Scholar 

  30. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  Google Scholar 

  31. Nakashev, N.K.: Properties of the solution of the Boltzmann equation at high energies of the translational molecular motion and their corollaries. Dokl. Acad. Sci. USSR 258(1), 52–56 (1981)

    Google Scholar 

  32. Nikolskii, A.A.: The simplest exact solutions of the Boltzmann equation of a rarefied gas motion. Dokl. AS USSR 151(2), 299–301 (1963)

    Google Scholar 

  33. Nikolskii, A.A.: Three dimensional homogeneous expansion–contraction of a rarefied gas with power interaction functions. Dokl. AS USSR 151(3), 522–524 (1963)

    Google Scholar 

  34. Nikolskii, A.A.: Homogeneous motion of displacement of monatomic rarefied gas. Inz. J. 5(4), 752–755 (1965)

    Google Scholar 

  35. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978). English translation by Ames, W.F. (ed.), published by Academic Press, New York (1982)

    Google Scholar 

  36. Ovsiannikov, L.V.: Program SUBMODELS. Gas dynamics. J. Appl. Math. Mech. 58(4), 30–55 (1994)

    MathSciNet  Google Scholar 

  37. Rykov, V.A.: Classification of invariant solutions of the Boltzmann equation. J. Appl. Math. Mech. 31, 756–762 (1967)

    Article  Google Scholar 

  38. Voloshchuk, V.M.: Kinetic Coagulation Theory. Gidrometeoizdat, Leningrad (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii N. Grigoriev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grigoriev, Y.N., Ibragimov, N.H., Kovalev, V.F., Meleshko, S.V. (2010). The Boltzmann Kinetic Equation and Various Models. In: Symmetries of Integro-Differential Equations. Lecture Notes in Physics, vol 806. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3797-8_3

Download citation

Publish with us

Policies and ethics